Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894965

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the number of cases is constantly increasing. Early and accurate HCC diagnosis is crucial to improving the effectiveness of treatment. The aim of the study is to develop a supervised learning framework based on hierarchical community detection and artificial intelligence in order to classify patients and controls using publicly available microarray data. With our methodology, we identified 20 gene communities that discriminated between healthy and cancerous samples, with an accuracy exceeding 90%. We validated the performance of these communities on an independent dataset, and with two of them, we reached an accuracy exceeding 80%. Then, we focused on two communities, selected because they were enriched with relevant biological functions, and on these we applied an explainable artificial intelligence (XAI) approach to analyze the contribution of each gene to the classification task. In conclusion, the proposed framework provides an effective methodological and quantitative tool helping to find gene communities, which may uncover pivotal mechanisms responsible for HCC and thus discover new biomarkers.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Inteligência Artificial , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Marcadores Genéticos , Nível de Saúde
2.
Comput Biol Med ; 176: 108525, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749322

RESUMO

Deep neural networks have become increasingly popular for analyzing ECG data because of their ability to accurately identify cardiac conditions and hidden clinical factors. However, the lack of transparency due to the black box nature of these models is a common concern. To address this issue, explainable AI (XAI) methods can be employed. In this study, we present a comprehensive analysis of post-hoc XAI methods, investigating the glocal (aggregated local attributions over multiple samples) and global (concept based XAI) perspectives. We have established a set of sanity checks to identify saliency as the most sensible attribution method. We provide a dataset-wide analysis across entire patient subgroups, which goes beyond anecdotal evidence, to establish the first quantitative evidence for the alignment of model behavior with cardiologists' decision rules. Furthermore, we demonstrate how these XAI techniques can be utilized for knowledge discovery, such as identifying subtypes of myocardial infarction. We believe that these proposed methods can serve as building blocks for a complementary assessment of the internal validity during a certification process, as well as for knowledge discovery in the field of ECG analysis.


Assuntos
Aprendizado Profundo , Eletrocardiografia , Eletrocardiografia/métodos , Humanos , Descoberta do Conhecimento/métodos , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador
3.
Artif Intell Med ; 143: 102545, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37673554

RESUMO

Current models on Explainable Artificial Intelligence (XAI) have shown a lack of reliability when evaluating feature-relevance for deep neural biomarker classifiers. The inclusion of reliable saliency-maps for obtaining trustworthy and interpretable neural activity is still insufficiently mature for practical applications. These limitations impede the development of clinical applications of Deep Learning. To address, these limitations we propose the RemOve-And-Retrain (ROAR) algorithm which supports the recovery of highly relevant features from any pre-trained deep neural network. In this study we evaluated the ROAR methodology and algorithm for the Face Emotion Recognition (FER) task, which is clinically applicable in the study of Autism Spectrum Disorder (ASD). We trained a Convolutional Neural Network (CNN) from electroencephalography (EEG) signals and assessed the relevance of FER-elicited EEG features from individuals diagnosed with and without ASD. Specifically, we compared the ROAR reliability from well-known relevance maps such as Layer-Wise Relevance Propagation, PatternNet, Pattern-Attribution, and Smooth-Grad Squared. This study is the first to bridge previous neuroscience and ASD research findings to feature-relevance calculation for EEG-based emotion recognition with CNN in typically-development (TD) and in ASD individuals.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Aprendizado Profundo , Humanos , Transtorno Autístico/diagnóstico , Transtorno do Espectro Autista/diagnóstico , Inteligência Artificial , Reprodutibilidade dos Testes , Algoritmos , Emoções , Eletroencefalografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA