Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.228
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Genes Dev ; 37(17-18): 781-800, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37798016

RESUMO

Adipose tissue exhibits a remarkable capacity to expand, contract, and remodel in response to changes in physiological and environmental conditions. Here, we describe recent advances in our understanding of how functionally distinct tissue-resident mesenchymal stromal cell subpopulations orchestrate several aspects of physiological and pathophysiological adipose tissue remodeling, with a particular focus on the adaptations that occur in response to changes in energy surplus and environmental temperature. The study of adipose tissue remodeling provides a vehicle to understand the functional diversity of stromal cells and offers a lens through which several generalizable aspects of tissue reorganization can be readily observed.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Humanos , Tecido Adiposo , Obesidade , Células Estromais
2.
Immunity ; 54(7): 1527-1542.e8, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34015256

RESUMO

The precise mechanisms underlying the beneficial effects of regulatory T (Treg) cells on long-term tissue repair remain elusive. Here, using single-cell RNA sequencing and flow cytometry, we found that Treg cells infiltrated the brain 1 to 5 weeks after experimental stroke in mice. Selective depletion of Treg cells diminished oligodendrogenesis, white matter repair, and functional recovery after stroke. Transcriptomic analyses revealed potent immunomodulatory effects of brain-infiltrating Treg cells on other immune cells, including monocyte-lineage cells. Microglia depletion, but not T cell lymphopenia, mitigated the beneficial effects of transferred Treg cells on white matter regeneration. Mechanistically, Treg cell-derived osteopontin acted through integrin receptors on microglia to enhance microglial reparative activity, consequently promoting oligodendrogenesis and white matter repair. Increasing Treg cell numbers by delivering IL-2:IL-2 antibody complexes after stroke improved white matter integrity and rescued neurological functions over the long term. These findings reveal Treg cells as a neurorestorative target for stroke recovery.


Assuntos
Isquemia Encefálica/imunologia , AVC Isquêmico/imunologia , Microglia/imunologia , Osteopontina/imunologia , Recuperação de Função Fisiológica/imunologia , Linfócitos T Reguladores/imunologia , Substância Branca/imunologia , Animais , Modelos Animais de Doenças , Interleucina-2/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Annu Rev Cell Dev Biol ; 32: 693-711, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27362646

RESUMO

For effective adaptive immunity to foreign antigens (Ag), secondary lymphoid organs (SLO) provide the confined environment in which Ag-restricted lymphocytes, with very low precursor frequencies, interact with Ag on Ag-presenting cells (APC). The spleen is the primordial SLO, arising in conjunction with adaptive immunity in early jawed vertebrates. The spleen, especially the spleen's lymphoid compartment, the white pulp (WP), has undergone numerous modifications over evolutionary time. We describe the progressive advancement of splenic WP complexity, which evolved in parallel with the increasing functionality of adaptive immunity. The Ag-presenting function of follicular dendritic cells (FDC) also likely emerged at the inception of adaptive immunity, and we propose that a single type of hematopoietically derived APC displayed Ag to both T and B cells. A dedicated FDC, derived from a vascular precursor, is a recent evolutionary innovation that likely permitted the robust affinity maturation found in mammals.


Assuntos
Evolução Biológica , Tecido Linfoide/embriologia , Animais , Humanos , Modelos Biológicos , Vertebrados/embriologia
4.
Genes Dev ; 35(9-10): 771-781, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33832988

RESUMO

MicroRNAs (miRNAs) are short, noncoding RNAs that associate with Argonaute (AGO) to influence mRNA stability and translation, thereby regulating cellular determination and phenotype. While several individual miRNAs have been shown to control adipocyte function, including energy storage in white fat and energy dissipation in brown fat, a comprehensive analysis of miRNA activity in these tissues has not been performed. We used high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP) to comprehensively characterize the network of high-confidence, in vivo mRNA:miRNA interactions across white and brown fat, revealing >20,000 unique AGO binding sites. When coupled with miRNA and mRNA sequencing, we found an inverse correlation between depot-enriched miRNAs and their targets. To illustrate the functionality of our HITS-CLIP data set in identifying specific miRNA:mRNA interactions, we show that miR-29 is a novel regulator of leptin, an adipocyte-derived hormone that coordinates food intake and energy homeostasis. Two independent miR-29 binding sites in the leptin 3' UTR were validated using luciferase assays, and miR-29 gain and loss of function modulated leptin mRNA and protein secretion in primary adipocytes. This work represents the only experimentally generated miRNA targetome in adipose tissue and identifies multiple regulatory pathways that may specify the unique identities of white and brown fat.


Assuntos
Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Proteínas Argonautas/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Sítios de Ligação/genética , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo
5.
Genes Dev ; 35(21-22): 1461-1474, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34620682

RESUMO

Energy-storing white adipocytes maintain their identity by suppressing the energy-burning thermogenic gene program of brown and beige adipocytes. Here, we reveal that the protein-protein interaction between the transcriptional coregulator ZFP423 and brown fat determination factor EBF2 is essential for restraining the thermogenic phenotype of white adipose tissue (WAT). Disruption of the ZFP423-EBF2 protein interaction through CRISPR-Cas9 gene editing triggers widespread "browning" of WAT in adult mice. Mechanistically, ZFP423 recruits the NuRD corepressor complex to EBF2-bound thermogenic gene enhancers. Loss of adipocyte Zfp423 induces an EBF2 NuRD-to-BAF coregulator switch and a shift in PPARγ occupancy to thermogenic genes. This shift in PPARγ occupancy increases the antidiabetic efficacy of the PPARγ agonist rosiglitazone in obesity while diminishing the unwanted weight-gaining effect of the drug. These data indicate that ZFP423 controls EBF2 coactivator recruitment and PPARγ occupancy to determine the thermogenic plasticity of adipocytes and highlight the potential of therapeutically targeting transcriptional brakes to induce beige adipocyte biogenesis in obesity.


Assuntos
PPAR gama , Termogênese , Adipócitos Marrons/metabolismo , Adipócitos Brancos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA , Camundongos , PPAR gama/genética , Termogênese/genética , Fatores de Transcrição
6.
Genes Dev ; 35(21-22): 1395-1397, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725126

RESUMO

Adipose tissue is a complex organ consisting of a mixture of mature adipocytes and stromal vascular cells. It displays a remarkable ability to adapt to environmental and dietary cues by changing its morphology and metabolic capacity. This plasticity is demonstrated by the emergence of interspersed thermogenic beige adipocytes within white depots in response to catecholamines secretion. Coordinated cellular interaction between different cell types within the tissue and a fine-tuned transcriptional program synergistically take place to promote beige remodeling. However, both cell-cell interactions and molecular mechanisms governing beige adipocyte appearance and maintenance are poorly understood. In this and the previous issue of Genes & Development, Shao and colleagues (pp. 1461-1474) and Shan and colleagues (pp. 1333-1338) advance our understanding of these issues and, in doing so, highlight potential therapeutic strategies to combat obesity-associated diseases.


Assuntos
Adipócitos Bege , Termogênese , Adipócitos Bege/metabolismo , Tecido Adiposo , Tecido Adiposo Branco/metabolismo , Termogênese/genética
7.
Immunity ; 50(1): 121-136.e5, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30594464

RESUMO

Dermal fibroblasts (dFBs) resist infection by locally differentiating into adipocytes and producing cathelicidin antimicrobial peptide in response to Staphylococcus aureus (S. aureus). Here, we show that neonatal skin was enriched with adipogenic dFBs and immature dermal fat that highly expressed cathelicidin. The pool of adipogenic and antimicrobial dFBs declined after birth, leading to an age-dependent loss of dermal fat and a decrease in adipogenesis and cathelidicin production in response to infection. Transforming growth factor beta (TGF-ß), which acted on uncommitted embryonic and adult dFBs and inhibited their adipogenic and antimicrobial function, was identified as a key upstream regulator of this process. Furthermore, inhibition of the TGF-ß receptor restored the adipogenic and antimicrobial function of dFBs in culture and increased resistance of adult mice to S. aureus infection. These results provide insight into changes that occur in the skin innate immune system between the perinatal and adult periods of life.


Assuntos
Envelhecimento/imunologia , Fibroblastos/fisiologia , Pele/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Gordura Subcutânea/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adipócitos/metabolismo , Adipogenia , Animais , Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Células Cultivadas , Embrião de Mamíferos , Humanos , Imunidade Inata , Camundongos , Catelicidinas
8.
Genes Dev ; 34(5-6): 321-340, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32029456

RESUMO

Poly(ADP-ribose) polymerases (PARPs or ARTDs), originally described as DNA repair factors, have metabolic regulatory roles. PARP1, PARP2, PARP7, PARP10, and PARP14 regulate central and peripheral carbohydrate and lipid metabolism and often channel pathological disruptive metabolic signals. PARP1 and PARP2 are crucial for adipocyte differentiation, including the commitment toward white, brown, or beige adipose tissue lineages, as well as the regulation of lipid accumulation. Through regulating adipocyte function and organismal energy balance, PARPs play a role in obesity and the consequences of obesity. These findings can be translated into humans, as evidenced by studies on identical twins and SNPs affecting PARP activity.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Diferenciação Celular , Poli(ADP-Ribose) Polimerases/metabolismo , Metabolismo dos Carboidratos , Humanos , Metabolismo dos Lipídeos/fisiologia
9.
Immunol Rev ; 324(1): 11-24, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38683173

RESUMO

White adipose tissue (WAT) is a vital endocrine organ that regulates energy balance and metabolic homeostasis. In addition to fat cells, WAT harbors macrophages with distinct phenotypes that play crucial roles in immunity and metabolism. Nutrient demands cause macrophages to accumulate in WAT niches, where they remodel the microenvironment and produce beneficial or detrimental effects on systemic metabolism. Given the abundance of macrophages in WAT, this review summarizes the heterogeneity of WAT macrophages in physiological and pathological conditions, including their alterations in quantity, phenotypes, characteristics, and functions during WAT growth and development, as well as healthy or unhealthy expansion. We will discuss the interactions of macrophages with other cell partners in WAT including adipose stem cells, adipocytes, and T cells in the context of various microenvironment niches in lean or obese condition. Finally, we highlight how adipose tissue macrophages merge immunity and metabolic changes to govern energy balance for the organism.


Assuntos
Tecido Adiposo Branco , Metabolismo Energético , Macrófagos , Obesidade , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/imunologia , Animais , Obesidade/imunologia , Obesidade/metabolismo , Adipócitos/metabolismo , Adipócitos/imunologia , Homeostase
10.
Physiol Rev ; 100(3): 1181-1228, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32078778

RESUMO

For more than one century, brain processing was mainly thought in a localizationist framework, in which one given function was underpinned by a discrete, isolated cortical area, and with a similar cerebral organization across individuals. However, advances in brain mapping techniques in humans have provided new insights into the organizational principles of anatomo-functional architecture. Here, we review recent findings gained from neuroimaging, electrophysiological, as well as lesion studies. Based on these recent data on brain connectome, we challenge the traditional, outdated localizationist view and propose an alternative meta-networking theory. This model holds that complex cognitions and behaviors arise from the spatiotemporal integration of distributed but relatively specialized networks underlying conation and cognition (e.g., language, spatial cognition). Dynamic interactions between such circuits result in a perpetual succession of new equilibrium states, opening the door to considerable interindividual behavioral variability and to neuroplastic phenomena. Indeed, a meta-networking organization underlies the uniquely human propensity to learn complex abilities, and also explains how postlesional reshaping can lead to some degrees of functional compensation in brain-damaged patients. We discuss the major implications of this approach in fundamental neurosciences as well as for clinical developments, especially in neurology, psychiatry, neurorehabilitation, and restorative neurosurgery.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Rede Nervosa , Conectoma/métodos , Humanos , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia
11.
Annu Rev Genet ; 53: 149-170, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31451036

RESUMO

Fungi see light of different colors by using photoreceptors such as the White Collar proteins and cryptochromes for blue light, opsins for green light, and phytochromes for red light. Light regulates fungal development, promotes the accumulation of protective pigments and proteins, and regulates tropic growth. The White Collar complex (WCC) is a photoreceptor and a transcription factor that is responsible for regulating transcription after exposure to blue light. In Neurospora crassa, light promotes the interaction of WCCs and their binding to the promoters to activate transcription. In Aspergillus nidulans, the WCC and the phytochrome interact to coordinate gene transcription and other responses, but the contribution of these photoreceptors to fungal photobiology varies across fungal species. Ultimately, the effect of light on fungal biology is the result of the coordinated transcriptional regulation and activation of signal transduction pathways.


Assuntos
Proteínas Fúngicas/genética , Fungos/fisiologia , Regulação Fúngica da Expressão Gênica , Fotorreceptores Microbianos/genética , Aspergillus nidulans/fisiologia , Luz , Neurospora crassa/genética , Neurospora crassa/fisiologia , Fotorreceptores Microbianos/metabolismo , Transdução de Sinais , Transcrição Gênica
12.
Proc Natl Acad Sci U S A ; 121(22): e2316117121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38776372

RESUMO

We report the reliable detection of reproducible patterns of blood-oxygenation-level-dependent (BOLD) MRI signals within the white matter (WM) of the spinal cord during a task and in a resting state. Previous functional MRI studies have shown that BOLD signals are robustly detectable not only in gray matter (GM) in the brain but also in cerebral WM as well as the GM within the spinal cord, but similar signals in WM of the spinal cord have been overlooked. In this study, we detected BOLD signals in the WM of the spinal cord in squirrel monkeys and studied their relationships with the locations and functions of ascending and descending WM tracts. Tactile sensory stimulus -evoked BOLD signal changes were detected in the ascending tracts of the spinal cord using a general-linear model. Power spectral analysis confirmed that the amplitude at the fundamental frequency of the response to a periodic stimulus was significantly higher in the ascending tracts than the descending ones. Independent component analysis of resting-state signals identified coherent fluctuations from eight WM hubs which correspond closely to the known anatomical locations of the major WM tracts. Resting-state analyses showed that the WM hubs exhibited correlated signal fluctuations across spinal cord segments in reproducible patterns that correspond well with the known neurobiological functions of WM tracts in the spinal cord. Overall, these findings provide evidence of a functional organization of intraspinal WM tracts and confirm that they produce hemodynamic responses similar to GM both at baseline and under stimulus conditions.


Assuntos
Imageamento por Ressonância Magnética , Saimiri , Medula Espinal , Substância Branca , Animais , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Medula Espinal/fisiologia , Medula Espinal/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Descanso/fisiologia , Oxigênio/sangue , Oxigênio/metabolismo , Masculino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Feminino
13.
Proc Natl Acad Sci U S A ; 121(11): e2316439121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442165

RESUMO

Adaptive myelination is the emerging concept of tuning axonal conduction velocity to the activity within specific neural circuits over time. Sound processing circuits exhibit structural and functional specifications to process signals with microsecond precision: a time scale that is amenable to adjustment in length and thickness of myelin. Increasing activity of auditory axons by introducing sound-evoked responses during postnatal development enhances myelin thickness, while sensory deprivation prevents such radial growth during development. When deprivation occurs during adulthood, myelin thickness was reduced. However, it is unclear whether sensory stimulation adjusts myelination in a global fashion (whole fiber bundles) or whether such adaptation occurs at the level of individual fibers. Using temporary monaural deprivation in mice provided an internal control for a) differentially tracing structural changes in active and deprived fibers and b) for monitoring neural activity in response to acoustic stimulation of the control and the deprived ear within the same animal. The data show that sound-evoked activity increased the number of myelin layers around individual active axons, even when located in mixed bundles of active and deprived fibers. Thicker myelination correlated with faster axonal conduction velocity and caused shorter auditory brainstem response wave VI-I delays, providing a physiologically relevant readout. The lack of global compensation emphasizes the importance of balanced sensory experience in both ears throughout the lifespan of an individual.


Assuntos
Axônios , Bainha de Mielina , Animais , Camundongos , Privação Sensorial , Estimulação Acústica , Longevidade
14.
Proc Natl Acad Sci U S A ; 121(21): e2321496121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753517

RESUMO

RNASET2-deficient leukodystrophy is a rare infantile white matter disorder mimicking a viral infection and resulting in severe psychomotor impairments. Despite its severity, there is little understanding of cellular mechanisms of pathogenesis and no treatments. Recent research using the rnaset2 mutant zebrafish model has suggested that microglia may be the drivers of the neuropathology, due to their failure to digest apoptotic debris during neurodevelopment. Therefore, we developed a strategy for microglial replacement through transplantation of adult whole kidney marrow-derived macrophages into embryonic hosts. Using live imaging, we revealed that transplant-derived macrophages can engraft within host brains and express microglia-specific markers, suggesting the adoption of a microglial phenotype. Tissue-clearing strategies revealed the persistence of transplanted cells in host brains beyond embryonic stages. We demonstrated that transplanted cells clear apoptotic cells within the brain, as well as rescue overactivation of the antiviral response otherwise seen in mutant larvae. RNA sequencing at the point of peak transplant-derived cell engraftment confirms that transplantation can reduce the brain-wide immune response and particularly, the antiviral response, in rnaset2-deficient brains. Crucially, this reduction in neuroinflammation resulted in behavioral rescue-restoring rnaset2 mutant motor activity to wild-type (WT) levels in embryonic and juvenile stages. Together, these findings demonstrate the role of microglia as the cellular drivers of neuropathology in rnaset2 mutants and that macrophage transplantation is a viable strategy for microglial replacement in the zebrafish. Therefore, microglia-targeted interventions may have therapeutic benefits in RNASET2-deficient leukodystrophy.


Assuntos
Encéfalo , Macrófagos , Microglia , Animais , Encéfalo/patologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Leucoencefalopatias/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Microglia/patologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/metabolismo
15.
Genes Dev ; 33(19-20): 1367-1380, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31488578

RESUMO

Fat storage in adult mammals is a highly regulated process that involves the mobilization of adipocyte progenitor cells (APCs) that differentiate to produce new adipocytes. Here we report a role for the broadly conserved miR-26 family of microRNAs (miR-26a-1, miR-26a-2, and miR-26b) as major regulators of APC differentiation and adipose tissue mass. Deletion of all miR-26-encoding loci in mice resulted in a dramatic expansion of adipose tissue in adult animals fed normal chow. Conversely, transgenic overexpression of miR-26a protected mice from high-fat diet-induced obesity. These effects were attributable to a cell-autonomous function of miR-26 as a potent inhibitor of APC differentiation. miR-26 blocks adipogenesis, at least in part, by repressing expression of Fbxl19, a conserved miR-26 target without a previously known role in adipocyte biology that encodes a component of SCF-type E3 ubiquitin ligase complexes. These findings have therefore revealed a novel pathway that plays a critical role in regulating adipose tissue formation in vivo and suggest new potential therapeutic targets for obesity and related disorders.


Assuntos
Adipogenia/genética , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , MicroRNAs/metabolismo , Obesidade/genética , Células-Tronco/citologia , Animais , Dieta Hiperlipídica , Expressão Gênica , Técnicas de Silenciamento de Genes , Camundongos , MicroRNAs/genética
16.
Trends Biochem Sci ; 47(6): 531-546, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35304047

RESUMO

Insulin stimulates glucose uptake into adipocytes via mTORC2/AKT signaling and GLUT4 translocation and directs glucose carbons into glycolysis, glycerol for TAG synthesis, and de novo lipogenesis. Adipocyte insulin resistance is an early indicator of type 2 diabetes in obesity, a worldwide health crisis. Thus, understanding the interplay between insulin signaling and central carbon metabolism pathways that maintains adipocyte function, blood glucose levels, and metabolic homeostasis is critical. While classically viewed through the lens of individual enzyme-substrate interactions, advances in mass spectrometry are beginning to illuminate adipocyte signaling and metabolic networks on an unprecedented scale, yet this is just the tip of the iceberg. Here, we review how 'omics approaches help to elucidate adipocyte insulin action in cellular time and space.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Adipócitos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Transdução de Sinais
17.
Am J Hum Genet ; 110(8): 1356-1376, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37421948

RESUMO

By converting physical forces into electrical signals or triggering intracellular cascades, stretch-activated ion channels allow the cell to respond to osmotic and mechanical stress. Knowledge of the pathophysiological mechanisms underlying associations of stretch-activated ion channels with human disease is limited. Here, we describe 17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment associated with progressive neurodegenerative brain changes carrying ten distinct heterozygous variants of TMEM63B, encoding for a highly conserved stretch-activated ion channel. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense, including the recurrent p.Val44Met in 7/17 individuals, or in-frame, all affecting conserved residues located in transmembrane regions of the protein. In 12 individuals, hematological abnormalities co-occurred, such as macrocytosis and hemolysis, requiring blood transfusions in some. We modeled six variants (p.Val44Met, p.Arg433His, p.Thr481Asn, p.Gly580Ser, p.Arg660Thr, and p.Phe697Leu), each affecting a distinct transmembrane domain of the channel, in transfected Neuro2a cells and demonstrated inward leak cation currents across the mutated channel even in isotonic conditions, while the response to hypo-osmotic challenge was impaired, as were the Ca2+ transients generated under hypo-osmotic stimulation. Ectopic expression of the p.Val44Met and p.Gly580Cys variants in Drosophila resulted in early death. TMEM63B-associated DEE represents a recognizable clinicopathological entity in which altered cation conductivity results in a severe neurological phenotype with progressive brain damage and early-onset epilepsy associated with hematological abnormalities in most individuals.


Assuntos
Encefalopatias , Deficiência Intelectual , Humanos , Encefalopatias/genética , Canais Iônicos/genética , Encéfalo , Deficiência Intelectual/genética , Fenótipo
18.
Circ Res ; 135(2): 320-331, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38832504

RESUMO

BACKGROUND: Vascular cognitive impairment due to cerebral small vessel disease is associated with cerebral pulsatility, white matter hypoperfusion, and reduced cerebrovascular reactivity (CVR), and is potentially improved by endothelium-targeted drugs such as cilostazol. Whether sildenafil, a phosphodiesterase-5 inhibitor, improves cerebrovascular dysfunction is unknown. METHODS: OxHARP trial (Oxford Haemodynamic Adaptation to Reduce Pulsatility) was a double-blind, randomized, placebo-controlled, 3-way crossover trial after nonembolic cerebrovascular events with mild-moderate white matter hyperintensities (WMH), the most prevalent manifestation of cerebral small vessel disease. The primary outcome assessed the superiority of 3 weeks of sildenafil 50 mg thrice daily versus placebo (mixed-effect linear models) on middle cerebral artery pulsatility, derived from peak systolic and end-diastolic velocities (transcranial ultrasound), with noninferiority to cilostazol 100 mg twice daily. Secondary end points included the following: cerebrovascular reactivity during inhalation of air, 4% and 6% CO2 on transcranial ultrasound (transcranial ultrasound-CVR); blood oxygen-level dependent-magnetic resonance imaging within WMH (CVR-WMH) and normal-appearing white matter (CVR-normal-appearing white matter); cerebral perfusion by arterial spin labeling (magnetic resonance imaging pseudocontinuous arterial spin labeling); and resistance by cerebrovascular conductance. Adverse effects were compared by Cochran Q. RESULTS: In 65/75 (87%) patients (median, 70 years;79% male) with valid primary outcome data, cerebral pulsatility was unchanged on sildenafil versus placebo (0.02, -0.01 to 0.05; P=0.18), or versus cilostazol (-0.01, -0.04 to 0.02; P=0.36), despite increased blood flow (∆ peak systolic velocity, 6.3 cm/s, 3.5-9.07; P<0.001; ∆ end-diastolic velocity, 1.98, 0.66-3.29; P=0.004). Secondary outcomes improved on sildenafil versus placebo for CVR-transcranial ultrasound (0.83 cm/s per mm Hg, 0.23-1.42; P=0.007), CVR-WMH (0.07, 0-0.14; P=0.043), CVR-normal-appearing white matter (0.06, 0.00-0.12; P=0.048), perfusion (WMH: 1.82 mL/100 g per minute, 0.5-3.15; P=0.008; and normal-appearing white matter, 2.12, 0.66-3.6; P=0.006) and cerebrovascular resistance (sildenafil-placebo: 0.08, 0.05-0.10; P=4.9×10-8; cilostazol-placebo, 0.06, 0.03-0.09; P=5.1×10-5). Both drugs increased headaches (P=1.1×10-4), while cilostazol increased moderate-severe diarrhea (P=0.013). CONCLUSIONS: Sildenafil did not reduce pulsatility but increased cerebrovascular reactivity and perfusion. Sildenafil merits further study to determine whether it prevents the clinical sequelae of small vessel disease. REGISTRATION: URL: https://www.clinicaltrials.gov/study/NCT03855332; Unique identifier: NCT03855332.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Circulação Cerebrovascular , Estudos Cross-Over , Citrato de Sildenafila , Humanos , Citrato de Sildenafila/uso terapêutico , Citrato de Sildenafila/farmacologia , Citrato de Sildenafila/efeitos adversos , Masculino , Feminino , Idoso , Método Duplo-Cego , Doenças de Pequenos Vasos Cerebrais/tratamento farmacológico , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Circulação Cerebrovascular/efeitos dos fármacos , Pessoa de Meia-Idade , Cilostazol/uso terapêutico , Cilostazol/farmacologia , Cilostazol/efeitos adversos , Inibidores da Fosfodiesterase 5/uso terapêutico , Inibidores da Fosfodiesterase 5/efeitos adversos , Inibidores da Fosfodiesterase 5/farmacologia , Resultado do Tratamento , Fluxo Pulsátil/efeitos dos fármacos , Imageamento por Ressonância Magnética , Artéria Cerebral Média/efeitos dos fármacos , Artéria Cerebral Média/diagnóstico por imagem , Artéria Cerebral Média/fisiopatologia
19.
EMBO Rep ; 25(1): 334-350, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38191872

RESUMO

Chronic wasting disease (CWD) is a prion disease affecting farmed and free-ranging cervids. CWD is rapidly expanding across North America and its mechanisms of transmission are not completely understood. Considering that cervids are commonly afflicted by nasal bot flies, we tested the potential of these parasites to transmit CWD. Parasites collected from naturally infected white-tailed deer were evaluated for their prion content using the protein misfolding cyclic amplification (PMCA) technology and bioassays. Here, we describe PMCA seeding activity in nasal bot larvae collected from naturally infected, nonclinical deer. These parasites efficiently infect CWD-susceptible mice in ways suggestive of high infectivity titers. To further mimic environmental transmission, bot larvae homogenates were mixed with soils, and plants were grown on them. We show that both soils and plants exposed to CWD-infected bot homogenates displayed seeding activity by PMCA. This is the first report describing prion infectivity in a naturally occurring deer parasite. Our data also demonstrate that CWD prions contained in nasal bots interact with environmental components and may be relevant for disease transmission.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Camundongos , Príons/metabolismo , Doença de Emaciação Crônica/metabolismo , Cervos/metabolismo , Solo
20.
Proc Natl Acad Sci U S A ; 120(42): e2219666120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37824529

RESUMO

Recent studies have revealed the production of time-locked blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signals throughout the entire brain in response to tasks, challenging the existence of sparse and localized brain functions and highlighting the pervasiveness of potential false negative fMRI findings. "Whole-brain" actually refers to gray matter, the only tissue traditionally studied with fMRI. However, several reports have demonstrated reliable detection of BOLD signals in white matter, which have previously been largely ignored. Using simple tasks and analyses, we demonstrate BOLD signal changes across the whole brain, in both white and gray matters, in similar manner to previous reports of whole brain studies. We investigated whether white matter displays time-locked BOLD signals across multiple structural pathways in response to a stimulus in a similar manner to the cortex. We find that both white and gray matter show time-locked activations across the whole brain, with a majority of both tissue types showing statistically significant signal changes for all task stimuli investigated. We observed a wide range of signal responses to tasks, with different regions showing different BOLD signal changes to the same task. Moreover, we find that each region may display different BOLD responses to different stimuli. Overall, we present compelling evidence that, just like all gray matter, essentially all white matter in the brain shows time-locked BOLD signal changes in response to multiple stimuli, challenging the idea of sparse functional localization and the prevailing wisdom of treating white matter BOLD signals as artifacts to be removed.


Assuntos
Substância Branca , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA