Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(44): e2314788120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871225

RESUMO

Nitrogenase is an active target of heterologous expression because of its importance for areas related to agronomy, energy, and environment. One major hurdle for expressing an active Mo-nitrogenase in Escherichia coli is to generate the complex metalloclusters (P- and M-clusters) within this enzyme, which involves some highly unique bioinorganic chemistry/metalloenzyme biochemistry that is not generally dealt with in the heterologous expression of proteins via synthetic biology; in particular, the heterologous synthesis of the homometallic P-cluster ([Fe8S7]) and M-cluster core (or L-cluster; [Fe8S9C]) on their respective protein scaffolds, which represents two crucial checkpoints along the biosynthetic pathway of a complete nitrogenase, has yet to be demonstrated by biochemical and spectroscopic analyses of purified metalloproteins. Here, we report the heterologous formation of a P-cluster-containing NifDK protein upon coexpression of Azotobacter vinelandii nifD, nifK, nifH, nifM, and nifZ genes, and that of an L-cluster-containing NifB protein upon coexpression of Methanosarcina acetivorans nifB, nifS, and nifU genes alongside the A. vinelandii fdxN gene, in E. coli. Our metal content, activity, EPR, and XAS/EXAFS data provide conclusive evidence for the successful synthesis of P- and L-clusters in a nondiazotrophic host, thereby highlighting the effectiveness of our metallocentric, divide-and-conquer approach that individually tackles the key events of nitrogenase biosynthesis prior to piecing them together into a complete pathway for the heterologous expression of nitrogenase. As such, this work paves the way for the transgenic expression of an active nitrogenase while providing an effective tool for further tackling the biosynthetic mechanism of this important metalloenzyme.


Assuntos
Azotobacter vinelandii , Metaloproteínas , Nitrogenase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fixação de Nitrogênio/genética , Oxirredutases/metabolismo , Metaloproteínas/metabolismo , Proteínas de Bactérias/metabolismo
2.
Small ; 20(9): e2306716, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37863816

RESUMO

The interaction between catalyst and support plays an important role in electrocatalytic hydrogen evolution (HER), which may explain the improvement in performance by phase transition or structural remodeling. However, the intrinsic behavior of these catalysts (dynamic evolution of the interface under bias, structural/morphological transformation, stability) has not been clearly monitored, while the operando technology does well in capturing the dynamic changes in the reaction process in real time to determine the actual active site. In this paper, nitrogen-doped molybdenum atom-clusters on Ti3 C2 TX (MoACs /N-Ti3 C2 TX ) is used as a model catalyst to reveal the dynamic evolution of MoAcs on Ti3 C2 TX during the HER process. Operando X-ray absorption structure (XAS) theoretical calculation and in situ Raman spectroscopy showed that the Mo cluster structure evolves to a 6-coordinated monatomic Mo structure under working conditions, exposing more active sites and thus improving the catalytic performance. It shows excellent HER performance comparable to that of commercial Pt/C, including an overpotential of 60 mV at 10 mA cm-2 , a small Tafel slope (56 mV dec-1 ), and high activity and durability. This study provides a unique perspective for investigating the evolution of species, interfacial migration mechanisms, and sources of activity-enhancing compounds in the process of electroreduction.

3.
J Synchrotron Radiat ; 31(Pt 2): 322-327, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306299

RESUMO

X-ray spectroscopy is a valuable technique for the study of many materials systems. Characterizing reactions in situ and operando can reveal complex reaction kinetics, which is crucial to understanding active site composition and reaction mechanisms. In this project, the design, fabrication and testing of an open-source and easy-to-fabricate electrochemical cell for in situ electrochemistry compatible with X-ray absorption spectroscopy in both transmission and fluorescence modes are accomplished via windows with large opening angles on both the upstream and downstream sides of the cell. Using a hobbyist computer numerical control machine and free 3D CAD software, anyone can make a reliable electrochemical cell using this design. Onion-like carbon nanoparticles, with a 1:3 iron-to-cobalt ratio, were drop-coated onto carbon paper for testing in situ X-ray absorption spectroscopy. Cyclic voltammetry of the carbon paper showed the expected behavior, with no increased ohmic drop, even in sandwiched cells. Chronoamperometry was used to apply 0.4 V versus reversible hydrogen electrode, with and without 15 min of oxygen purging to ensure that the electrochemical cell does not provide any artefacts due to gas purging. The XANES and EXAFS spectra showed no differences with and without oxygen, as expected at 0.4 V, without any artefacts due to gas purging. The development of this open-source electrochemical cell design allows for improved collection of in situ X-ray absorption spectroscopy data and enables researchers to perform both transmission and fluorescence simultaneously. It additionally addresses key practical considerations including gas purging, reduced ionic resistance and leak prevention.

4.
J Synchrotron Radiat ; 31(Pt 4): 741-750, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917021

RESUMO

Transition-metal nitrogen-doped carbons (TM-N-C) are emerging as a highly promising catalyst class for several important electrocatalytic processes, including the electrocatalytic CO2 reduction reaction (CO2RR). The unique local environment around the singly dispersed metal site in TM-N-C catalysts is likely to be responsible for their catalytic properties, which differ significantly from those of bulk or nanostructured catalysts. However, the identification of the actual working structure of the main active units in TM-N-C remains a challenging task due to the fluctional, dynamic nature of these catalysts, and scarcity of experimental techniques that could probe the structure of these materials under realistic working conditions. This issue is addressed in this work and the local atomistic and electronic structure of the metal site in a Co-N-C catalyst for CO2RR is investigated by employing time-resolved operando X-ray absorption spectroscopy (XAS) combined with advanced data analysis techniques. This multi-step approach, based on principal component analysis, spectral decomposition and supervised machine learning methods, allows the contributions of several co-existing species in the working Co-N-C catalysts to be decoupled, and their XAS spectra deciphered, paving the way for understanding the CO2RR mechanisms in the Co-N-C catalysts, and further optimization of this class of electrocatalytic systems.

5.
J Synchrotron Radiat ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088400

RESUMO

Accurate analysis of the rich information contained within X-ray spectra usually calls for detailed electronic structure theory simulations. However, density functional theory (DFT), time-dependent DFT and many-body perturbation theory calculations increasingly require the use of advanced codes running on high-performance computing (HPC) facilities. Consequently, many researchers who would like to augment their experimental work with such simulations are hampered by the compounding of nontrivial knowledge requirements, specialist training and significant time investment. To this end, we present Web-CONEXS, an intuitive graphical web application for democratizing electronic structure theory simulations. Web-CONEXS generates and submits simulation workflows for theoretical X-ray absorption and X-ray emission spectroscopy to a remote computing cluster. In the present form, Web-CONEXS interfaces with three software packages: ORCA, FDMNES and Quantum ESPRESSO, and an extensive materials database courtesy of the Materials Project API. These software packages have been selected to model diverse materials and properties. Web-CONEXS has been conceived with the novice user in mind; job submission is limited to a subset of simulation parameters. This ensures that much of the simulation complexity is lifted and preliminary theoretical results are generated faster. Web-CONEXS can be leveraged to support beam time proposals and serve as a platform for preliminary analysis of experimental data.

6.
Chimia (Aarau) ; 78(5): 304-312, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38822773

RESUMO

Understanding structure-performance relationships are essential for the rational design of new functional materials or in the further optimization of (catalytic) processes. Due to the high penetration depth of the radiation used, synchrotron-based hard X-ray techniques (with energy > 4.5 keV) allow the study of materials under realistic conditions (in situ and operando) and thus play an important role in uncovering structure-performance relationships. X-ray absorption and emission spectroscopies (XAS and XES) give insight into the electronic structure (oxidation state, spin state) and local geometric structure (type and number of nearest neighbor atoms, bond distances, disorder) up to ~5 Å around the element of interest. In this mini review, we will give an overview of the in situ and operando capabilities of the SuperXAS beamline, a facility for hard X-ray spectroscopy, through recent examples from studies of heterogeneous catalysts, electrochemical systems, and photoinduced processes. The possibilities for time-resolved experiments in the time range from ns to seconds and longer are illustrated. The extension of X-ray spectroscopy at the new Debye beamline combined with operando X-ray scattering and diffraction and further developments of time-resolved XES at SuperXAS will open new possibilities after the Swiss Light Source upgrade mid 2025.

7.
Angew Chem Int Ed Engl ; 63(18): e202318692, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38323697

RESUMO

The efficiency of electrolysis is reduced due to the sluggish oxygen evolution reaction (OER). Besides catalyst properties, electrocatalytic activity also depends on the interaction of the electrocatalyst with the electrolyte. Here, we show that the addition of small amounts of Li+ to Fe-free NaOH or KOH electrolytes activates NiFeOOH for the OER compared to single-cation electrolytes. Moreover, the activation was maintained when the solution was returned to pure NaOH. Importantly, we show that the origin of activation by Li+ cations is primarily non-kinetic in nature, as the OER onset for the mixed electrolyte does not change and the Tafel slope at low current density is ~30 mV/dec in both electrolytes. However, the increase of the apparent Tafel slope remains lower at increasing current densities in the presence of Li+. Based on electrochemical quartz crystal microbalance and in situ X-ray absorption spectroscopy measurements, we show that this reduction of non-kinetic effects is due to enhanced intercalation of sodium, water and hydroxide. This enhanced electrolyte penetration facilitates the OER, especially at higher current densities and for increased catalyst loading. Our work shows that mixed electrolytes where distinct cations can have different roles provide a simple and promising strategy towards improved OER rates.

8.
Angew Chem Int Ed Engl ; 63(4): e202312292, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37932823

RESUMO

Converting CO2 into methanol on a large scale is of great significance in the sustainable methanol economy. Zirconia species are considered to be an essential support in Cu-based catalysts due to their excellent properties for CO2 adsorption and activation. However, the evolution of Zr species during the reaction and the effect of their structure on the reaction pathways remain unclear. Herein, single-site Zr species in an amorphous SiO2 matrix are created by enhancing the Zr-Si interaction in Cu/ZrO2 -SiO2 catalysts. In situ X-ray absorption spectroscopy (XAS) reveals that the coordination environment of single-site Zr is sensitive to the atmosphere and reaction conditions. We demonstrate that the CO2 adsorption occurs preferably on the interface of Cu and single-site Zr rather than on ZrO2 nanoparticles. Methanol synthesis in reverse water-gas-shift (RWGS)+CO-hydro pathway is verified only over single-dispersed Zr sites, whereas the ordinary formate pathway occurs on ZrO2 nanoparticles. Thus, it expands a non-competitive parallel pathway as a supplement to the dominant formate pathway, resulting in the enhancement of Cu activity sixfold and twofold based on Cu/SiO2 and Cu/ZrO2 catalysts, respectively. The establishment of this dual-channel pathway by single-site Zr species in this work opens new horizons for understanding the role of atomically dispersed oxides in catalysis science.

9.
Small ; 19(25): e2208074, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932896

RESUMO

Unlocking the potential of the hydrogen economy is dependent on achieving green hydrogen (H2 ) production at competitive costs. Engineering highly active and durable catalysts for both oxygen and hydrogen evolution reactions (OER and HER) from earth-abundant elements is key to decreasing costs of electrolysis, a carbon-free route for H2 production. Here, a scalable strategy to prepare doped cobalt oxide (Co3 O4 ) electrocatalysts with ultralow loading, disclosing the role of tungsten (W), molybdenum (Mo), and antimony (Sb) dopants in enhancing OER/HER activity in alkaline conditions, is reported. In situ Raman and X-ray absorption spectroscopies, and electrochemical measurements demonstrate that the dopants do not alter the reaction mechanisms but increase the bulk conductivity and density of redox active sites. As a result, the W-doped Co3 O4 electrode requires ≈390 and ≈560 mV overpotentials to reach ±10 and ±100 mA cm-2 for OER and HER, respectively, over long-term electrolysis. Furthermore, optimal Mo-doping leads to the highest OER and HER activities of 8524 and 634 A g-1 at overpotentials of 0.67 and 0.45 V, respectively. These novel insights provide directions for the effective engineering of Co3 O4 as a low-cost material for green hydrogen electrocatalysis at large scales.

10.
Small ; 19(20): e2207096, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36808828

RESUMO

Zinc-air batteries are gaining popularity as viable energy sources for green energy storage technologies. The cost and performance of Zn-air batteries are mostly determined by the air electrodes in combination with an oxygen electrocatalyst. This research aims at the particular innovations and challenges relating to air electrodes and related materials. Here, a nanocomposite of ZnCo2 Se4 @rGO that exhibits excellent electrocatalytic activity for the oxygen reduction reaction, ORR (E1/2  = 0.802 V), and oxygen evolution reaction, OER (η10  = 298 mV@10 mA cm-2 ) is synthesized. In addition, a rechargeable zinc-air battery with ZnCo2 Se4 @rGO as the cathode showed a high open circuit voltage (OCV) of 1.38 V, a peak power density of 210.4 mW cm-2 , and outstanding long-term cycling stability. The electronic structure and oxygen reduction/evolution reaction mechanism of the catalysts ZnCo2 Se4 and Co3 Se4 are further investigated using density functional theory calculations. Finally, a perspective for designing, preparing, and assembling air electrodes is suggested for the future developments of high-performance Zn-air batteries.

11.
Small ; 19(38): e2301770, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37222115

RESUMO

Aqueous zinc batteries (ZIBs) have attracted considerable attention in recent years because of their high safety and eco-friendly features. Numerous studies have shown that adding Mn2+ salts to ZnSO4 electrolytes enhanced overall energy densities and extended the cycling life of Zn/MnO2 batteries. It is commonly believed that Mn2+ additives in the electrolyte inhibit the dissolution of MnO2 cathode. To better understand the role of Mn2+ electrolyte additives, the ZIB using a Co3 O4 cathode instead of MnO2 in 0.3 m MnSO4 + 3 m ZnSO4 electrolyte is built to avoid interference from MnO2 cathode. As expected, the Zn/Co3 O4 battery exhibits electrochemical characteristics nearly identical to those of Zn/MnO2 batteries. Operando synchrotron X-ray diffraction (XRD), ex situ X-ray absorption spectroscopy (XAS), and electrochemical analyses are carried out to determine the reaction mechanism and pathway. This work demonstrates that the electrochemical reaction occurring at cathode involves a reversible Mn2+ /MnO2 deposition/dissolution process, while a chemical reaction of Zn2+ /Zn4 SO4 (OH)6 ∙5H2 O deposition/dissolution is involved during part of the charge/discharge cycle due to the change in the electrolyte environment. The reversible Zn2+ /Zn4 SO4 (OH)6 ∙5H2 O reaction contributes no capacity and lowers the diffusion kinetics of the Mn2+ /MnO2 reaction, which prevents the operation of ZIBs at high current densities.

12.
Small ; 19(46): e2304585, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37469201

RESUMO

High-entropy oxides (HEOs) have emerged as promising anode materials for next-generation lithium-ion batteries (LIBs). Among them, spinel HEOs with vacant lattice sites allowing for lithium insertion and diffusion seem particularly attractive. In this work, electrospun oxygen-deficient (Mn,Fe,Co,Ni,Zn) HEO nanofibers are produced under environmentally friendly calcination conditions and evaluated as anode active material in LIBs. A thorough investigation of the material properties and Li+ storage mechanism is carried out by several analytical techniques, including ex situ synchrotron X-ray absorption spectroscopy. The lithiation process is elucidated in terms of lithium insertion, cation migration, and metal-forming conversion reaction. The process is not fully reversible and the reduction of cations to the metallic form is not complete. In particular, iron, cobalt, and nickel, initially present mainly as Fe3+ , Co3+ /Co2+ , and Ni2+ , undergo reduction to Fe0 , Co0 , and Ni0 to different extent (Fe < Co < Ni). Manganese undergoes partial reduction to Mn3+ /Mn2+ and, upon re-oxidation, does not revert to the pristine oxidation state (+4). Zn2+ cations do not electrochemically participate in the conversion reaction, but migrating from tetrahedral to octahedral positions, they facilitate Li-ion transport within lattice channels opened by their migration. Partially reversible crystal phase transitions are observed.

13.
J Synchrotron Radiat ; 30(Pt 5): 1023-1029, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37594862

RESUMO

This paper presents software for calculating the optimal mass of samples with complex compositions (e.g. supported metal catalysts) for X-ray absorption spectroscopy (XAS) and scattering measurements. The ability to calculate the sample mass and other relevant parameters needed for an XAS measurement allows experimentalists to be better prepared in terms of detector selection, energy range of scan and overall time needed to complete the measurement, thus increasing efficiency. CatMass builds on existing sample mass calculators allowing users to determine the optimum sample preparation, collection geometry, usable energy range for a scan and approximate edge step of the absorption event. Visualization tools present the absorption calculation results in a format familiar to XAS experimentalists, with the added ability to save calculations and plots for future reference or recalculation. CatMass is a program broadly applicable in catalysis and is helpful for users with complex samples due to composition/stoichiometry or multiple competing elements.

14.
Chemistry ; 29(55): e202300636, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37526142

RESUMO

Transferrin (Tf) is a glycoprotein that transports iron from the serum to the various organs. Several studies have highlighted that Tf can interact with metals other than Fe(III), including actinides that are chemical and radiological toxics. We propose here to report on the behavior of Th(IV) and Pu(IV) in comparison with Fe(III) upon Tf complexation. We considered UV-Vis and IR data of the M2 Tf complex (M=Fe, Th, Pu) and combined experimental EXAFS data with MD models. EXAFS data of the first M-O coordination sphere are consistent with the MD model considering 1 synergistic carbonate. Further EXAFS data analysis strongly suggests that contamination by Th/Pu colloids seems to occur upon Tf complexation, but it seems limited. SAXS data have also been recorded for all complexes and also after the addition of Deferoxamine-B (DFOB) in the medium. The Rg values are very close for apoTf, ThTf and PuTf, but slightly larger than for holoTf. Data suggest that the structure of the protein is more ellipsoidal than spherical, with a flattened oblate form. From this data, the following order of conformation size might be considered:holoTf

Assuntos
Plutônio , Transferrina , Transferrina/química , Plutônio/química , Tório/química , Compostos Férricos , Espalhamento a Baixo Ângulo , Difração de Raios X
15.
Environ Sci Technol ; 57(43): 16595-16605, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37855829

RESUMO

Natural organic matter (NOM) decreases the selenium (Se) mobility in soil and sediment. Biotic dissimilatory reduction of selenate and selenite and assimilation of the reduced Se species into biomolecules are thought to be primarily responsible for this decreased Se mobility. However, the possibility of Se immobilization due to the abiotic interaction of Se species with NOM is still poorly understood. Equilibrating selenate and selenite with a model NOM (Pahokee peat soil), followed by X-ray absorption spectroscopic analysis, this study shows that the NOM can abiotically reduce highly mobile selenate into relatively less mobile selenite. NOM can sorb Se species, especially selenite, considerably. Preloading of the NOM with Fe(III) increases the sorption of selenite and selenate by several orders of magnitude. Modeling of the Se and Fe K-edge EXAFS data revealed that Se species are sorbed to NOM due to indirect complexation with the organically complexed Fe(O,OH)6 octahedra through the corner- (2C) and edge-sharing (1E) and direct complexation with the oxygen-containing functional groups of the NOM. This study concludes that the abiotic reduction and complexation of the Se species with NOM can be the additional or alternative route of Se immobilization in the NOM-rich soil and sediment.


Assuntos
Compostos de Selênio , Selênio , Ácido Selenioso , Ácido Selênico , Compostos Férricos , Selênio/química , Solo/química , Selenito de Sódio
16.
Environ Sci Technol ; 57(42): 16097-16108, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37822288

RESUMO

The transformation of 2-line ferrihydrite to goethite from supersaturated solutions at alkaline pH ≥ 13.0 was studied using a combination of benchtop and advanced synchrotron techniques such as X-ray diffraction, thermogravimetric analysis, and X-ray absorption spectroscopy. In comparison to the transformation rates at acidic to mildly alkaline environments, the half-life, t1/2, of 2-line ferrihydrite reduces from several months at pH = 2.0, and approximately 15 days at pH = 10.0, to just under 5 h at pH = 14.0. The calculated-first order rate constants of transformation, k, increase exponentially with respect to the pH and follow the progression log10 k = log10 k0 + a·pH3. Simultaneous monitoring of the aqueous Fe(III) concentration via inductively coupled plasma optical emission spectroscopy demonstrates that (i) goethite likely precipitates from solution and (ii) its formation is rate-limited by the comparatively slow redissolution of 2-line ferrihydrite. The analysis presented can be used to estimate the transformation rate of naturally occurring 2-line ferrihydrite in aqueous electrolytes characteristic to mine and radioactive waste tailings as well as the formation of corrosion products in cementitious pore solutions.


Assuntos
Compostos Férricos , Compostos de Ferro , Compostos Férricos/química , Compostos de Ferro/química , Minerais/química , Água , Concentração de Íons de Hidrogênio , Oxirredução
17.
Environ Sci Technol ; 57(42): 16121-16130, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37842921

RESUMO

Ammonia-mediated selective catalytic reduction (NH3-SCR) is currently the key approach to abate nitrogen oxides (NOx) emitted from heavy-duty lean-burn vehicles. The state-of-art NH3-SCR catalysts, namely, copper ion-exchanged chabazite (Cu-CHA) zeolites, perform rather poorly at low temperatures (below 200 °C) and are thus incapable of eliminating effectively NOx emissions under cold-start conditions. Here, we demonstrate a significant promotion of low-temperature NOx reduction by reinforcing the dynamic motion of zeolite-confined Cu sites during NH3-SCR. Combining complex impedance-based in situ spectroscopy (IS) and extended density-functional tight-binding molecular dynamics simulation, we revealed an environment- and temperature-dependent nature of the dynamic Cu motion within the zeolite lattice. Further coupling in situ IS with infrared spectroscopy allows us to unravel the critical role of monovalent Cu in the overall Cu mobility at a molecular level. Based on these mechanistic understandings, we elicit a boost of NOx reduction below 200 °C by reinforcing the dynamic Cu motion in various Cu-zeolites (Cu-CHA, Cu-ZSM-5, Cu-Beta, etc.) via facile postsynthesis treatments, either in a reductive mixture at low temperatures (below 250 °C) or in a nonoxidative atmosphere at high temperatures (above 450 °C).


Assuntos
Zeolitas , Zeolitas/química , Cobre , Amônia/química , Óxidos de Nitrogênio/química , Temperatura , Catálise
18.
Environ Sci Technol ; 57(36): 13681-13690, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37650677

RESUMO

Here, we investigate the stability and performance of single-atom Pd on TiO2 for the selective dechlorination of 4-chlorophenol. A challenge inherent to single atoms is their high surface free energy, which results in a tendency for the surface migration and aggregation of metal atoms. This work evaluates various factors affecting the stability of Pd single-atoms, including atomic dispersion, coordination environment, and substrate properties, under reductive aqueous conditions. The transition from single atoms to clusters vastly enhanced dechlorination kinetics without diminishing carbon-chlorine bond selectivity. X-ray absorption spectroscopy analysis using both in situ and ex situ conditions followed the dynamic transformation of single atoms into amorphous clusters, which consist of a unique unsaturated coordination environment and few nanometer diameter. The intricate relationship between stability and performance underscores the vital role of detailed characterization to properly determine the true active species for dehalogenation reactions.


Assuntos
Carbono , Paládio , Cloretos , Cloro , Cinética
19.
Proc Natl Acad Sci U S A ; 117(49): 30957-30965, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229583

RESUMO

Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. The primary mesenchyme cells (PMCs) are the cells that are responsible for spicule formation. PMCs endocytose sea water from the larval internal body cavity into a network of vacuoles and vesicles, where calcium ions are concentrated until they precipitate in the form of amorphous calcium carbonate (ACC). The mineral is subsequently transferred to the syncytium, where the spicule forms. Using cryo-soft X-ray microscopy we imaged intracellular calcium-containing particles in the PMCs and acquired Ca-L2,3 X-ray absorption near-edge spectra of these Ca-rich particles. Using the prepeak/main peak (L2'/ L2) intensity ratio, which reflects the atomic order in the first Ca coordination shell, we determined the state of the calcium ions in each particle. The concentration of Ca in each of the particles was also determined by the integrated area in the main Ca absorption peak. We observed about 700 Ca-rich particles with order parameters, L2'/ L2, ranging from solution to hydrated and anhydrous ACC, and with concentrations ranging between 1 and 15 M. We conclude that in each cell the calcium ions exist in a continuum of states. This implies that most, but not all, water is expelled from the particles. This cellular process of calcium concentration may represent a widespread pathway in mineralizing organisms.


Assuntos
Cálcio/metabolismo , Minerais/metabolismo , Modelos Biológicos , Ouriços-do-Mar/metabolismo , Transdução de Sinais , Animais , Larva/metabolismo , Mesoderma/citologia , Ouriços-do-Mar/citologia , Ouriços-do-Mar/ultraestrutura , Espectroscopia por Absorção de Raios X
20.
Nano Lett ; 22(4): 1557-1565, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35104146

RESUMO

The electrochemical reduction of CO2 to produce carbon-based fuels and chemicals possesses huge potentials to alleviate current environmental problems. However, it is confronted by great challenges in the design of active electrocatalysts with low overpotentials and high product selectivity. Here we report the atomic tuning of a single-Fe-atom catalyst with phosphorus (Fe-N/P-C) on commercial carbon black as a robust electrocatalyst for CO2 reduction. The Fe-N/P-C catalyst exhibits impressive performance in the electrochemical reduction of CO2 to CO, with a high Faradaic efficiency of 98% and a high mass-normalized turnover frequency of 508.8 h-1 at a low overpotential of 0.34 V. On the basis of ex-situ X-ray absorption spectroscopy measurements and DFT calculations, we reveal that the tuning of P in single-Fe-atom catalysts reduces the oxidation state of the Fe center and decreases the free-energy barrier of *CO intermediate formation, consequently maintaining the electrocatalytic activity and stability of single-Fe-atom catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA