Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 186(23): 5114-5134.e27, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37875108

RESUMO

Human inherited disorders of interferon-gamma (IFN-γ) immunity underlie severe mycobacterial diseases. We report X-linked recessive MCTS1 deficiency in men with mycobacterial disease from kindreds of different ancestries (from China, Finland, Iran, and Saudi Arabia). Complete deficiency of this translation re-initiation factor impairs the translation of a subset of proteins, including the kinase JAK2 in all cell types tested, including T lymphocytes and phagocytes. JAK2 expression is sufficiently low to impair cellular responses to interleukin-23 (IL-23) and partially IL-12, but not other JAK2-dependent cytokines. Defective responses to IL-23 preferentially impair the production of IFN-γ by innate-like adaptive mucosal-associated invariant T cells (MAIT) and γδ T lymphocytes upon mycobacterial challenge. Surprisingly, the lack of MCTS1-dependent translation re-initiation and ribosome recycling seems to be otherwise physiologically redundant in these patients. These findings suggest that X-linked recessive human MCTS1 deficiency underlies isolated mycobacterial disease by impairing JAK2 translation in innate-like adaptive T lymphocytes, thereby impairing the IL-23-dependent induction of IFN-γ.


Assuntos
Interferon gama , Janus Quinase 2 , Infecções por Mycobacterium , Humanos , Masculino , Proteínas de Ciclo Celular/metabolismo , Interferon gama/imunologia , Interleucina-12 , Interleucina-23 , Janus Quinase 2/metabolismo , Mycobacterium/fisiologia , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/metabolismo , Proteínas Oncogênicas/metabolismo
2.
Cell ; 186(12): 2593-2609.e18, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209683

RESUMO

Here, we describe an approach to correct the genetic defect in fragile X syndrome (FXS) via recruitment of endogenous repair mechanisms. A leading cause of autism spectrum disorders, FXS results from epigenetic silencing of FMR1 due to a congenital trinucleotide (CGG) repeat expansion. By investigating conditions favorable to FMR1 reactivation, we find MEK and BRAF inhibitors that induce a strong repeat contraction and full FMR1 reactivation in cellular models. We trace the mechanism to DNA demethylation and site-specific R-loops, which are necessary and sufficient for repeat contraction. A positive feedback cycle comprising demethylation, de novo FMR1 transcription, and R-loop formation results in the recruitment of endogenous DNA repair mechanisms that then drive excision of the long CGG repeat. Repeat contraction is specific to FMR1 and restores the production of FMRP protein. Our study therefore identifies a potential method of treating FXS in the future.


Assuntos
Síndrome do Cromossomo X Frágil , Expansão das Repetições de Trinucleotídeos , Humanos , Estruturas R-Loop , Metilação de DNA , Síndrome do Cromossomo X Frágil/genética , Epigênese Genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
3.
Am J Hum Genet ; 110(5): 863-879, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37146589

RESUMO

Deleterious mutations in the X-linked gene encoding ornithine transcarbamylase (OTC) cause the most common urea cycle disorder, OTC deficiency. This rare but highly actionable disease can present with severe neonatal onset in males or with later onset in either sex. Individuals with neonatal onset appear normal at birth but rapidly develop hyperammonemia, which can progress to cerebral edema, coma, and death, outcomes ameliorated by rapid diagnosis and treatment. Here, we develop a high-throughput functional assay for human OTC and individually measure the impact of 1,570 variants, 84% of all SNV-accessible missense mutations. Comparison to existing clinical significance calls, demonstrated that our assay distinguishes known benign from pathogenic variants and variants with neonatal onset from late-onset disease presentation. This functional stratification allowed us to identify score ranges corresponding to clinically relevant levels of impairment of OTC activity. Examining the results of our assay in the context of protein structure further allowed us to identify a 13 amino acid domain, the SMG loop, whose function appears to be required in human cells but not in yeast. Finally, inclusion of our data as PS3 evidence under the current ACMG guidelines, in a pilot reclassification of 34 variants with complete loss of activity, would change the classification of 22 from variants of unknown significance to clinically actionable likely pathogenic variants. These results illustrate how large-scale functional assays are especially powerful when applied to rare genetic diseases.


Assuntos
Hiperamonemia , Doença da Deficiência de Ornitina Carbomoiltransferase , Ornitina Carbamoiltransferase , Humanos , Substituição de Aminoácidos , Hiperamonemia/etiologia , Hiperamonemia/genética , Mutação de Sentido Incorreto/genética , Ornitina Carbamoiltransferase/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/diagnóstico , Doença da Deficiência de Ornitina Carbomoiltransferase/terapia
4.
Am J Hum Genet ; 109(12): 2270-2282, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368327

RESUMO

An Xq22.2 region upstream of PLP1 has been proposed to underly a neurological disease trait when deleted in 46,XX females. Deletion mapping revealed that heterozygous deletions encompassing the smallest region of overlap (SRO) spanning six Xq22.2 genes (BEX3, RAB40A, TCEAL4, TCEAL3, TCEAL1, and MORF4L2) associate with an early-onset neurological disease trait (EONDT) consisting of hypotonia, intellectual disability, neurobehavioral abnormalities, and dysmorphic facial features. None of the genes within the SRO have been associated with monogenic disease in OMIM. Through local and international collaborations facilitated by GeneMatcher and Matchmaker Exchange, we have identified and herein report seven de novo variants involving TCEAL1 in seven unrelated families: three hemizygous truncating alleles; one hemizygous missense allele; one heterozygous TCEAL1 full gene deletion; one heterozygous contiguous deletion of TCEAL1, TCEAL3, and TCEAL4; and one heterozygous frameshift variant allele. Variants were identified through exome or genome sequencing with trio analysis or through chromosomal microarray. Comparison with previously reported Xq22 deletions encompassing TCEAL1 identified a more-defined syndrome consisting of hypotonia, abnormal gait, developmental delay/intellectual disability especially affecting expressive language, autistic-like behavior, and mildly dysmorphic facial features. Additional features include strabismus, refractive errors, variable nystagmus, gastroesophageal reflux, constipation, dysmotility, recurrent infections, seizures, and structural brain anomalies. An additional maternally inherited hemizygous missense allele of uncertain significance was identified in a male with hypertonia and spasticity without syndromic features. These data provide evidence that TCEAL1 loss of function causes a neurological rare disease trait involving significant neurological impairment with features overlapping the EONDT phenotype in females with the Xq22 deletion.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Feminino , Humanos , Masculino , Transtorno Autístico/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Hipotonia Muscular/genética , Hipotonia Muscular/complicações , Fenótipo , Síndrome , Fatores de Transcrição/genética
5.
J Biol Chem ; 295(17): 5577-5587, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32179651

RESUMO

Fabry disease is a heritable lipid disorder caused by the low activity of α-galactosidase A and characterized by the systemic accumulation of globotriaosylceramide (Gb3). Recent studies have reported a structural heterogeneity of Gb3 in Fabry disease, including Gb3 isoforms with different fatty acids and Gb3 analogs with modifications on the sphingosine moiety. However, Gb3 assays are often performed only on the selected Gb3 isoforms. To precisely determine the total Gb3 concentration, here we established two methods for determining both Gb3 isoforms and analogs. One was the deacylation method, involving Gb3 treatment with sphingolipid ceramide N-deacylase, followed by an assay of the deacylated products, globotriaosylsphingosine (lyso-Gb3) and its analogs, by ultra-performance LC coupled to tandem MS (UPLC-MS/MS). The other method was a direct assay established in the present study for 37 Gb3 isoforms and analogs/isoforms by UPLC-MS/MS. Gb3s from the organs of symptomatic animals of a Fabry disease mouse model were mainly Gb3 isoforms and two Gb3 analogs, such as Gb3(+18) containing the lyso-Gb3(+18) moiety and Gb3(-2) containing the lyso-Gb3(-2) moiety. The total concentrations and Gb3 analog distributions determined by the two methods were comparable. Gb3(+18) levels were high in the kidneys (24% of total Gb3) and the liver (13%), and we observed Gb3(-2) in the heart (10%) and the kidneys (5%). These results indicate organ-specific expression of Gb3 analogs, insights that may lead to a deeper understanding of the pathophysiology of Fabry disease.


Assuntos
Doença de Fabry/patologia , Triexosilceramidas/análise , Acilação , Animais , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Humanos , Rim/patologia , Fígado/patologia , Masculino , Camundongos , Miocárdio/patologia , Baço/patologia , Espectrometria de Massas em Tandem
6.
Blood Cells Mol Dis ; 90: 102587, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34175765

RESUMO

Chronic granulomatous disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. CGD patients suffer from severe bacterial and fungal infections. The disease is caused by a lack of superoxide production by the leukocyte enzyme NADPH oxidase. Superoxide and subsequently formed other reactive oxygen species (ROS) are instrumental in killing phagocytosed micro-organisms in neutrophils, eosinophils, monocytes and macrophages. The leukocyte NADPH oxidase is composed of five subunits, of which the enzymatic component is gp91phox, also called Nox2. This protein is encoded by the CYBB gene on the X chromosome. Mutations in this gene are found in about 70% of all CGD patients in Europe and in about 20% in countries with a high ratio of parental consanguinity. This article lists all mutations identified in CYBB and should therefore help in genetic counseling of X-CGD patients' families. Moreover, apparently benign polymorphisms in CYBB are also given, which should facilitate the recognition of disease-causing mutations. In addition, we also include some mutations in G6PD, the gene on the X chromosome that encodes glucose-6-phosphate dehydrogenase, because inactivity of this enzyme may lead to shortage of NADPH and thus to insufficient activity of NADPH oxidase. Severe G6PD deficiency can induce CGD-like symptoms.


Assuntos
Cromossomos Humanos X/genética , Doença Granulomatosa Crônica/genética , Mutação , NADPH Oxidase 2/genética , Humanos
7.
Hum Mutat ; 41(5): 865-883, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32108395

RESUMO

The X-linked filaminopathies represent a diverse group of clinical conditions, all caused by variants in the gene FLNA. FLNA encodes the widely expressed actin binding protein, filamin A that has multiple roles during embryonic development including cell migration, mechanical sensing, and cell signaling. In this review, we discuss the 10 distinct X-linked filaminopathy conditions that between them affect almost all organ systems, including the brain, skeleton, heart, and skin, highlighting the critical role of this protein in human development. We review each of the phenotypes and discuss their pathogenesis, where known. Assigning pathogenicity to variants in FLNA can prove difficult, especially for missense variants and small indels, in-part because of the X-linked nature of the phenotypes, the overlap of phenotypic features between conditions, and poor understanding of the function of certain protein domains. We outline here approaches to characterize phenotypes, highlight hotspot regions within FLNA commonly mutated in these conditions, and approaches to resolving some variants of uncertain significance.


Assuntos
Filaminas/genética , Genes Ligados ao Cromossomo X , Estudos de Associação Genética , Predisposição Genética para Doença , Distrofias Musculares/diagnóstico , Distrofias Musculares/etiologia , Mutação , Fenótipo , Alelos , Diagnóstico Diferencial , Fácies , Filaminas/metabolismo , Mutação com Ganho de Função , Regulação da Expressão Gênica , Testes Genéticos , Variação Genética , Humanos , Masculino , Distrofias Musculares/metabolismo , Especificidade de Órgãos/genética , Radiografia , Transdução de Sinais
8.
Genet Med ; 21(10): 2275-2284, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30948856

RESUMO

PURPOSE: Sex-biased expression of genes on the X chromosome is accomplished by a complex mechanism of dosage regulation that leads to anatomical and physiological differences between males and females. Copy-number variations (CNVs) may impact the human genome by either affecting gene dosage or disturbing a chromosome structural and/or functional integrity. METHODS: We performed a high-resolution CNV profiling to investigate the X chromosome integrity in cohorts of 269 fertile females and 111 women affected with primary ovarian insufficiency (POI) and assessed CNVs impact into functional and nonfunctional genomic elements. RESULTS: In POI patients, we observed a 2.5-fold enrichment for rare CNVs comprising ovary-expressed genes, and genes implicated in autoimmune response and apoptotic signaling. Moreover, there was a higher prevalence of deletions encompassing genes that escape X inactivation, noncoding RNAs, and intergenic DNA sequences among POI females, highlighting structural differences between X chromosomes of fertile and POI females. Furthermore, we discovered a ~4% carrier incidence for X-linked disorders among fertile women. CONCLUSION: We constructed a high-resolution map of female-specific CNVs that provides critical insights into the spectrum of human genetic variation, sex-specific disease risk factors, and reproductive potential. We discovered novel CNVs associated with ovarian dysfunction and support polygenic models for POI.


Assuntos
Cromossomos Humanos X/genética , Variações do Número de Cópias de DNA/genética , Insuficiência Ovariana Primária/genética , Adulto , Mapeamento Cromossômico/métodos , Hibridização Genômica Comparativa , Feminino , Dosagem de Genes/genética , Genoma Humano , Genômica/métodos , Humanos , Ovário/metabolismo
9.
Hum Mutat ; 39(2): 281-291, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29193635

RESUMO

We report five individuals with loss-of-function of the X-linked AMMECR1: a girl with a balanced X-autosome translocation and inactivation of the normal X-chromosome; two boys with maternally inherited and de novo nonsense variants; and two half-brothers with maternally inherited microdeletion variants. They present with short stature, cardiac and skeletal abnormalities, and hearing loss. Variants of unknown significance in AMMECR1 in four male patients from two families with partially overlapping phenotypes were previously reported. AMMECR1 is coexpressed with genes implicated in cell cycle regulation, five of which were previously associated with growth and bone alterations. Our knockdown of the zebrafish orthologous gene resulted in phenotypes reminiscent of patients' features. The increased transcript and encoded protein levels of AMMECR1L, an AMMECR1 paralog, in the t(X;9) patient's cells indicate a possible partial compensatory mechanism. AMMECR1 and AMMECR1L proteins dimerize and localize to the nucleus as suggested by their nucleic acid-binding RAGNYA folds. Our results suggest that AMMECR1 is potentially involved in cell cycle control and linked to a new syndrome with growth, bone, heart, and kidney alterations with or without elliptocytosis.


Assuntos
Osso e Ossos/fisiologia , Coração/fisiologia , Proteínas/genética , Animais , Western Blotting , Osso e Ossos/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular , Exoma/genética , Feminino , Células HeLa , Humanos , Masculino , Sequenciamento Completo do Genoma , Peixe-Zebra
10.
Brain ; 140(11): 2879-2894, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053855

RESUMO

Genetic epilepsies are caused by mutations in a range of different genes, many of them encoding ion channels, receptors or transporters. While the number of detected variants and genes increased dramatically in the recent years, pleiotropic effects have also been recognized, revealing that clinical syndromes with various degrees of severity arise from a single gene, a single mutation, or from different mutations showing similar functional defects. Accordingly, several genes coding for GABAA receptor subunits have been linked to a spectrum of benign to severe epileptic disorders and it was shown that a loss of function presents the major correlated pathomechanism. Here, we identified six variants in GABRA3 encoding the α3-subunit of the GABAA receptor. This gene is located on chromosome Xq28 and has not been previously associated with human disease. Five missense variants and one microduplication were detected in four families and two sporadic cases presenting with a range of epileptic seizure types, a varying degree of intellectual disability and developmental delay, sometimes with dysmorphic features or nystagmus. The variants co-segregated mostly but not completely with the phenotype in the families, indicating in some cases incomplete penetrance, involvement of other genes, or presence of phenocopies. Overall, males were more severely affected and there were three asymptomatic female mutation carriers compared to only one male without a clinical phenotype. X-chromosome inactivation studies could not explain the phenotypic variability in females. Three detected missense variants are localized in the extracellular GABA-binding NH2-terminus, one in the M2-M3 linker and one in the M4 transmembrane segment of the α3-subunit. Functional studies in Xenopus laevis oocytes revealed a variable but significant reduction of GABA-evoked anion currents for all mutants compared to wild-type receptors. The degree of current reduction correlated partially with the phenotype. The microduplication disrupted GABRA3 expression in fibroblasts of the affected patient. In summary, our results reveal that rare loss-of-function variants in GABRA3 increase the risk for a varying combination of epilepsy, intellectual disability/developmental delay and dysmorphic features, presenting in some pedigrees with an X-linked inheritance pattern.


Assuntos
Encefalopatias/genética , Fissura Palatina/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Fácies , Deficiência Intelectual/genética , Nistagmo Patológico/genética , Receptores de GABA-A/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Variação Genética , Humanos , Masculino , Microcefalia/genética , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Técnicas de Patch-Clamp , Linhagem , Receptores de GABA-A/metabolismo , Síndrome , Xenopus laevis , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo
11.
Clin Genet ; 89(1): 82-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26153062

RESUMO

The human X chromosome contains ∼ 1600 genes, about 15% of which have been associated with a specific genetic condition, mainly affecting males. Blue cone monochromacy (BCM) is an X-linked condition caused by a loss-of-function of both the OPN1LW and OPN1MW opsin genes. The cone opsin gene cluster is composed of 2-9 paralogs with 99.8% sequence homology and is susceptible to deletions, duplications, and mutations. Current diagnostic tests employ polymerase chain reaction (PCR)-based technologies; however, alterations remain undetermined in 10% of patients. Furthermore, carrier testing in females is limited or unavailable. High-resolution X chromosome-targeted CGH microarray was applied to test for rearrangements in males with BCM and female carriers from three unrelated families. Pathogenic alterations were revealed in all probands, characterized by sequencing of the breakpoint junctions and quantitative real-time PCR. In two families, we identified a novel founder mutation that consisted of a complex 3-kb deletion that embraced the cis-regulatory locus control region and insertion of an additional aberrant OPN1MW gene. The application of high-resolution X-chromosome microarray in clinical diagnosis brings significant advantages in detection of small aberrations that are beyond the resolution of clinically available aCGH analysis and which can improve molecular diagnosis of the known conditions and unravel previously unrecognized X-linked diseases.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos X , Defeitos da Visão Cromática/diagnóstico , Defeitos da Visão Cromática/genética , Doenças Genéticas Ligadas ao Cromossomo X , Heterozigoto , Pontos de Quebra do Cromossomo , Deleção Cromossômica , Hibridização Genômica Comparativa , Consanguinidade , Ordem dos Genes , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem
12.
Front Cardiovasc Med ; 11: 1465912, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309604

RESUMO

Barth syndrome (BTHS) is a rare X-linked recessive genetic disorder characterized by a broad spectrum of clinical features including cardiomyopathy, skeletal myopathy, neutropenia, growth delay, and 3-methylglutaconic aciduria. This disease is caused by loss-of-function mutations in the TAFAZZIN gene located on chromosome Xq28, resulting in cardiolipin deficiency. Most patients are diagnosed in childhood, and the mortality rate is highest in the early years. We report a case of acute, life-threatening metabolic decompensation occurring one day after birth. A novel TAFAZZIN splice site mutation was identified in the patient, marking the first reported case of such a mutation in BTHS identified in China. The report aims to expand our understanding of the spectrum of TAFAZZIN mutations in BTHS.

13.
Front Genet ; 15: 1402883, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086474

RESUMO

Introduction: Congenital disorders of glycosylation (CDG) refer to monogenetic diseases characterized by defective glycosylation of proteins or lipids causing multi-organ disorders. Here, we investigate the clinical features and genetic variants of SSR4-CDG and conduct a preliminary investigation of its pathogenesis. Methods: We retrospectively report the clinical data of a male infant with early life respiratory distress, congenital diaphragmatic eventration, cosmetic deformities, and moderate growth retardation. Peripheral blood was collected from the case and parents, genomic DNA was extracted and whole-exome sequencing was performed. The mRNA expression of SSR4 gene was quantified by Real-time Quantitative PCR. RNA sequencing analysis was subsequently performed on the case and a healthy child. Results: Whole-exome sequencing of the case and his parents' genomic DNA identified a hemizygous c.80_96del in SSR4, combined with the case's clinical features, the diagnosis of CDG was finally considered. In this case, the expression of SSR4 was downregulated. The case were present with 1,078 genes downregulated and 536 genes upregulated. SSR4 gene expression was significantly downregulated in the case. Meanwhile, gene set enrichment analysis (GSEA) revealed that SSR4-CDG may affect hemostasis, coagulation, catabolism, erythrocyte development and homeostatic regulation, and muscle contraction and regulation, etc. Improvement of growth retardation in case after high calorie formula feeding and rehabilitation training. Conclusion: Our study expanded the SSR4-CDG variant spectrum and clinical phenotype and analyzed pathways potentially affected by SSR4-CDG, which may provide further insights into the function of SSR4 and help clinicians better understand this disorder.

14.
HGG Adv ; 5(4): 100353, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39275801

RESUMO

Heterotaxy is a disorder characterized by severe congenital heart defects (CHDs) and abnormal left-right patterning in other thoracic or abdominal organs. Clinical and research-based genetic testing has previously focused on evaluation of coding variants to identify causes of CHDs, leaving non-coding causes of CHDs largely unknown. Variants in the transcription factor zinc finger of the cerebellum 3 (ZIC3) cause X-linked heterotaxy. We identified an X-linked heterotaxy pedigree without a coding variant in ZIC3. Whole-genome sequencing revealed a deep intronic variant (ZIC3 c.1224+3286A>G) predicted to alter RNA splicing. An in vitro minigene splicing assay confirmed the variant acts as a cryptic splice acceptor. CRISPR-Cas9 served to introduce the ZIC3 c.1224+3286A>G variant into human embryonic stem cells demonstrating pseudoexon inclusion caused by the variant. Surprisingly, Sanger sequencing of the resulting ZIC3 c.1224+3286A>G amplicons revealed several isoforms, many of which bypass the normal coding sequence of the third exon of ZIC3, causing a disruption of a DNA-binding domain and a nuclear localization signal. Short- and long-read mRNA sequencing confirmed these initial results and identified additional splicing patterns. Assessment of four isoforms determined abnormal functions in vitro and in vivo while treatment with a splice-blocking morpholino partially rescued ZIC3. These results demonstrate that pseudoexon inclusion in ZIC3 can cause heterotaxy and provide functional validation of non-coding disease causation. Our results suggest the importance of non-coding variants in heterotaxy and the need for improved methods to identify and classify non-coding variation that may contribute to CHDs.


Assuntos
Cardiopatias Congênitas , Síndrome de Heterotaxia , Linhagem , Splicing de RNA , Fatores de Transcrição , Humanos , Síndrome de Heterotaxia/genética , Splicing de RNA/genética , Cardiopatias Congênitas/genética , Masculino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Isoformas de Proteínas/genética , Animais
15.
Front Pediatr ; 11: 1250772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37654687

RESUMO

Background: Barth syndrome is a rare genetic disease characterized by cardiomyopathy, skeletal muscle weakness, neutropenia, growth retardation and organic aciduria. This variable phenotype is caused by pathogenic hemizygous variants of the TAFAZZIN gene on the X chromosome, which impair metabolism of the mitochondrial phospholipid cardiolipin. Although most patients are usually diagnosed in the first years of life, the extremely variable clinical picture and the wide range of clinical presentations may both delay diagnosis. This is the case reported here of a man affected with severe neutropenia, who was not diagnosed with Barth syndrome until adulthood. Case presentation: We describe herein a family case, specifically two Caucasian male cousins sharing the same mutation in the TAFAZZIN gene with a wide phenotypic variability: an infant who was early diagnosed with Barth syndrome due to heart failure, and his maternal cousin with milder and extremely different clinical features who has received the same diagnosis only at 33 years of age. Conclusions: Our report supports the underestimation of the prevalence of Barth syndrome, which should be always considered in the differential diagnosis of male patients with recurrent neutropenia with or without signs and symptoms of cardiomyopathy.

16.
Prog Retin Eye Res ; 96: 101190, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37406879

RESUMO

Inherited retinal diseases (IRDs) are a group of heterogeneous conditions that cause progressive vision loss, typically due to monogenic mutations. Female carriers of X-linked IRDs have a single copy of the disease-causing gene, and therefore, may exhibit variable clinical signs that vary from near normal retina to severe disease and vision loss. The relationships between individual genetic mutations and disease severity in X-linked carriers requires further study. This review summarises the current literature surrounding the spectrum of disease seen in female carriers of choroideremia and X-linked retinitis pigmentosa. Various classification systems are contrasted to accurately grade retinal disease. Furthermore, genetic mechanisms at the early embryonic stage are explored to potentially explain the variability of disease seen in female carriers. Future research in this area will provide insight into the association between genotype and retinal phenotypes of female carriers, which will guide in the management of these patients. This review acknowledges the importance of identifying which patients may be at high risk of developing severe symptoms, and therefore should be considered for emerging treatments, such as retinal gene therapy.


Assuntos
Coroideremia , Doenças Retinianas , Retinose Pigmentar , Humanos , Feminino , Retina , Retinose Pigmentar/terapia , Coroideremia/diagnóstico , Coroideremia/genética , Coroideremia/terapia , Heterozigoto , Doenças Retinianas/diagnóstico , Doenças Retinianas/genética , Doenças Retinianas/terapia , Transtornos da Visão , Mutação
17.
Mol Genet Metab Rep ; 37: 101007, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053928

RESUMO

Ornithine transcarbamylase (OTC) deficiency (OTCD) is an X-linked urea cycle disorder. In females - undergoing random X chromosomal inactivation (XCI) - disease severity depends on the XCI pattern. Hence, female OTCD subjects with favorable XCI display normal OTC expression and activity and are healthy carriers. Whereas females undergoing less favorable XCI may suffer from severe and fatal OTCD. In approximately 20% of patients with biochemical evidence of OTCD, no mutation can be identified hampering definitive diagnosis and adequate treatment.Here, we describe a female patient with high suspicion of OTCD in whom molecular genetic work-up did not reveal pathogenic variants in the OTC gene. In her case, this was particularly challenging, since she was awaiting liver transplantation due to metabolic instability. In order to substantiate the suspected diagnosis of OTCD, we applied our previously reported in vitro OTCD liver disease model. Patient-derived skin fibroblasts were reprogrammed into human induced pluripotent stem cells (hiPSCs) followed by differentiation into hepatocytes (hiPSC-Heps). Among five randomly selected hiPSC clones - differentiated into hiPSC-Heps - one clone expressed OTC protein, while the four remaining clones lacked OTC expression, supporting the patient's suspected diagnosis of OTCD.To conclude, we demonstrate that hiPSC technology is a powerful diagnostic tool to substantiate the suspected diagnosis of OTCD in patients lacking genetic confirmation. Furthermore, selecting clones that exclusively express the wild-type OTC protein, could be used strategically as cellular therapy in future. Ultimately, this approach might be applicable to virtually any X-linked disease. Synopsis: Induced pluripotent stem cell technology is a powerful diagnostic tool to substantiate the suspected diagnosis of OTCD in patients lacking genetic confirmation.

18.
Diagnostics (Basel) ; 13(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672993

RESUMO

BACKGROUND: Methodological advancements, such as relative haplotype and relative mutation dosage analyses, have enabled non-invasive prenatal diagnosis of autosomal recessive and X-linked diseases. Duchenne muscular dystrophy (DMD) is an X-linked recessive disease characterized by progressive proximal muscular dystrophy and a high mortality rate before the age of twenty. We aimed to systematically present obtainable data regarding a non-invasive prenatal diagnosis of DMD and provide a comprehensive resume on the topic. The emphasis was given to the comparison of different available protocols and molecular methods used for fetal inheritance deduction, as well as their correlation with prognostic accuracy. METHODS: We searched the Scopus and PubMed databases on 11 November 2022 and included articles reporting a non-invasive prenatal diagnosis of DMD in families at risk using relative dosage analysis methods. RESULTS: Of the 342 articles identified, 7 met the criteria. The reported accuracy of NIPT for DMD was 100% in all of the studies except one, which demonstrated an accuracy of 86.67%. The combined accuracy for studies applying indirect RHDO, direct RHDO, and RMD approaches were 94.74%, 100%, and 100%, respectively. Confirmatory results by invasive testing were available in all the cases. Regardless of the technological complexity and low prevalence of the disease that reduces the opportunity for systematic research, the presented work demonstrates substantial accuracy of NIPT for DMD. CONCLUSIONS: Attempts for its implementation into everyday clinical practice raise many ethical and social concerns. It is essential to provide detailed guidelines and arrange genetic counseling in order to ensure the proper indications for testing and obtain informed parental consent.

19.
Cureus ; 15(6): e41191, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37525783

RESUMO

Dropped head syndrome (DHS) is characterized by neck extensor muscle weakness, which may be isolated or secondary to another neurologic diagnosis. DHS, due to lysosomal storage disorders, has not been reported in the literature. We present a 21-year-old male who had complaints of slowly worsening difficulty swallowing for the past eight years, along with difficulty keeping his head erect. His past medical history was significant for apical hypertrophic cardiomyopathy (HCM), and he had a history of sudden cardiac death in his immediate family. Clinical examination was significant only for neck extensor muscle weakness. His laboratory investigations were unremarkable, save for a significantly elevated creatine kinase (CK). Finally, whole exome sequencing identified a hemizygous stop gain variant in the lysosome-associated membrane protein 2 (LAMP-2) gene, pointing to a diagnosis of Danon disease (DD). DD is a rare, X-linked, inherited disease, due to a defect in the LAMP-2 gene that disrupts lysosomal autophagy. It is characterized by a triad of HCM, skeletal myopathy, and intellectual disability. Males typically suffer a more severe phenotype, and the cardiac disease drives its prognosis. Management involves regular cardiac monitoring, with appropriate physical therapy for myopathy and multidisciplinary treatment for intellectual disability. We suggest that DD be considered in the differential diagnosis for patients with HCM and elevated CK.

20.
Cureus ; 15(2): e35498, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37007358

RESUMO

Duchenne's muscular dystrophy (DMD) is a debilitating X-linked recessive disorder of dystrophin gene expression that culminates in the downregulation of dystrophin in cardiac and skeletal muscle. As a result, there is progressive muscle weakness, fibrosis, and atrophy. The skeletal and cardiac muscle degeneration rapidly progresses to the respective loss of ambulation and death from cardiac muscle failure by the second and fourth decades of life. Although muscle degeneration has been demonstrated in utero patients are initially asymptomatic. Therefore, diagnosis is typically delayed until about five years of age when proximal muscle weakness initiates a diagnostic workup that uncovers the disease. We present the rare case of an early diagnosis of DMD. A two-month-old, the only male offspring of a family with three children, was discovered to have hyper-transaminisemia during hospitalization for pneumonia. His preceding medical history was only significant for fever, cough, and rhinorrhea. The pregnancy and birth were uneventful. No abnormalities were detected on the newborn screen. Physical examination was reassuring with no peripheral stigmata of liver disease. Ultrasonographic assessments, metabolic assays, and infectious disease markers were within normal limits. Creatine kinase (CK) was markedly elevated and our patient was subsequently confirmed to be positive for a pathogenic hemizygous variant of the DMD gene.  Reliance on an abnormal clinical presentation to trigger diagnostic workup for DMD has led to delays in the diagnosis of this genetic disorder. Incorporating CK analysis into newborn screening panels may enable more children to commence workup in infancy rather than at the current average age of 4.9 years. Early diagnosis is of value in the early initiation of monitoring, anticipatory guidance, and availing families' opportunities to harness current trends of care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA