Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 205: 85-98, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968590

RESUMO

Severe environmental and health impacts have been experienced in the Western Lake Erie Basin (WLEB) because of eutrophication and associated proliferation of harmful algae blooms. Efforts to improve water quality within the WLEB have been on-going for several decades. However, water quality improvements in the basin have not been realized as anticipated. In this study, factors affecting water quality within the WLEB were evaluated with a view to differentiating their impacts and informing further assessments in the basin. Over the long-term (1966-2015) and basin-wide, total annual precipitation increased significantly by about 2.4 mm/year while mean monthly streamflows also increased during the same period although the increase was not significant (p = 0.36). There was, however, a significant increase in spring streamflows during this period (p = 0.003). Patterns in water quality parameters showed significant reductions in total suspended solids (TSS) (p < 0.001) and total phosphorus (TP) (p = 0.018) while soluble reactive phosphorus (SRP) increased significantly (p < 0.001), and in particular from about 1995. Results of near-term (2005-2015) analysis showed a non-significant (p = 0.262) reduction in TSS concentrations of about 0.25 mg/L/year. TP concentrations did not vary substantially during the same period while a 0.11 mg/L/year increase in nitrate and a 0.001 mg/L/year increase in SRP were observed, with increases in nitrates being significant (p = 0.013). TP and SRP concentrations, however, remained high within the basin with daily values ranging between 0.03 and 1.84 mg/L and less than 0.002-0.52 mg/L, respectively. Basin-wide, both spring precipitation and spring streamflows increased significantly during the period 2005-2015 (p < 0.001). Overall, no substantial changes in land use were observed, suggesting that water quality responses might be attributable to management. Based on recent data, corn acreage in the basin and fertilizer applied to corn increased by 33% and 10% respectively. Combined Sewer Overflows (CSOs) and impoundments were also important factors due to their prevalence in the basin. Based on the analysis, changes in agricultural management, increase in spring precipitation, CSOs, legacy phosphorus, and the presence of dams were thought to present constraints to water quality improvements despite conservation efforts within the basin.


Assuntos
Eutrofização , Qualidade da Água , Monitoramento Ambiental , Lagos , Fósforo , Melhoria de Qualidade , Água
2.
Harmful Algae ; 126: 102440, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37290887

RESUMO

Cyanobacterial harmful algal blooms (cyanoHABs) dominated by Microcystis spp. have significant public health and economic implications in freshwater bodies around the world. These blooms are capable of producing a variety of cyanotoxins, including microcystins, that affect fishing and tourism industries, human and environmental health, and access to drinking water. In this study, we isolated and sequenced the genomes of 21 primarily unialgal Microcystis cultures collected from western Lake Erie between 2017 and 2019. While some cultures isolated in different years have a high degree of genetic similarity (genomic Average Nucleotide Identity >99%), genomic data show that these cultures also represent much of the breadth of known Microcystis diversity in natural populations. Only five isolates contained all the genes required for microcystin biosynthesis while two isolates contained a previously described partial mcy operon. Microcystin production within cultures was also assessed using Enzyme-Linked Immunosorbent Assay (ELISA) and supported genomic results with high concentrations (up to 900 µg L⁻¹) in cultures with complete mcy operons and no or low toxin detected otherwise. These xenic cultures also contained a substantial diversity of bacteria associated with Microcystis, which has become increasingly recognized as an essential component of cyanoHAB community dynamics. These results highlight the genomic diversity among Microcystis strains and associated bacteria in Lake Erie, and their potential impacts on bloom development, toxin production, and toxin degradation. This culture collection significantly increases the availability of environmentally relevant Microcystis strains from temperate North America.


Assuntos
Cianobactérias , Microbiota , Microcystis , Humanos , Microcystis/genética , Lagos/microbiologia , Cianobactérias/genética , Variação Genética
3.
Harmful Algae ; 103: 101999, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33980439

RESUMO

Saginaw Bay and western Lake Erie basin (WLEB) are eutrophic catchments in the Laurentian Great Lakes that experience annual, summer-time cyanobacterial blooms. Both basins share many features including similar size, shallow depths, and equivalent-sized watersheds. They are geographically close and both basins derive a preponderance of their nutrient supply from a single river. Despite these similarities, the bloom phenology in each basin is quite different. The blooms in Saginaw Bay occur at the same time and place and at the same moderate severity level each year. The WLEB, in contrast, exhibits far greater interannual variability in the timing, location, and severity of the bloom than Saginaw Bay, consistent with greater and more variable phosphorus inputs. Saginaw Bay has bloom biomass that corresponds to relatively mild blooms in WLEB, and also has equivalent phosphorus loads. This result suggests that if inputs of P into the WLEB were reduced to similarly sized loads as Saginaw Bay the most severe blooms would be abated. Above 500 t P input, which occur in WLEB, blooms increase non-linearly indicating any reduction in P-input at the highest inputs levels currently occurring in the WLEB, would yield disproportionately large reductions in cyanobacterial bloom intensity. As the maximum phosphorus loads in Saginaw Bay lie just below this inflection point, shifts in the Saginaw Bay watershed toward greater agriculture uses and less wetlands may substantially increase the risk of more intense cyanobacterial blooms than presently occur.


Assuntos
Cianobactérias , Lagos , Baías , Eutrofização , Fósforo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA