Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
Toxicol Appl Pharmacol ; 483: 116809, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38211931

RESUMO

Xanthohumol (XN) is a prominent prenylated flavonoid present in the hop plant (Humulus lupulus L.). Despite undoubted pro-healing properties of hop plant, there is still a need for clinical investigations confirming these effects as well as the underlying molecular mechanisms. The present study was designed to (1) establish the role of XN in non-invasive inflammation induced by chemical damage to zebrafish hair cells, (2) clarify if it influences cell injury severity, neutrophil migration, macrophage activation, cell regeneration, and (3) find out whether it modulates the gene expression profile of chosen immune and stress response markers. All experiments were performed on 3 dpf zebrafish larvae. After fertilization the embryos were transferred to appropriate XN solutions (0.1 µM, 0.3 µM and 0.5 µM). The 40 min 10 µM CuSO4 exposure evoked severe damage to posterior lateral line hair cells triggering a robust acute inflammatory response. Four readouts were selected as the indicators of XN role in the process of inflammation: 1) hair cell death, 2) neutrophil migration towards damaged hair cells, 3) macrophage activation and recruitment to damaged hair cells, 4) hair cell regeneration. The assessments involved in vivo confocal microscopy imaging and qPCR based molecular analysis. It was demonstrated that XN (1) influences death pathway of damaged hair cells by redirecting their severe necrotic phenotype into apoptotic one, (2) impacts the immune response via regulating neutrophil migration, macrophage recruitment and activation (3) modulates gene expression of immune system markers and (4) accelerates hair cell regeneration.


Assuntos
Humulus , Propiofenonas , Animais , Humulus/química , Humulus/metabolismo , Peixe-Zebra/metabolismo , Flavonoides/química , Propiofenonas/toxicidade , Propiofenonas/química , Propiofenonas/metabolismo , Imunidade Inata , Inflamação/induzido quimicamente , Cabelo/metabolismo
2.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397018

RESUMO

Among diverse cancers, pancreatic cancer is one of the most aggressive types due to inadequate diagnostic options and treatments available. Therefore, there is a necessity to use combination chemotherapy options to overcome the chemoresistance of pancreatic cancer cells. Plumbagin and xanthohumol, natural compounds isolated from the Plumbaginaceae family and Humulus lupulus, respectively, have been used to treat various cancers. In this study, we investigated the anticancer effects of a combination of plumbagin and xanthohumol on pancreatic cancer models, as well as the underlying mechanism. We have screened in vitro numerous plant-derived extracts and compounds and tested in vivo the most effective combination, plumbagin and xanthohumol, using a transgenic model of pancreatic cancer KPC (KrasLSL.G12D/+; p53R172H/+; PdxCretg/+). A significant synergistic anticancer activity of plumbagin and xanthohumol combinations on different pancreatic cancer cell lines was found. The combination treatment of plumbagin and xanthohumol influences the levels of B-cell lymphoma (BCL2), which are known to be associated with apoptosis in both cell lysates and tissues. More importantly, the survival of a transgenic mouse model of pancreatic cancer KPC treated with a combination of plumbagin and xanthohumol was significantly increased, and the effect on BCL2 levels has been confirmed. These results provide a foundation for a potential new treatment for pancreatic cancer based on plumbagin and xanthohumol combinations.


Assuntos
Naftoquinonas , Neoplasias Pancreáticas , Propiofenonas , Camundongos , Animais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Extratos Vegetais/farmacologia , Propiofenonas/farmacologia , Propiofenonas/uso terapêutico , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2
3.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542371

RESUMO

Xanthohumol (Xn), a prenylated chalcone found in Hop (Humulus lupulus L.), has been shown to have potent anti-aging, diabetes, inflammation, microbial infection, and cancer properties. Unfortunately, this molecule has undesirable characteristics such as inadequate intake, low aqueous solubility, and a short half-life. To address these drawbacks, researchers have made numerous attempts to improve its absorption, solubility, and bioavailability. Polymeric drug delivery systems (PDDSs) have experienced significant development over the last two decades. Polymeric drug delivery is defined as a formulation or device that allows the introduction of a therapeutic substance into the body. Biodegradable and bioreducible polymers are the ideal choice for a variety of new DDSs. Xn formulations based on biodegradable polymers and naturally derived compounds could solve some of the major drawbacks of Xn-based drug delivery. In this regard, the primary concern of this study is on presenting innovative formulations for Xn delivery, such as nanoparticles (NPs), nanomicelles, nanoliposomes, solid lipid nanoparticles (SLNs), and others, as well as the received in vitro and in vivo data. Furthermore, this work describes the chemistry and broad biological activity of Xn, which is particularly useful in modern drug technology as well as the cosmetics industry. It is also important to point out that the safety of using Xn, and its biotransformation, pharmacokinetics, and clinical applications, have been thoroughly explained in this review.


Assuntos
Humulus , Neoplasias , Propiofenonas , Humanos , Flavonoides/química , Propiofenonas/química , Humulus/química , Polímeros
4.
J Sci Food Agric ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082082

RESUMO

BACKGROUND: Xanthohumol is an isopentadienyl flavonoid in hops, which have several pharmacological effects. However, due to the poor bioavailability of xanthohumol, it cannot be widely used. RESULT: In this study, solvent extraction combined with preparative liquid chromatography was used to separate and purify xanthohumol in hop residue. And the purity, yield and recovery of xanthohumol was 983.0 ± 2.1 g kg-1, 921.61 ± 5.65 g kg-1, and 5.41 ± 0.07 g kg-1, respectively. Response surface methodology optimization revealed that 216.75 g kg-1 ethyl oleate, 574.1 g kg-1 polyoxyl-35 castor oil (EL35) and 209.15 g kg-1 polyethylene glycol 200 (PEG200) produced the xanthohumol nanoemulsion with a loading capacity of 85.40 ± 0.33 g kg-1, mean droplet diameter of 42.35 ± 0.06 nm, and zeta potential of -21.78 ± 0.18 mV. CONCLUSION: Xanthohumol nanoemulsion has better relative stability. The relative oral bioavailability of xanthohumol nanoemulsion was increased by 1.76 times. These results provide a theoretical basis for the application of nanoemulsion containing xanthohumol in food and pharmaceutical industry. © 2024 Society of Chemical Industry.

5.
Mol Pain ; 19: 17448069231204051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37699859

RESUMO

Chronic pain is the most common symptom for people who suffer from rheumatoid arthritis and it affects approximately 1% of the global population. Neuroinflammation in the spinal cord induces chronic arthritis pain. In this study, a collagen-induced arthritis (CIA) mice model was established through intradermally injection of type II collagen in complete Freund's adjuvant solution. Following CIA inducement, the paws and ankles of mice were found to swell, mechanical pain and spontaneous pain were induced, and their motor coordination was impaired. The spinal inflammatory reaction was triggered, which presented as severe infiltration of inflammatory cells, and the expression levels of GFAP, IL-1ß, NLRP3, and cleaved caspase-1 increased. Oxidative stress in the spinal cord of CIA mice was manifested as reduced Nrf2 and NDUFB11 expression and SOD activity, and increased levels of DHODH and Cyto-C. At the same time, spinal AMPK activity was decreased. In order to explore the potential therapeutic options for arthritic pain, Xanthohumol (Xn) was intraperitoneally injected into mice for three consecutive days. Xn treatment was found to reduce the number of spontaneous flinches, in addition to elevating mechanical pain thresholds and increasing latency time. At the same time, Xn treatment in the spinal cord reduced NLRP3 inflammasome-mediated inflammation, increased the Nrf2-mediated antioxidant response, and decreased mitochondrial ROS level. In addition, Xn was found to bind with AMPK via two electrovalent bonds and increased AMPK phosphorylation at Thr174. In summary, the findings indicate that Xn treatment activates AMPK, increases Nrf2-mediated antioxidant response, reduces Drp1-mediated mitochondrial dysfunction, suppresses neuroinflammation, and can serve to relieve arthritis pain.


Assuntos
Artrite Experimental , Dor Crônica , Humanos , Camundongos , Animais , Doenças Neuroinflamatórias , Antioxidantes , Proteínas Quinases Ativadas por AMP , Fator 2 Relacionado a NF-E2/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamação/complicações , Inflamação/tratamento farmacológico , Artrite Experimental/complicações , Artrite Experimental/tratamento farmacológico , Dor Crônica/tratamento farmacológico
6.
Cancer Cell Int ; 23(1): 153, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533078

RESUMO

BACKGROUND: Despite recent advances in the treatment of lung and breast cancer, the mortality with these two types of cancer is high. Xanthohumol (XN) is known as a bioactive compound that shows an anticancer effect on cancer cells. Here, we intended to investigate the anticancer effects of XN on the breast and lung cancer cell lines, using the three-dimensional (3D) cell culture. METHODS: XN was isolated from Humulus lupulus using Preparative-Thin Layer Chromatography (P-TLC) method and its authenticity was documented through Fourier Transform Infrared spectroscopy (FT-IR) and Hydrogen Nuclear Magnetic Resonance (H-NMR) methods. The spheroids of the breast (MCF-7) and lung (A549) cancer cell lines were prepared by the Hanging Drop (HD) method. Subsequently, the IC50s of XN were determined using the MTT assay in 2D and 3D cultures. Apoptosis was evaluated by Annexin V/PI flow cytometry and NFκB1/2, BAX, BCL2, and SURVIVIN expressions. Cell cycle progression was determined by P21, and P53 expressions as well as PI flow cytometry assays. Multidrug resistance was investigated through examining the expression of MDR1 and ABCG2. The invasion was examined by MMP2, MMP9, and FAK expression and F-actin labeling with Phalloidin-iFluor. RESULTS: While the IC50s for the XN treatment were 1.9 µM and 4.74 µM in 2D cultures, these values were 12.37 µM and 31.17 µM in 3D cultures of MCF-7 and A549 cells, respectively. XN induced apoptosis in MCF-7 and A549 cell lines. Furthermore, XN treatment reduced cell cycle progression, multidrug resistance, and invasion at the molecular and/or cellular levels. CONCLUSIONS: According to our results of XN treatment in 3D conditions, this bioactive compound can be introduced as an adjuvant anti-cancer agent for breast and lung cancer.

7.
Pharmacol Res ; 187: 106635, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581167

RESUMO

Osteoporosis is a common metabolic bone disease that results from the imbalance of homeostasis within the bone. Intra-bone homeostasis is dependent on a precise dynamic balance between bone resorption by osteoclasts and bone formation by mesenchymal lineage osteoblasts, which comprises a series of complex and highly standardized steps. Programmed cell death (PCD) (e.g., apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis) is a cell death process that involves a cascade of gene expression events with tight structures. These events play a certain role in regulating bone metabolism by determining the fate of bone cells. Moreover, existing research has suggested that natural products derived from a wide variety of dietary components and medicinal plants modulate the PCDs based on different mechanisms, which show great potential for the prevention and treatment of osteoporosis, thus revealing the emergence of more acceptable complementary and alternative drugs with lower costs, fewer side effects and more long-term application. Accordingly, this review summarizes the common types of PCDs in the field of osteoporosis. Moreover, from the perspective of targeting PCDs, this review also discussed the roles of currently reported natural products in the treatment of osteoporosis and the involved mechanisms. Based on this, this review provides more insights into new molecular mechanisms of osteoporosis and provides a reference for developing more natural anti-osteoporosis drugs in the future.


Assuntos
Produtos Biológicos , Osteoporose , Plantas Medicinais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/química , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoclastos/metabolismo , Morte Celular
8.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37942943

RESUMO

The COVID-19 pandemic has highlighted the importance of identifying new potent antiviral agents. Nutrients as well as plant-derived substances are promising candidates because they are usually well tolerated by the human body and readily available in nature, and consequently mostly cheap to produce. A variety of antiviral effects have recently been described for the hop chalcone xanthohumol (XN), and to a lesser extent for its derivatives, making these hop compounds particularly attractive for further investigation. Noteworthy, mounting evidence indicated that XN can suppress a wide range of viruses belonging to several virus families, all of which share a common reproductive cycle. As a result, the purpose of this review is to summarize the most recent research on the antiviral properties of XN and its derivatives, with a particular emphasis on the positive-sense RNA viruses human hepatitis C virus (HCV), porcine reproductive and respiratory syndrome virus (PRRSV), and severe acute respiratory syndrome corona virus (SARS-CoV-2).

9.
Cell Biol Int ; 47(3): 634-647, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36378586

RESUMO

Angiogenesis, a process characterized by the formation of new blood vessels from pre-existing ones, is a crucial step in tumor growth and dissemination. Given the ability of tumors to interfere with multiple or different molecular pathways to promote angiogenesis, there is an increasing need to therapeutically block tumor progression by targeting multiple antiangiogenic pathways. Natural polyphenols present health-protective properties, which are likely attributed to their ability to activate multiple pathways involved in inflammation, carcinogenesis, and angiogenesis. Recently, increased attention has been addressed to the ability of flavonoids, the most abundant polyphenols in the diet, to prevent cancer by suppressing angiogenesis. Here we investigate the mechanisms by which xanthohumol (the major prenylated flavonoid of the hop plant Humulus lupulus L.) and nobiletin (flavonoid from red-orange Citrus sinensis) can modulate the effects of Tumor Necrosis Factor-α (TNF-α) on human umbilical vein endothelial cells (HUVEC). The results reported in this paper show that xanthohumol and nobiletin pretreatment of HUVEC inhibits the effects induced by TNF-α on cell migration, invasion capability, and colon cancer cell adhesion on the endothelial monolayer. Moreover, the pretreatment reduces metalloproteinases and adhesion molecules' expression. Finally, our results highlight that xanthohumol and nobiletin can counteract the effects of TNF-α on angiogenesis and invasiveness, mainly through Vascular Endothelial Growth Factor and NF-κB pathways. Since angiogenesis plays an important pathological role in the progression of several diseases, our findings may provide clues for developing xanthohumol and nobiletin as therapeutic agents against angiogenesis-associated diseases.


Assuntos
NF-kappa B , Neoplasias , Humanos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Flavonoides/farmacologia , Transdução de Sinais , Neoplasias/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Polifenóis/metabolismo , Polifenóis/farmacologia
10.
Kidney Blood Press Res ; 48(1): 92-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36592619

RESUMO

INTRODUCTION: Diabetic nephropathy (DN) is a long-term loss of renal function occurring in the diabetic patients, leading to 5 million deaths in 2015, and this number is dramatically growing annually. Due to unsatisfied outcome of current treatment, there is urgent need to develop more effective therapeutic drugs for DN. METHODS: Approximately 150 kinds of natural small molecule drugs that have been used on the market or in the clinical trials in the presence of high glucose were tested individually on the same batch of human renal glomerular endothelial cells (GECs) and human kidney 2 (HK-2) cells with triplicated wells by using a robotic pipetting workstation to screen for the potential drug candidate. Cell viability and oxidative stress were examined in the GECs and HK-2 cells. DN mouse model was established and treated with 25 mg/kg xanthohumol. RESULTS: By measuring cell viability, xanthohumol was selected as our predicted drug candidate for DN because it could mostly protect renal cells from high glucose with about 90% survived GECs and HK-2 cells, about 2.12- and 2.37-fold increase compared to glucose group which was with 42.78% and 37.69% survived GECs and HK-2 cells, respectively. Then, xanthohumol inhibited high glucose-induced oxidative stress through nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in vitro. Moreover, xanthohumol (25 mg/kg) significantly decreased the levels of serum creatinine, blood urea nitrogen, urea protein, and kidney weight/body weight ratio in DN mice. In addition, the increase of reactive oxygen species production and the decrease of superoxide dismutase and catalase activities in DN mice were partially reversed by xanthohumol. mRNA levels of Nrf2, Hmox1, and Nqol genes were all decreased by xanthohumol DN mice. CONCLUSION: Xanthohumol could ameliorate DN-related impairments via Nrf2 signaling pathway, which might serve as a promising drug candidate for treatment of DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Camundongos , Animais , Nefropatias Diabéticas/genética , Células Endoteliais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Rim/metabolismo , Estresse Oxidativo , Modelos Animais de Doenças , Glucose/metabolismo , Diabetes Mellitus/metabolismo
11.
Mol Divers ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064107

RESUMO

Xanthohumol (Xn) is a chalcone compound isolated from Humulus lupulus Linn., that has various biological activities. In this study, eight Xn derivatives were synthesized by Williamson, Mannich, Reimer-Tiemann, and Schiff base reactions, and evaluated for their in vitro cytotoxic activity against five human cancer cell lines (MDA-MB-231, MCF-7, CNE-2Z, SMMC-7721, and H1975). Among these compounds, 2-((E)-2,4-dihydroxy-5-((E)-3-(4-hydroxyphenyl)acryloyl)-6-methoxy-3-(3- methylbut-2-en-1-yl)benzylidene)hydrazine-1-carboximidamide (8) exhibited the most potent cytotoxic activity against the five cancer cells, with IC50 values ranging from 4.87 to 14.35 µM. Wound-healing and transwell assays showed that compound 8 inhibited the migration and invasion of MDA-MB-231 cells by down-regulation HIF-1α, MMP-2 and MMP-9 protein expression. We further demonstrated that compound 8 induced apoptosis of MDA-MB-231 cells by increasing of Bax/Bcl-2 ratio and down-regulation of Akt protein expression.

12.
Luminescence ; 38(8): 1431-1439, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37081595

RESUMO

Novel smart cotton diagnostic assay was developed toward onsite sensing of sweat pH variations for possible medical applications such as drug test and healthcare purposes. Humulus lupulus L. extract was obtained according to previously reported procedure. As reported by high-performance liquid chromatography (HPLC), the extract demonstrated the presence of hop acids, prenylchalcones, and prenylflavanones, which is responsible for the colorimetric changes. The extract was applied to cellulose fibers employing potassium aluminum sulfate as mordant. This was observed by the formation of mordant/xanthohumol nanoparticles onto cotton surface. The absorption spectra and CIE (Commission Internationale de l'Eclairage) Lab screening of the prepared cotton assay showed colorimetric changes in association with hypsochromic shift from 600 nm to 433 nm upon exposure to sweat simulant fluid (pH < 7). The biochromic activity of the xanthohumol-finished cotton depends mainly on the halochromic performance of the xanthohumol chromophore to show a colorimetric switch from yellow to white owing to intramolecular charge transfer in the xanthohumol molecule. No substantial defects were detected in gas-permeability and stiffness of the treated fabrics. Satisfactory fastness was approved for the xanthohumol-dyed diagnostic cotton assay.


Assuntos
Humulus , Humulus/química , Suor/química , Colorimetria , Flavonoides/química , Concentração de Íons de Hidrogênio , Extratos Vegetais/química
13.
Phytother Res ; 37(7): 3057-3068, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36882184

RESUMO

Xanthohumol is a principal prenylated chalcone isolated from hops. Previous studies have shown that xanthohumol was effective against various types of cancer, but the mechanisms, especially the direct targets for xanthohumol to exert an anticancer effect, remain elusive. Overexpression of T-lymphokine-activated killer cell-originated protein kinase (TOPK) promotes tumorigenesis, invasion and metastasis, implying the likely potential for targeting TOPK in cancer prevention and treatment. In the present study, we found that xanthohumol significantly inhibited the cell proliferation, migration and invasion of non-small cell lung cancer (NSCLC) in vitro and suppressed tumor growth in vivo, which is well correlated with inactivating TOPK, evidenced by reduced phosphorylation of TOPK and its downstream signaling histone H3 and Akt, and decreased its kinase activity. Moreover, molecular docking and biomolecular interaction analysis showed that xanthohumol was able to directly bind to the TOPK protein, suggesting that TOPK inactivation by xanthohumol is attributed to its ability to directly interact with TOPK. The findings of the present study identified TOPK as a direct target for xanthohumol to exert its anticancer activity, revealing novel insight into the mechanisms underlying the anticancer activity of xanthohumol.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Pulmonares/patologia , Simulação de Acoplamento Molecular , Células Matadoras Ativadas por Linfocina/metabolismo , Células Matadoras Ativadas por Linfocina/patologia , Linhagem Celular Tumoral
14.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108571

RESUMO

The antiproliferative activity of xanthohumol (1), a major prenylated chalcone naturally occurring in hops, and its aurone type derivative (Z)-6,4'-dihydroxy-4-methoxy-7-prenylaurone (2) were investigated. Both flavonoids, as well as cisplatin as a reference anticancer drug, were tested in vivo against ten human cancer cell lines (breast cancer (MCF-7, SK-BR-3, T47D), colon cancer (HT-29, LoVo, LoVo/Dx), prostate cancer (PC-3, Du145), lung cancer (A549) and leukemia (MV-4-11) and two normal cell lines (human lung microvascular endothelial (HLMEC)) and murine embryonic fibroblasts (BALB/3T3). Chalcone 1 and aurone 2 demonstrated potent to moderate anticancer activity against nine tested cancer cell lines (including drug-resistant ones). The antiproliferative activity of all the tested compounds against cancer and the normal cell lines was compared to determine their selectivity of action. Prenylated flavonoids, especially the semisynthetic derivative of xanthohumol (1), aurone 2, were found as selective antiproliferative agents in most of the used cancer cell lines, whereas the reference drug, cisplatin, acted non-selectively. Our findings suggest that the tested flavonoids can be considered strong potential candidates for further studies in the search for effective anticancer drugs.


Assuntos
Antineoplásicos , Neoplasias da Mama , Chalconas , Humanos , Camundongos , Animais , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Chalconas/farmacologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Linhagem Celular Tumoral
15.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511484

RESUMO

Xanthohumol is a cancer chemopreventive agent that can interfere with the initiation, promotion, and progression phase of carcinogenesis via a variety of inhibitory mechanisms. Xanthohumol was reported as an effective agent against leukemia/lymphoma cells. In the present study, we investigated the effect of xanthohumol and its natural and semisynthetic derivatives against various canine leukemia/lymphoma cell lines. Xanthohumol, three hops minor prenylflavonoids (xanthohumol C, xanthohumol D, α,ß-dihydroxanthohumol) and four derivatives obtained by biotransformation (xanthohumol 4'-O-ß-D-(4‴-O-methyl)-glucopyranoside) as well as by chemical modification (1″,2″-dihydroxanthohumol K, 2,3-dehydroisoxanthohumol, (Z)-6,4'-dihydroxy-4-methoxy-7-prenylaurone) were tested for their antiproliferative and pro-apoptotic activities against the following canine leukemia/lymphoma cell lines: CLBL-1 (B-cell lymphoma), CLB70 (B-cell leukemia), and GL-1 (B-cell leukemia). The compounds were tested at a final concentration range of 0.1-30 µM for 48 h. All eight of the tested flavonoids exerted concentration-dependent cytotoxicity in the selected canine lymphoma/leukemia cell lines. Three compounds markedly decreased the viability of all cell lines with IC50 in the range of 0.5 to 8 µM. Double-staining of the treated cells with AnnexinV and propidium iodide revealed that the dying cells were mostly in the late apoptosis stage. ROS production and changes in mitochondrial potential were detected. Western blot analysis showed a decreased expression of Bcl-2. Canine lymphoma and leukemia cell lines are sensitive to xanthohumol derivatives, and the compounds acted through an apoptotic cell-death mechanism. These compounds, either used alone or in combination with other therapies, may be useful for the treatment of canine leukemia/lymphoma.


Assuntos
Leucemia , Linfoma , Propiofenonas , Animais , Cães , Linhagem Celular Tumoral , Flavonoides/farmacologia , Flavonoides/química , Leucemia/tratamento farmacológico , Propiofenonas/farmacologia , Propiofenonas/química , Linfoma/tratamento farmacológico , Linfoma/veterinária , Apoptose
16.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768657

RESUMO

In search for natural products with antimicrobial properties for use in the prevention and treatment of peri-implantitis, the purpose of this investigation was to evaluate the antimicrobial activity of curcumin and xanthohumol, using an in vitro multi-species dynamic biofilm model including Streptococcus oralis, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. The antimicrobial activities of curcumin (5 mM) and xanthohumol (100 µM) extracts, and the respective controls, were evaluated with 72-h biofilms formed over dental implants by their submersion for 60 seconds. The evaluation was assessed by quantitative polymerase chain reaction (qPCR), confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). For the data analysis, comparisons were tested applying ANOVA tests with post-hoc Bonferroni corrections to evaluate the antimicrobial activity of both extracts. With qPCR, statistically significant reductions in bacterial counts were observed for curcumin and xanthohumol, when compared to the negative control. The results with CLSM and SEM were consistent with those reported with qPCR. It was concluded that both curcumin and xanthohumol have demonstrated antimicrobial activity against the six bacterial species included in the dynamic in vitro biofilm model used.


Assuntos
Anti-Infecciosos , Curcumina , Implantes Dentários , Curcumina/farmacologia , Biofilmes , Porphyromonas gingivalis , Fusobacterium nucleatum , Anti-Infecciosos/farmacologia
17.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373441

RESUMO

Chronic wounds, among others, are mainly characterized by prolonged inflammation associated with the overproduction of reactive oxygen species and pro-inflammatory cytokines by immune cells. As a consequence, this phenomenon hinders or even precludes the regeneration process. It is known that biomaterials composed of biopolymers can significantly promote the process of wound healing and regeneration. The aim of this study was to establish whether curdlan-based biomaterials modified with hop compounds can be considered as promising candidates for the promotion of skin wound healing. The resultant biomaterials were subjected to an evaluation of their structural, physicochemical, and biological in vitro and in vivo properties. The conducted physicochemical analyses confirmed the incorporation of bioactive compounds (crude extract or xanthohumol) into the curdlan matrix. It was found that the curdlan-based biomaterials improved with low concentrations of hop compounds possessing satisfactory hydrophilicity, wettability, porosity, and absorption capacities. In vitro, tests showed that these biomaterials were non-cytotoxic, did not inhibit the proliferation of skin fibroblasts, and had the ability to inhibit the production of pro-inflammatory interleukin-6 by human macrophages stimulated with lipopolysaccharide. Moreover, in vivo studies showed that these biomaterials were biocompatible and could promote the regeneration process after injury (study on Danio rerio larvae model). Thus, it is worth emphasizing that this is the first paper demonstrating that a biomaterial based on a natural biopolymer (curdlan) improved with hop compounds may have biomedical potential, especially in the context of skin wound healing and regeneration.


Assuntos
Hidrogéis , beta-Glucanas , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Cicatrização , Materiais Biocompatíveis/farmacologia , beta-Glucanas/farmacologia , Biopolímeros , Pele
18.
Molecules ; 28(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241764

RESUMO

Flavonoids and chalcones are known for their manifold biological activities, of which many affect the central nervous system. Pyranochalcones were recently shown to have a great neurogenic potential, which is partly due to a specific structural motif-the pyran ring. Accordingly, we questioned if other flavonoid backbones with a pyran ring as structural moiety would also show neurogenic potential. Different semi-synthetic approaches starting with the prenylated chalcone xanthohumol, isolated from hops, led to pyranoflavanoids with different backbones. We identified the chalcone backbone as the most active backbone with pyran ring using a reporter gene assay based on the promoter activity of doublecortin, an early neuronal marker. Pyranochalcones therefore appear to be promising compounds for further development as a treatment strategy for neurodegenerative diseases.


Assuntos
Chalcona , Chalconas , Humulus , Propiofenonas , Chalcona/química , Flavonoides/química , Propiofenonas/química , Humulus/química
19.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770737

RESUMO

Xanthohumol is a hop-derived flavonoid that has been widely examined for its health-protecting and antitumorigenic properties, but not yet in a natural beer matrix. The aim of the study was to investigate the antitumorigenic potential of a xanthohumol-enriched beer in vivo. Four groups of 4 × 10 nude mice were formed. Following the injection of HeLa tumorigenic cell lines, the treatment groups were administered a xanthohumol supplementation for 100 days, either dissolved in beer or in an ethanolic solution with the same alcohol strength as beer. The control groups received un-supplemented material. The terminal tumor masses, liver weights, and plasma antioxidant capacities (FRAP and ABTS methods) were measured. For the statistical analysis, a two-way ANOVA test was performed (p < 0.05). There were no statistically significant differences in tumor size between the groups. Xanthohumol did not induce higher levels of plasma antioxidant capacity, neither in beer nor in the water-ethanol matrix. The terminal liver weights were significantly higher in the control group receiving the unsupplemented ethanol solution. Xanthohumol dissolved in beer or in the water-alcohol matrix did not have a protective effect on tumor growth, nor did it have a positive effect on plasma antioxidant capacity either. However, beer with added xanthohumol had a less harmful effect on the liver compared to the supplemented water-ethanol solution. Our results indicate the possible negative countereffect of ethanol; however, further investigations are needed.


Assuntos
Antioxidantes , Propiofenonas , Humanos , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/análise , Células HeLa , Cerveja/análise , Camundongos Nus , Flavonoides/farmacologia , Flavonoides/análise , Propiofenonas/farmacologia , Etanol/análise
20.
Molecules ; 28(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37446828

RESUMO

Xanthohumol (XN), a natural prenylated flavonoid extracted and isolated from the hop plant (Humulus lupulus), possesses diverse pharmacological activities. Although the metabolites of XN have been investigated in the previous study, a comprehensive metabolic profile has been insufficient in vivo or in vitro until now. The current study was aimed at systematically elucidating the metabolic pathways of XN after oral administration to rats. Herein, a UHPLC-Q-Exactive Orbitrap MS was adopted for the potential metabolites detection. A stepwise targeted matching strategy for the overall identification of XN metabolites was proposed. A metabolic net (53 metabolites included) on XN in vivo and in vitro, as well as the metabolic profile investigation, were designed, preferably characterizing XN metabolites in rat plasma, urine, liver, liver microsomes, and feces. On the basis of a stepwise targeted matching strategy, the net showed that major in vivo metabolic pathways of XN in rats include glucuronidation, sulfation, methylation, demethylation, hydrogenation, dehydrogenation, hydroxylation, and so on. The proposed metabolic pathways in this research will provide essential data for further pharmaceutical studies of prenylated flavonoids and lay the foundation for further toxicity and safety studies.


Assuntos
Flavonoides , Propiofenonas , Ratos , Animais , Cromatografia Líquida de Alta Pressão , Flavonoides/metabolismo , Espectrometria de Massas , Propiofenonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA