Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
Curr Issues Mol Biol ; 46(7): 7668-7685, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39057095

RESUMO

The aim of this review is to provide experimental evidence for the programmed-death activity of Ashwagandha (Withania somnifera) in the anti-cancer therapy of breast cancer. The literature search was conducted using online electronic databases (Google Scholar, PubMed, Scopus). Collection schedule data for the review article covered the years 2004-2024. Ashwagandha active substances, especially Withaferin A (WA), are the most promising anti-cancer compounds. WS exerts its effect on breast cancer cells by inducing programmed cell death, especially apoptosis, at the molecular level. Ashwagandha has been found to possess a potential for treating breast cancer, especially estrogen receptor/progesterone receptor (ER/PR)-positive and triple-negative breast cancer.

2.
Phytother Res ; 38(3): 1695-1714, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38318763

RESUMO

Withania somnifera, the plant named Indian ginseng, Ashwagandha, or winter cherry, has been used since ancient times to cure various health ailments. Withania somnifera is rich in constituents belonging to chemical classes like alkaloids, saponins, flavonoids, phenolic acids, and withanolides. Several chemotypes were identified based on their phytochemical composition and credited for their multiple bioactivities. Besides, exhibiting neuroprotective, immunomodulatory, adaptogenic, anti-stress, bone health, plant has shown promising anti-cancer properties. Several withanolides have been reported to play a crucial role in cancer; they target cancer cells by different mechanisms such as modulating the expression of tumor suppressor genes, apoptosis, telomerase expression, and regulating cell signaling pathway. Though, many treatments are available for cancer; however, to date, no assured reliable cure for cancer is made available. Additionally, synthetic drugs may lead to development of resistance in time; therefore, focus on new and natural drugs for cancer therapeutics may prove a longtime effective alternative. This current report is a comprehensive combined analysis upto 2023 with articles focused on bio-activities of plant Withania somnifera from various sources, including national and international government sources. This review focuses on understanding of various mechanisms and pathways to inhibit uncontrolled cell growth by W. somnifera bioactives, as reported in literature. This review provides a recent updated status of the W. somnifera on pharmacological properties in general and anti-cancer in particular and may provide a guiding resource for researchers associated with natural product-based cancer research and healthcare management.


Assuntos
Withania , Vitanolídeos , Vitanolídeos/farmacologia , Withania/química , Extratos Vegetais/farmacologia , Compostos Fitoquímicos
3.
J Asian Nat Prod Res ; : 1-15, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311941

RESUMO

Based on the major components in the leaves, the ashwagandha has been found to exist in several chemotypic forms in India. From the leaves of various accessions of Withania somnifera, which were maintained in our institute, three new steroids namely, 4-acetoxy-20ß-hydroxy-1-oxo-witha-2,5,24-trienolide (7), 24,25-dihydro-14α-hydroxy withanolide D (9), 5α,6ß,17α,27-tetrahydroxy-1-oxo-witha-2,24-dienolide (12) together with thirteen known withanolides were identified by spectroscopic methods. From the roots and stem of one accession and leaves of another, a new alkyl ester glucoside (4) has also been isolated. The new withanolides 7, 9 and 12 have been tentatively named as withanolide 135 A, withanolide 135B and withanolide 108, respectively.

4.
Inflammopharmacology ; 32(3): 1903-1928, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38630361

RESUMO

Penconazole (PEN) is a systemic triazole fungicide used to control various fungal diseases on grapes, stone fruits, cucurbits, and strawberries. Still, it leaves residues on treated crops after collection with many hazardous effects on population including neurotoxicity. Withania somnifera leaves extract (WSLE) is known for its memory and brain function enhancing ability. To evoke such action efficiently, WSLE bioactive metabolites are needed to cross the blood-brain barrier, that could limit the availability of such compounds to be localized within the brain. Therefore, in the present study, the association between PEN exposure and neurotoxicity was evaluated, and formulated WSLE nanoemulsion was investigated for improving the permeability of the plant extract across the blood-brain barrier. The rats were divided into five groups (n = 6). The control group was administered distilled water, group II was treated with W. somnifera leaves extract nanoemulsion (WSLE NE), group III received PEN, group IV received PEN and WSLE, and group V received PEN and WSLE NE. All rats were gavaged daily for 6 weeks. Characterization of compounds in WSLE using LC-MS/MS analysis was estimated. Neurobehavioral disorders were evaluated in all groups. Oxidative stress biomarkers, antioxidant enzyme activities, and inflammatory cytokines were measured in brain tissue. Furthermore, the gene expression patterns of GFAP, APP, vimentin, TGF-ß1, Smad2 and Bax were measured. Histopathological changes and immunohistochemical expression in the peripheral sciatic nerve and cerebral cortex were evaluated. A total of 91 compounds of different chemo-types were detected and identified in WSLE in both ionization modes. Our data showed behavioral impairment in the PEN-treated group, with significant elevation of oxidative stress biomarkers, proinflammatory cytokines, neuronal damage, and apoptosis. In contrast, the PEN-treated group with WSLE NE showed marked improvement in behavioral performance and histopathological alteration with a significant increase in antioxidant enzyme activity and anti-inflammatory cytokines compared to the group administered WSLE alone. The PEN-treated group with WSLE NE in turn significantly downregulated the expression levels of GFAP, APP, vimentin, TGF-ß1, Smad2 and Bax in brain tissue. In conclusion, WSLE NE markedly enhanced the permeability of plant extract constituents through the blood brain barrier to boost its neuroprotective effect against PEN-induced neurotoxicity.


Assuntos
Fármacos Neuroprotetores , Estresse Oxidativo , Extratos Vegetais , Folhas de Planta , Transdução de Sinais , Proteína Smad2 , Fator de Crescimento Transformador beta1 , Withania , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Withania/química , Ratos , Folhas de Planta/química , Fármacos Neuroprotetores/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteína Smad2/metabolismo , Emulsões , Síndromes Neurotóxicas/tratamento farmacológico , Ratos Wistar , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Antioxidantes/farmacologia
5.
Molecules ; 29(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38398618

RESUMO

Introduction: Adaptogens are a group of plants that exhibit complex, nonspecific effects on the human body, increasing its ability to adapt, develop resilience, and survive in stress conditions. They are found in many traditional medicinal systems and play a key role in restoring the body's strength and stamina. Research in recent years has attempted to elucidate the mechanisms behind their pharmacological effects, but it appears that these effects are difficult to define precisely and involve multiple molecular pathways. Neuroinflammation: In recent years, chronic inflammation has been recognized as one of the common features of many central nervous system disorders (dementia and other neurodegenerative diseases, depression, anxiety, ischemic stroke, and infections). Because of the specific nature of the brain, this process is called neuroinflammation, and its suppression can result in an improvement of patients' condition and may promote their recovery. Adaptogens as anti-inflammatory agents: As has been discovered, adaptogens display anti-inflammatory effects, which suggests that their application may be broader than previously thought. They regulate gene expression of anti- and proinflammatory cytokines (prostaglandins, leukotriens) and can modulate signaling pathways (e.g., NF-κB). Aim: This mini-review aims to present the anti-neuroinflammatory potential of the most important plants classified as adaptogens: Schisandra chinensis, Eleutherococcus senticosus, Rhodiola rosea and Withania somnifera.


Assuntos
Extratos Vegetais , Rhodiola , Humanos , Extratos Vegetais/farmacologia , Doenças Neuroinflamatórias , Adaptação Fisiológica , Transdução de Sinais , NF-kappa B/farmacologia
6.
World J Microbiol Biotechnol ; 40(7): 215, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38802663

RESUMO

Withanolides are steroidal lactones with diverse bioactive potential and their production from plant sources varies with genotype, age, culture conditions, and geographical region. Endophytic fungi serve as an alternative source to produce withanolides, like their host plant, Withania somnifera (L.) Dunal. The present study aimed to isolate endophytic fungi capable of producing withanolides, characterization and investigation of biological activities of these molecules. The methanolic fungal crude extract of one of the fungal isolates WSE16 showed maximum withanolide production (219 mg/L). The fungal isolate WSE16 was identified as Penicillium oxalicum based on its morphological and internal transcribed spacer (ITS) sequence analysis and submitted in NCBI (accession number OR888725). The methanolic crude extract of P. oxalicum was further purified by column chromatography, and collected fractions were assessed for the presence of withanolides. Fractions F3 and F4 showed a higher content of withanolides (51.8 and 59.1 mg/L, respectively) than other fractions. Fractions F3 and F4 exhibited antibacterial activity against Staphylococcus aureus with an IC50 of 23.52 and 17.39 µg/ml, respectively. These fractions also showed antioxidant activity (DPPH assay with IC50 of 39.42 and 38.71 µg/ml, superoxide anion scavenging assay with IC50 of 41.10 and 38.84 µg/ml, and reducing power assay with IC50 of 42.61 and 41.40 µg/ml, respectively) and acetylcholinesterase inhibitory activity (IC50 of 30.34 and 22.05 µg/ml, respectively). The withanolides present in fraction 3 and fraction 4 were identified as (20S, 22R)-1a-Acetoxy-27-hydroxywitha-5, 24-dienolide-3b-(O-b-D-glucopyranoside) and withanamide A, respectively, using UV, FTIR, HRMS, and NMR analysis. These results suggest that P. oxalicum, an endophytic fungus isolated from W. somnifera, is a potential source for producing bioactive withanolides.


Assuntos
Endófitos , Penicillium , Withania , Vitanolídeos , Withania/microbiologia , Withania/química , Vitanolídeos/metabolismo , Vitanolídeos/isolamento & purificação , Vitanolídeos/farmacologia , Penicillium/metabolismo , Penicillium/genética , Endófitos/metabolismo , Endófitos/isolamento & purificação , Endófitos/genética , Endófitos/classificação , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Antioxidantes/isolamento & purificação , Antioxidantes/química , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Antibacterianos/isolamento & purificação , Filogenia , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/isolamento & purificação , Testes de Sensibilidade Microbiana
7.
Virol J ; 20(1): 173, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537596

RESUMO

BACKGROUND: Several anti-retroviral drugs are available against Human immunodeficiency virus type-1, but have multiple adverse side effects. Hence, there is an incessant compulsion for effectual anti-retroviral agents with minimal or no intricacy. Traditionally, natural products have been the most successful source for the development of new medications. Withania somnifera, also known as Ashwagandha, is the utmost treasured medicinal plant used in Ayurveda, which holds the potential to give adaptogenic, immunomodulatory, and antiviral effects. However, its effect on HIV-1 replication at the cellular level has never been explored. Herein, we focused on the anti-HIV-1 activity and the probable mechanism of action of hydroalcoholic and aqueous extracts of Withania somnifera roots and its phytomolecules. METHODS: The cytotoxicity of the extracts was determined through MTT assay, while the in vitro anti-HIV-1 activity was assessed in TZM-bl cells against the HIV-1 strains of X4 and R5 subtypes. Results were confirmed in peripheral blood mononuclear cells, using the HIV-1 p24 antigen assay. Additionally, the mechanism of action was determined through the Time of Addition assay, which was further validated through the series of enzymatic assays, i.e. HIV-1 Integrase, Reverse transcriptase, and Protease assays. To explore the role of the identified active metabolites of Withania somnifera in antiretroviral activity, molecular docking analyses were performed against these key HIV-1 replication enzymes. RESULTS: The hydroalcoholic and aqueous extracts of Withania somnifera roots were found to be safer at the sub-cytotoxic concentrations and exhibited their ability to inhibit replication of two primary isolates of HIV-1 through cell-associated and cell-free assays, in dose-dependent kinetics. Several active phytomolecules found in Withania somnifera successfully established hydrogens bonds in the active binding pocket site residues responsible for the catalytic activity of HIV replication and therefore, signifying their role in the attenuation of HIV-1 infection as implied through the in silico molecular docking studies. CONCLUSIONS: Our research identified both the hydroalcoholic and aqueous extracts of Withania somnifera roots as potent inhibitors of HIV-1 infection. The in silico analyses also indicated the key components of Withania somnifera with the highest binding affinity against the HIV-1 Integrase by 12-Deoxywithastramonolide and 27-Hydroxywithanone, HIV-1 Protease by Ashwagandhanolide and Withacoagin, and HIV-1 Reverse transcriptase by Ashwagandhanolide and Withanolide B, thereby showing possible mechanisms of HIV-1 extenuation. Overall, this study classified the role of Withania somnifera extracts and their active compounds as potential agents against HIV-1 infection.


Assuntos
HIV-1 , Plantas Medicinais , Viroses , Withania , Humanos , Withania/química , Withania/metabolismo , Leucócitos Mononucleares , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antirretrovirais
8.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37096387

RESUMO

AIM: Candida auris, fast evolving drug-resistant fungus, poses an imminent global health threat. Alternative drug-resistance nonevoking treatment options are necessary. This study explored the antifungal and antibiofilm efficacies of Withania somnifera seed oil extracted using super critical CO2 (WSSO) against clinically isolated Fluconazole-resistant C. auris and its putative mode-of-action. METHODS AND RESULTS: Effects of WSSO on C. auris were tested by broth microdilution method, with observed IC50 at 5.96 mg ml-1. Time-kill assay revealed that WSSO is fungistatic. Mechanistically, ergosterol binding and sorbitol protection assays showed that C. auris cell membrane and cell wall are the targets for WSSO. Lactophenol: Cotton-Blue: Trypan-Blue staining confirmed loss of intracellular contents by WSSO treatment. Candida auris biofilm formation was disrupted by WSSO (BIC50: 8.52 mg ml-1). Additionally, WSSO exhibited dose and time-dependent mature biofilm eradication property with 50% efficacies at 23.27, 19.28, 18.18, and 7.22 mg ml-1 over 24, 48, 72, and 96 h, respectively. Biofilm eradication by WSSO was further substantiated through scanning electron microscopy. Standard-of-Care Amphotericin B, at its break-point concentration, (2 µg ml-1) was found to be inefficient as an antibiofilm agent. CONCLUSIONS: WSSO is a potent antifungal agent effective against planktonic C. auris and its biofilm.


Assuntos
Candida , Withania , Candida auris , Antifúngicos/farmacologia , Biofilmes , Óleos de Plantas/farmacologia , Testes de Sensibilidade Microbiana
9.
Environ Res ; 239(Pt 1): 117366, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37827368

RESUMO

Natural carbon dots (NCQDs) are expediently significant in the photo-, nano- and biomedical spheres owing to their facile synthesis, optical and physicochemical attributes. In the present study, three NCQDs are prepared and optimized from Withania somnifera (ASH) by one-step hydrothermal (bottom-up) method: HASHP (without dopant), nitrogen doped HASHNH3 (surface passivation using ammonia) and HASHEDA (surface passivation with ethylenediamine). The HR-TEM images reveal that HASHP, HASNH3, HASHEDA are spherically shaped with 2.5 ± 0.5 nm, 4 ± 1 nm and 5 ± 2 nm particle size, respectively, whereas FTIR confirms the aqueous solubility and nitrogen doping. The XRD patterns ensure that the NCQDs are amorphous and graphitic in nature. Comparatively, HASHNH3 (32.5%) and HASHEDA (27.6%) portray better fluorescence quantum yield than HASHP (5.6%). The increase in quantum yield for the doped NCQDs can be attributed to the surface passivation using ammonia and ethylenediamine. Surface passivation plays a crucial role in enhancing the fluorescence properties of quantum dots. The introduction of nitrogen through ammonia and ethylenediamine provides additional electronic states, possibly reducing non-radiative recombination sites and hence boosting the QY. In addition, an antiviral study unveils the striking potential of surface passivated NCQDs to curb Covid-19 crises with around 85% inhibition of SARS-CoV pseudoviron cells, which is better in comparison to the non-doped NCQDs. Hence, to understand the paramount efficacy of these NCQDs, a hypothesis on their possible mechanism of action against Covid-19 is discussed.


Assuntos
COVID-19 , Pontos Quânticos , Withania , SARS-CoV-2 , Carbono , Amônia , Etilenodiaminas , Nitrogênio , Antivirais/farmacologia
10.
Pharmacology ; 108(3): 301-307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36754044

RESUMO

The anti-inflammatory properties of the medicinal plant Withania somnifera (L.) Dunal (WS) are generally related to withanolides; consistently, several strategies are under investigation to increase the concentration of these compounds in WS extracts. However, a potential toxicity of withanolides has been highlighted, thus questioning the safety of such preparations. At variance, the relative contribution of alkaloids is underrated, in spite of preliminary evidence underlining a possible pharmacological relevance. Starting from these considerations, the efficacy/safety profile of WS root extract (WSE) was compared with those of WS extracts which are enriched in alkaloids (WSA) and withanolides (WSW), respectively. MTT assay was used to evaluate cell viability. The anti-inflammatory activities of the different extracts were estimated throughout the assessment of the inhibition of lipopolysaccharide (LPS)-activated release of nitric oxide (NO) and the upregulation of iNOS and COX-2 protein in RAW 264.7 cells. Both WSA and WSW were able to reduce LPS-mediated effects in RAW 264.7 cells, suggesting that alkaloids and withanolides may contribute to the anti-inflammatory activity of WSE. A significant higher anti-inflammatory activity and a lower toxicity were observed when WSA was compared to WSW. The present results highlighted that the contribution of alkaloids to WS pharmacological effects should not be neglected. Particularly, these compounds may concur to reach a more advantageous efficacy/safety profile when WS is used for anti-inflammatory purposes.


Assuntos
Alcaloides , Withania , Vitanolídeos , Extratos Vegetais/farmacologia , Vitanolídeos/farmacologia , Withania/metabolismo , Lipopolissacarídeos/farmacologia , Alcaloides/farmacologia , Anti-Inflamatórios/toxicidade , Anti-Inflamatórios/metabolismo
11.
Int J Neurosci ; : 1-9, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37659008

RESUMO

BACKGROUND AND AIM: Monosodium glutamate (MSG) is used in food-additives, and the Food and Drug Administration has placed it under intense scrutiny following several reports that it causes glutamate neurotoxicity. Ashwagandha (ASH) roots are traditionally used for memory enhancement. This study aimed to evaluate the nootropic activity of ASH as well as its therapeutic anti-amnesic activity against MSG-induced hippocampal-dependent spatial memory impairment and hippocampal-NMDAR modulation. METHOD: A total of 36 rats were divided equally into six groups (n = 6 in each group); the rats in the normal and negative groups were administered daily doses of normal saline and MSG (300 mg/kg), respectively, for 21 days. Two nootropic groups were administered ASH at 300 and 500 mg/kg o.p., respectively, for 21 days. Two other treatment groups were administered daily doses of MSG 300 mg/kg o.p. as well as 300 mg/kg and 500 mg/kg o.p. of ASH for 21 days. The rats' spatial memory was assessed for five days using the MWM. Additionally, NMDAR were measured quantitatively by immunohistochemistry. RESULTS: We found that the rats in the nootropic groups showed significantly enhanced nootropic activity characterized by improved hippocampal-dependent spatial memory, as well as increases in the level of NMDAR in the Cornu Ammonis 1 region of their hippocampus. Moreover, we elucidated the therapeutic potential of ASH to protect against the depression of spatial memory caused by MSG-induced neurotoxicity. CONCLUSION: Further, we elucidated a strong correlation between NMDAR-positive cells in the hippocampus and enhancement of spatial learning induced by long-term administration of ASH as well as a strong correlation between NMDAR positive cells in the hippocampus and depression of spatial learning induced by long-term administration of ASH and MSG.

12.
Molecules ; 28(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36770785

RESUMO

Cancer is characterized by the abnormal development of cells that divide in an uncontrolled manner and further take over the body and destroy the normal cells of the body. Although several therapies are practiced, the demand and need for new therapeutic agents are ever-increasing because of issues with the safety, efficacy and efficiency of old drugs. Several plant-based therapeutics are being used for treatment, either as conjugates with existing drugs or as standalone formulations. Withania somnifera (L.) Dunal is a highly studied medicinal plant which is known to possess immunomodulatory activity as well as anticancer properties. The pivotal role of KAT6A in major cellular pathways and its oncogenic nature make it an important target in cancer treatment. Based on the literature and curated datasets, twenty-six compounds from the root of W. somnifera and a standard inhibitor were docked with the target KAT6A using Autodock vina. The compounds and the inhibitor complexes were subjected to molecular dynamics simulation (50 ns) using Desmond to understand the stability and interactions. The top compounds (based on the docking score of less than -8.5 kcal/mol) were evaluated in comparison to the inhibitor. Based on interactions at ARG655, LEU686, GLN760, ARG660, LEU689 and LYS763 amino acids with the inhibitor WM-8014, the compounds from W. somnifera were evaluated. Withanolide D, Withasomniferol C, Withanolide E, 27-Hydroxywithanone, Withanolide G, Withasomniferol B and Sitoindoside IX showed high stability with the residues of interest. The cell viability of human breast cancer MCF-7 cells was evaluated by treating them with W. Somnifera root extract using an MTT assay, which showed inhibitory activity with an IC50 value of 45 µg/mL. The data from the study support the traditional practice of W. somnifera as an anticancer herb.


Assuntos
Neoplasias , Plantas Medicinais , Withania , Vitanolídeos , Humanos , Vitanolídeos/farmacologia , Vitanolídeos/metabolismo , Simulação de Acoplamento Molecular , Withania/química , Plantas Medicinais/metabolismo , Extratos Vegetais/química , Simulação de Dinâmica Molecular , Raízes de Plantas/química , Histona Acetiltransferases
13.
Molecules ; 28(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36770874

RESUMO

Withania somnifera L. Dunal (Ashwagandha), a key medicinal plant native to India, is used globally to manage various ailments. This review focuses on the traditional uses, botany, phytochemistry, and pharmacological advances of its plant-derived constituents. It has been reported that at least 62 crucial and 48 inferior primary and secondary metabolites are present in the W. somnifera leaves, and 29 among these found in its roots and leaves are chiefly steroidal compounds, steroidal lactones, alkaloids, amino acids, etc. In addition, the whole shrub parts possess various medicinal activities such as anti-leukotriene, antineoplastic, analgesic, anti-oxidant, immunostimulatory, and rejuvenating properties, mainly observed by in vitro demonstration. However, the course of its medical use remains unknown. This review provides a comprehensive understanding of W. somnifera, which will be useful for mechanism studies and potential medical applications of W. somnifera, as well as for the development of a rational quality control system for W. somnifera as a therapeutic material in the future.


Assuntos
Antineoplásicos , Plantas Medicinais , Withania , Withania/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo , Plantas Medicinais/metabolismo , Antineoplásicos/metabolismo , Biodiversidade , Índia
14.
Toxicol Mech Methods ; 33(8): 698-706, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37533233

RESUMO

Withania somnifera (L.) Dunal, popularly known as Ashwagandha or Indian ginseng, is well acclaimed for its health-enhancing effects, including its potent immunomodulatory, anti-inflammatory, neuroprotective, and anti-tumorigenic properties. The prime biological effectors of these attributes are a diverse group of ergostane-based steroidal lactones termed withanolides. Withanones and withanosides are distributed differentially across the plant body, whereas withanolides and withanones are known to be more abundant in leaves, while withanosides are found exclusively in the roots of the plants. Standardized W. somnifera extract is Generally Recognized as Safe (GRAS)-affirmed, however, moderate to severe toxic manifestations may occur at high dosages. Withaferin A, which also happens to be the primary bioactive ingredient for the effectiveness of this plant. There have been contrasting reports regarding the distribution of withaferin A in W. somnifera. While most reports state that the roots of the plant have the highest concentrations of this phytochemical, several others have indicated that leaves can accumulate withaferin A in proportionately higher amounts. A comprehensive survey of the available reports suggests that the biological effects of Ashwagandha are grossly synergistic in nature, with many withanolides together mediating the desired physiological effect. In addition, an assorted formulation of withanolides can also neutralize the toxic effects (if any) associated with withaferin A. This mini-review presents a fresh take on the recent developments regarding the safety and toxicity of the plant, along with a critical assessment of the use of roots against leaves as well as whole plants to develop therapeutic formulations. Going by the currently available scientific evidence, it is safe to infer that the use of whole plant formulations instead of exclusively root or leaf recipes may present the best possible option for further exploration of therapeutic benefits from this novel medicinal plant.HighlightsTherapeutic potential of withanolides owes to the presence of α,ß unsaturated ketone which binds to amines, alcohols, and esters and 5ß, 6ß epoxy group which react with side chain thiols of proteins.At concentrations above NOAEL (no observed adverse effect level), the same mechanisms contribute towards toxicity of the molecule.Although withanosides are found exclusively in roots, whole plants have higher contents of withanones and withanolides.Whole plant-based formulations have other metabolites which can nullify the toxicity associated with roots.Extracts made from whole plants, therefore can holistically impart all therapeutic benefits as well as mitigate toxicity.


Assuntos
Withania , Vitanolídeos , Vitanolídeos/toxicidade , Vitanolídeos/química , Vitanolídeos/metabolismo , Withania/química , Withania/metabolismo , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Folhas de Planta/química , Raízes de Plantas/química , Raízes de Plantas/metabolismo
15.
Fish Shellfish Immunol ; 128: 19-27, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35921930

RESUMO

In the current study, white-leg shrimp (Litopenaeus vannamei) were fed on diets containing varying doses of Withania somnifera aqueous extract (WSAE) at a rate of 0 (control), 0.5, 1.0, and 2.0 g/kg feed for 56 days. After the feeding trial, shrimps in all groups were challenged with the exposure to Vibrio harveyi for ten days during which animals' mortality was observed. It is noted that the dietary WSAE linearly and quadratically stimulated shrimp's growth indices particularly at the treatment of 2.0 g/kg feed. Compared to the control group, the WSAE-fed L. vannamei had significantly higher villi length, villi width, and absorption area particularly in the treatment of 2.0 g/kg feed. Furthermore, L. vannamei fed on WSAE-enriched diets consumed more feed and exhibited higher total proteolytic activity, lipase, and α-amylase activities as compared with the control group. The dietary WSAE at escalating levels linearly and quadratically enhanced the antioxidant activity (serum superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), total antioxidant capacity, and reduced glutathione) and the immune response (total hemocyte counts, total protein, lysozyme, and phagocytic activity). Similarly, the mRNA expression levels of cMn-SOD, CAT, and GPx genes were linearly and quadratically upregulated in the hepatopancreas of L. vannamei fed on WSAE-enriched diets (especially in the 2.0 g/kg feed treatment), while their lowest levels were significantly observed in the control group. On the other hand, malondialdehyde levels were significantly decreased in WSAE-supplemented shrimp groups, and its highest levels were observed in animals fed on the control diet. After the bacterial exposure, the survival rates of L. vannamei fed on 1.0 and 2.0 g WSAE/kg feed (61.3% and 66.7%, respectively) were higher than those in the control animals. Taken together, the results obtained herein indicate that inclusion of WSAE in diets of L. vannamei effectively enhanced the growth, antioxidant biomarkers, immune response, and resistance to the V. harveyi infection, particularly at the treatment of 2.0 g/kg feed.


Assuntos
Panax , Penaeidae , Withania , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Biomarcadores , Catalase , Dieta/veterinária , Suplementos Nutricionais , Resistência à Doença , Glutationa , Glutationa Peroxidase/metabolismo , Imunidade Inata , Lipase , Malondialdeído , Muramidase/metabolismo , Panax/genética , Panax/metabolismo , RNA Mensageiro , Superóxido Dismutase/metabolismo , Withania/genética , Withania/metabolismo , alfa-Amilases/farmacologia
16.
J Fluoresc ; 32(3): 949-960, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35166972

RESUMO

Nanomedicine and fluorescent optical imaging are effective in early cancer detection. The current study synthesized biocompatible nanocomposites from natural biomaterials towards inexpensive and safe cancer theragnostic. Two forms of nanocomposites were synthesized using the ionic gelation method: 1. Chitosan/ Withania Somnifera /tripolyphosphate nanocomposites, 2. Withania Somnifera/Chitosan nanocomposites. The nanocomposites were characterized by dynamic light scattering, zeta potential, and the transmission electron microscope. Fourier transform infrared spectroscopy analyzed the Withania Somnifera root water extract, Chitosan, and the synthesized nanocomposites. The cytotoxicity of the nanocomposites was investigated against the colon cancer cells (Caco2 cells) in the absence and the presence of laser (665 nm, 5 mW) irradiation. MTT assay evaluated the cytotoxicity, and Trypan blue assay assessed the cell viability. Cancerous cells were photographed under the inverted microscope in the presence and the absence of laser irradiation. Results were analyzed statistically using one-way variance (ANOVA) analysis with Bonferroni post-Hoc multiple two-group comparisons. The characterization results ensured the successful synthesis of Withania Somnifera/Chitosan nanocomposites. The results showed an increase in the cytotoxicity against colon carcinoma and a decrease in cell viability in the presence and absence of Near-infrared laser irradiation under the action of nanocomposites. The cytotoxicity of the synthesized nanocomposites increased by exposing the cells to the laser. The shining light of the nanocomposites appeared on the cells photographed under the inverted microscope. The synthesized natural nanocomposites promise systemic cytotoxicity will be efficient in molecular imaging in vivo applications.


Assuntos
Quitosana , Nanocompostos , Neoplasias , Withania , Células CACO-2 , Quitosana/química , Meios de Contraste , Humanos , Nanocompostos/química , Extratos Vegetais , Withania/química
17.
Chem Biodivers ; 19(12): e202200702, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36285806

RESUMO

Drug addiction is considered a chronic disorder affecting the individual's life, his/her family and society. Up till now the treatment of drug addiction is considered a problematic issue. Synthetic drugs available for the treatment of drug addiction are few, of limited efficacy and associated with serious side effects. Therefore, there is a continuous search for better therapeutic agents for drug addiction. Natural products represent a promising source for drug addiction treatment. This review summaries drug addiction definition, its mechanism of action, its types, its diagnosis, factors affecting its development and different available approaches for its treatment especially the use of natural products. Six plants were discussed thoroughly in this review, including, Tabernanthe iboga Baill., Mitragyna speciosa Korth., Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep, Hypericum perforatum L., Panax ginseng C.A. Mey., and Withania somnifera (L.) Dunal.


Assuntos
Produtos Biológicos , Panax , Transtornos Relacionados ao Uso de Substâncias , Withania , Extratos Vegetais/farmacologia , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico
18.
Bioprocess Biosyst Eng ; 45(2): 365-380, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34988733

RESUMO

This study presents the development of a sustainable production process of environmentally benign silver nanoparticles (AgNPs) from aqueous root extract of Rhodiola imbricata (RI) and Withania somnifera (WS) for mitigating environmental pollution and investigating their potential applications in agriculture and biomedical industry. RIWS-AgNPs were characterized using several analytical techniques (UV-Vis, DLS, HR-TEM, SAED, EDX and FTIR). The antioxidant and anticancer activity of RIWS-AgNPs were estimated by DPPH and MTT assay, respectively. UV-Vis and DLS analysis indicated that equal ratio of RIWS-extract and silver nitrate (1:1) is optimum for green synthesis of well-dispersed AgNPs (λmax: 430 nm, polydispersity index: 0.179, zeta potential: - 17.9 ± 4.14). HR-TEM and SAED analysis confirmed the formation of spherical and crystalline RIWS-AgNPs (37-42 nm). FTIR analysis demonstrated that the phenolic compounds are probably involved in stabilization of RIWS-AgNPs. RIWS-AgNPs showed effective catalytic degradation of hazardous environmental pollutant (4-nitrophenol). RIWS-AgNPs treatment significantly increased the growth and photosynthetic pigments of Hordeum vulgare in a size- and dose-dependent manner (germination (77%), chlorophyll a (12.62 ± 0.07 µg/ml) and total carotenoids (7.05 ± 0.04 µg/ml)). The DPPH assay demonstrated that RIWS-AgNPs exert concentration-dependent potent antioxidant activity (IC50: 12.30 µg/ml, EC50: 0.104 mg/ml, ARP: 959.45). Moreover, RIWS-AgNPs also confer strong cytotoxic activity against HepG2 cancer cell line in dose-dependent manner (cell viability: 9.51 ± 1.55%). Overall, the present study for the first time demonstrated a green technology for the synthesis of stable RIWS-AgNPs and their potential applications in biomedical and agriculture industry as phytostimulatory, antioxidant and anticancer agent. Moreover, RIWS-AgNPs could potentially be used as a green alternative for environmental remediation.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Rhodiola , Withania , Antineoplásicos/química , Antioxidantes/química , Clorofila A , Química Verde , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/farmacologia
19.
Drug Dev Ind Pharm ; 48(10): 552-565, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36269296

RESUMO

Saudi Arabia has a rich culture of folk medicines and three such common herbs used by Saudi people for therapy of breast cancer are Turmeric (Kurkum) Curcuma longa, Chamomile (Babunaj) Matricaria chamomilla, and Aswaghantha (Aswaghadh) Withania somnifera. Hence, the present study aims to develop a polyherbal phytosome formulation by thin film hydration technique with a synergistic anti-cancer effect for the treatment of breast cancer. The phytosomes were standardized for their phytoconstituents by HPTLC and showed the best optimal properties with a mean vesicle diameter of less than 200 nm, zeta potential in the range of -24.43 to -35.70 mV, and relatively integrated structure with fairly uniform size on TEM. The in vitro MTT assay on MCF-7 breast cancer cell lines and MDA MB 231 breast adenocarcinoma cell lines was carried out. MTT assay on MCF-7 breast cancer cell lines indicated that plant extract-loaded phytosomes exhibited enhanced cytotoxic effects at IC50 values. of 55, 50, 45, 52, 42, 44, and 20 µg/mL compared to the extracts of C. longa, M. chamomilla, W. somnifera, and their combined extracts (80, 82, 74, 60, 70, 60, and 35 µg/mL respectively). Moreover, intracellular reactive oxygen species production was found to be higher for phytosomes treated cells at respective IC50 concentrations when compared to extracts. Overall, the developed polyherbal phytosomes were found to be effective and afford synergistic effects for breast cancer therapy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Detecção Precoce de Câncer , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células MCF-7 , Antineoplásicos/química
20.
Molecules ; 27(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35268576

RESUMO

Withania somnifera is a traditional Indian herb described under the 'Rasayana' class in Ayurveda, which gained immense popularity as a dietary supplement in the USA, Europe, Asia, and the Indian domestic market. Despite enormous research on the pharmacological effect of withanosides and withanolides, bioanalytical method development and pharmacokinetics remained challenging and unexplored for these constituents due to isomeric and isobaric characteristics. In current research work, molecular descriptors, pharmacokinetic, and toxicity prediction (ADMET) of these constituents were performed using Molinspiration and admetSAR tools. A rapid, selective, and reproducible bioanalytical method was developed and validated for seven withanosides and withanolides as per USFDA/EMA guidelines, further applied to determine pharmacokinetic parameters of Withania somnifera root extract (WSE) constituents in male Sprague Dawley rats at a dose of 500 mg/kg. Additionally, an ex vivo permeability study was carried out to explore the absorption pattern of withanosides and withanolides from the intestinal lumen. In silico, ADMET revealed oral bioavailability of withanosides and withanolides following Lipinski's rules of five with significant absorption from the gastrointestinal tract and the ability to cross the blood-brain barrier. Upon oral administration of WSE, Cmax was found to be 13.833 ± 3.727, 124.415 ± 64.932, 57.536 ± 7.523, and 7.283 ± 3.341 ng/mL for withanoside IV, withaferin A, 12-Deoxy-withastramonolide, and withanolide A, respectively, with Tmax of 0.750 ± 0.000, 0.250 ± 0.000, 0.291 ± 0.102, and 0.333 ± 0.129 h. Moreover, at a given dose, withanoside V, withanolide B, and withanone were detected in plasma; however, the concentration of these constituents was found below LLOQ. Thus, these four major withanoside and withanolides were quantified in plasma supported by ex vivo permeation data exhibiting a time-dependent absorption of withanosides and withanolides across the intestinal barrier. These composite findings provide insights to design a clinical trial of WSE as a potent nutraceutical.


Assuntos
Withania
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA