Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 488: 74-80, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577031

RESUMO

We present a new transgenic Hydra vulgaris line expressing a distinct fluorescent protein in each of the three cell lineages of the adult polyp. Plasmid microinjection was used to generate a novel transgenic Hydra line expressing the yellow fluorescent protein YPet in the ectodermal epithelial cell lineage. Tissue grafting was then used to combine a YPet animal with a line that expresses DsRed2 in the endodermal epithelial lineage and eGFP in the interstitial cell (i-cell) lineage. The resulting triple-labeled ("tricolored") transgenic line provides, for the first time, a Hydra in which all three cell lineages can be imaged simultaneously in vivo. We show example confocal images of whole animals and individual cells to illustrate the imaging capabilities that this new line makes possible. We also used this line to carry out new studies of cell fate in the tentacles. Specifically, we evaluated the well-accepted notion that all tentacle cells are terminally differentiated and are displaced or migrate exclusively towards the distal end of the tentacle. We found that ectodermal and endodermal epithelial cells are displaced distally, as expected. In contrast, members of the i-cell lineage, which resembled neuronal precursors, could migrate out of a tentacle into the body column. This example illustrates how this tricolored transgenic line enables new in vivo studies of cell behaviors in Hydra.


Assuntos
Hydra , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Linhagem da Célula , Ectoderma/fisiologia , Células Epiteliais , Hydra/fisiologia
2.
Phys Med ; 39: 147-155, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28687192

RESUMO

PURPOSE: In Selective Internal Radiation Therapy (SIRT), 99mTc-MAA SPECT images are commonly used to predict microspheres distribution but recent works used 90Y-microspheres PET images. Nevertheless, evaluation of the predictive power of 99mTc-MAA has been hampered by the lack of reliable comparisons between 99mTc-SPECT and 90Y-PET images. Our aim was to determine the "in situ" optimisation procedure in order to reliably compare 99mTc-SPECT and 90Y-PET images and achieve optimal personal dosimetry. METHODS: We acquired 99mTc-SPECT/CT and 90Y-PET/CT images of NEMA and Jaszczak phantoms. We found the best reconstruction parameters for quantification and for volume estimations. We determined adaptive threshold curves on the volumetric reconstruction. We copied the optimised volumes on the quantitative reconstruction, named here the "cross volumes" technique. Finally, we compared 99mTc-SPECT and 90Y-PET Dose Volume Histograms. RESULTS: Our "in situ" optimisation procedure decreased errors on volumes and quantification (from -44.2% and -15.8% to -3.4% and -3.28%, respectively, for the 26.5mL PET phantom sphere). Moreover, 99mTc-SPECT and 90Y-PET DVHs were equivalent only after the optimisation procedure (difference in mean dose <5% for the three biggest spheres). CONCLUSIONS: This work showed that a preliminary "in situ" phantom study was necessary to optimise volumes and quantification of 99mTc-SPECT and 90Y-PET images and allowed to achieve a reliable comparison between patient treatment planning and post implant dosimetry, notably by the use of the "cross volumes" technique. Methodology developed in this work will enable robust evaluations of the predictive power of 99mTc-SPECT, as well as dose-response relationship and side effects in SIRT treatments.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Microesferas , Agregado de Albumina Marcado com Tecnécio Tc 99m , Radioisótopos de Ítrio
3.
EJNMMI Res ; 7(1): 94, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29185067

RESUMO

BACKGROUND: PET/CT has recently been shown to be a viable alternative to traditional post-infusion imaging methods providing good quality images of 90Y-laden microspheres after selective internal radiation therapy (SIRT). In the present paper, first we assessed the quantitative accuracy of 90Y-PET using an anthropomorphic phantom provided with lungs, liver, spine, and a cylindrical homemade lesion located into the hepatic compartment. Then, we explored the accuracy of different computational approaches on dose calculation, including (I) direct Monte Carlo radiation transport using Raydose, (II) Kernel convolution using Philips Stratos, (III) local deposition algorithm, (IV) Monte Carlo technique (MCNP) considering a uniform activity distribution, and (V) MIRD (Medical Internal Radiation Dose) analytical approach. Finally, calculated absorbed doses were compared with those obtained performing measurements with LiF:Mg,Cu,P TLD chips in a liquid environment. RESULTS: Our results indicate that despite 90Y-PET being likely to provide high-resolution images, the 90Y low branch ratio, along with other image-degrading factors, may produce non-uniform activity maps, even in the presence of uniform activity. A systematic underestimation of the recovered activity, both for the tumor insert and for the liver background, was found. This is particularly true if no partial volume correction is applied through recovery coefficients. All dose algorithms performed well, the worst case scenario providing an agreement between absorbed dose evaluations within 20%. Average absorbed doses determined with the local deposition method are in excellent agreement with those obtained using the MIRD and the kernel-convolution dose calculation approach. Finally, absorbed dose assessed with MC codes are in good agreement with those obtained using TLD in liquid solution, thus confirming the soundness of both calculation approaches. This is especially true for Raydose, which provided an absorbed dose value within 3% of the measured dose, well within the stated uncertainties. CONCLUSIONS: Patient-specific dosimetry is possible even in a scenario with low true coincidences and high random fraction, as in 90Y-PET imaging, granted that accurate absolute PET calibration is performed and acquisition times are sufficiently long. Despite Monte Carlo calculations seeming to outperform all dose estimation algorithms, our data provide a strong argument for encouraging the use of the local deposition algorithm for routine 90Y dosimetry based on PET/CT imaging, due to its simplicity of implementation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA