Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000601

RESUMO

Chagas disease is caused by the intracellular protozoan parasite Trypanosoma cruzi. This disease affects mainly rural areas in Central and South America, where the insect vector is endemic. However, this disease has become a world health problem since migration has spread it to other continents. It is a complex disease with many reservoirs and vectors and high genetic variability. One of the host proteins involved in the pathogenesis is SLAMF1. This immune receptor acts during the infection of macrophages controlling parasite replication and thus affecting survival in mice but in a parasite strain-dependent manner. Therefore, we studied the role of SLAMF1 by quantitative proteomics in a macrophage in vitro infection and the different responses between Y and VFRA strains of Trypanosoma cruzi. We detected different significant up- or downregulated proteins involved in immune regulation processes, which are SLAMF1 and/or strain-dependent. Furthermore, independently of SLAMF1, this parasite induces different responses in macrophages to counteract the infection and kill the parasite, such as type I and II IFN responses, NLRP3 inflammasome activation, IL-18 production, TLR7 and TLR9 activation specifically with the Y strain, and IL-11 signaling specifically with the VFRA strain. These results have opened new research fields to elucidate the concrete role of SLAMF1 and discover new potential therapeutic approaches for Chagas disease.


Assuntos
Doença de Chagas , Macrófagos , Proteômica , Trypanosoma cruzi , Trypanosoma cruzi/metabolismo , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/imunologia , Proteômica/métodos , Doença de Chagas/parasitologia , Doença de Chagas/metabolismo , Doença de Chagas/imunologia , Antígenos CD/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/metabolismo , Receptores de Superfície Celular/metabolismo , Inflamassomos/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Glicoproteínas de Membrana
2.
Exp Parasitol ; 228: 108142, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34375652

RESUMO

We investigated the in vitro activity and selectivity, and in vivo efficacy of ravuconazole (RAV) in self-nanoemulsifying delivery system (SNEDDS) against Trypanosoma cruzi. Novel formulations of this poorly soluble C14-α-demethylase inhibitor may improve its efficacy in the experimental treatment. In vitro activity was determined in infected cardiomyocytes and efficacy in vivo evaluated in terms of parasitological cure induced in Y and Colombian strains of T. cruzi-infected mice. In vitro RAV-SNEDDS exhibited significantly higher potency of 1.9-fold at the IC50 level and 2-fold at IC90 level than free-RAV. No difference in activity with Colombian strain was observed in vitro. Oral treatment with a daily dose of 20 mg/kg for 30 days resulted in 70% of cure for RAV-SNEDDS versus 40% for free-RAV and 50% for 100 mg/kg benznidazole in acute infection (T. cruzi Y strain). Long-term treatment efficacy (40 days) was able to cure 100% of Y strain-infected animals with both RAV preparations. Longer treatment time was also efficient to increase the cure rate with benznidazole (Y and Colombian strains). RAV-SNEDDS shows greater efficacy in a shorter time treatment regimen, it is safe and could be a promising formulation to be evaluated in other pre-clinical models to treat T. cruzi and fungi infections.


Assuntos
Doença de Chagas/tratamento farmacológico , Tiazóis/administração & dosagem , Triazóis/administração & dosagem , Trypanosoma cruzi/efeitos dos fármacos , Animais , Doença de Chagas/parasitologia , Emulsões , Feminino , Células Hep G2 , Humanos , Concentração Inibidora 50 , Camundongos , Miócitos Cardíacos , Nanoestruturas , Ratos , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Tiazóis/toxicidade , Triazóis/farmacologia , Triazóis/uso terapêutico , Triazóis/toxicidade
3.
J Bioenerg Biomembr ; 50(2): 81-91, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29473131

RESUMO

Chagas disease is one of the most relevant endemic diseases in Latin America caused by the flagellate protozoan Trypanosoma cruzi. Nifurtimox and benzonidazole are the drugs used in the treatment of this disease, but they commonly are toxic and present severe side effects. New effective molecules, without collateral effects, has promoted the investigation to develop new lead compounds with to advance for clinical trials. Previously, 3-nitro-1H-1,2,4-triazole-based amines and 1,2,3-triazoles demonstrated significant trypanocidal activity against T. cruzi. In this paper, we synthesized a new series of 92 examples of 1,2,3-triazoles. Six compounds exhibited antiparasitic activity, 14, 25, 27, 31 and 40, 43 and were effective against epimastigotes of two strains of T. cruzi (Y and Dm28-C) and 25, 27 and 31 exhibited trypanocidal activity similar to benzonidazole. Notably, the compound 25 compared to benzonidazole increase the toxicity against T. cruzi, with no apparent toxicity to the cell line of mice macrophages or primary mice peritoneal macrophages. As results, we calculated selectivity indexes up to 2000 to 25 and 31 in both T. cruzi strains. Derivative 14 caused a trypanostatic effect because it did not damage external epimastigote membrane. Triazoles 40 and 43 impaired parasites viability using a pathway not dependent on ROS production.


Assuntos
Doença de Chagas/tratamento farmacológico , Triazóis/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiparasitários/química , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico , Linhagem Celular , Humanos , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos , Triazóis/uso terapêutico , Triazóis/toxicidade
4.
Exp Parasitol ; 147: 72-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25448360

RESUMO

Matrix metalloproteinases (MMPs) constitute a large family of Zn(2+) and Ca(2+) dependent endopeptidases implicated in tissue remodeling and chronic inflammation. MMPs also play key roles in the activation of growth factors, chemokines and cytokines produced by many cell types, including lymphocytes, granulocytes, and, in particular, activated macrophages. Their synthesis and secretion appear to be important in a number of physiological processes, including the inflammatory process. Here, we investigated the interaction between human and mouse macrophages with T. cruzi Colombian and Y strains to characterize MMP-9 and cytokine production in this system. Supernatants and total extract of T. cruzi infected human and mouse macrophages were obtained and used to assess MMP-9 profile and inflammatory cytokines. The presence of metalloproteinase activity was determined by zymography, enzyme-linked immunosorbent assay and immunoblotting assays. The effect of cytokines on MMP-9 production in human macrophages was verified by previous incubation of cytokines on these cells in culture, and analyzed by zymography. We detected an increase in MMP-9 production in the culture supernatants of T. cruzi infected human and mouse macrophages. The addition of IL-1ß or TNF-α to human macrophage cultures increased MMP-9 production. In contrast, MMP-9 production was down-modulated when human macrophage cultures were treated with IFN-γ or IL-4 before infection. Human macrophages infected with T. cruzi Y or Colombian strains produced increased levels of MMP-9, which was related to the production of cytokines such as IL-1ß, TNF-α and IL-6.


Assuntos
Citocinas/biossíntese , Macrófagos/parasitologia , Metaloproteinase 9 da Matriz/biossíntese , Trypanosoma cruzi/fisiologia , Animais , Western Blotting , Linhagem Celular , Doença de Chagas/enzimologia , Doença de Chagas/imunologia , Doença de Chagas/patologia , Ensaio de Imunoadsorção Enzimática , Humanos , Macrófagos/enzimologia , Macrófagos/imunologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Monócitos/citologia , Trypanosoma cruzi/imunologia
5.
Int J Mol Sci ; 10(8): 3583-98, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20111689

RESUMO

The effect of biotic stress induced by viral infection (Potato virus Y, strain NTN and O) on NADP-malic enzyme (EC 1.1.1.40) in tobacco plants (Nicotiana tabacum L., cv. Petit Havana, SR1) was tested at the transcriptional, translational and activity level. The increase of enzyme activity in infected leaves was correlated with the increased amount of expressed protein and with mRNA of cytosolic NADP-ME isoform. Transcription of the chloroplastic enzyme was not influenced by viral infection. The increase of the enzyme activity was also detected in stems and roots of infected plants. The effect of viral infection induced by Potato virus Y, NTN strain, causing more severe symptoms, was compared with the effect induced by milder strain PVY(O). The observed increase in NADP-malic enzyme activity in all parts of the studied plants was higher in the case of PVY(NTN) strain than in the case of strain PVY(O). The relevance of NADP-malic enzyme in plants under stress conditions was discussed.


Assuntos
Malato Desidrogenase/metabolismo , Nicotiana/enzimologia , Doenças das Plantas/virologia , Potyvirus/patogenicidade , Malato Desidrogenase/química , Malato Desidrogenase/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Raízes de Plantas/metabolismo , Raízes de Plantas/virologia , Caules de Planta/metabolismo , Caules de Planta/virologia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Nicotiana/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA