Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541835

RESUMO

Several viruses encode an internal ribosome entry site (IRES) at the 5' end of their RNA, which, unlike most cellular mRNAs, initiates translation in the absence of a 5' m7GpppG cap. Here, we report a uniquely regulated translation enhancer found in the 739-nucelotide (nt) sequence of the Triticum mosaic virus (TriMV) leader sequence that distinguishes the preferred initiation site from a plethora of IRES-encoded AUG triplets. Through deletion mutations of the TriMV 5' untranslated region (UTR), we show that the TriMV 5' UTR encodes a cis-acting picornaviral Y16-X11-AUG-like motif with a 16-nt polypyrimidine CU-tract (Y16), at a precise, 11-nt distance (X11) from the preferred 13th AUG. Phylogenetic analyses indicate that this motif is conserved among potyviral leader sequences with multiple AUGs. Consistent with a broadly conserved mechanism, the motif could be functionally replaced with known picornavirus YX-AUG motifs and is predicted to function as target sites for the 18S rRNA by direct base pairing. Accordingly, mutations that disrupted overall complementarity to the 18S rRNA markedly reduced TriMV IRES activity, as did the delivery of antisense oligonucleotides designed to block YX-AUG accessibility. To our knowledge, this is the first report of a plant viral IRES YX-AUG motif, and our findings suggest that a conserved mechanism regulates translation for multiple economically important plant and animal positive single-stranded RNA viruses.IMPORTANCE Uncapped viral RNAs often rely on their 5' leader sequences to initiate translation, and the Triticum mosaic virus (TriMV) devotes an astonishing 7% of its genome to directing ribosomes to the correct AUG. Here we uncover a novel mechanism by which a TriMV cis-regulatory element controls cap-independent translation. The upstream region of the functional AUG contains a 16-nt polypyrimidine tract located 11 nt from the initiation site. Based on functional redundancy with similar motifs derived from human picornaviruses, the motif is likely to operate by directing ribosome targeting through base pairing with 18S rRNA. Our results provide the first report of a broad-spectrum mechanism regulating translation initiation for both plant- and animal-hosted picornaviruses.


Assuntos
Regiões 5' não Traduzidas/genética , Códon de Iniciação/genética , Iniciação Traducional da Cadeia Peptídica/genética , Potyviridae/genética , Biossíntese de Proteínas/genética , RNA Ribossômico 18S/genética , Doenças das Plantas/virologia , Potyviridae/metabolismo , RNA Viral/genética , Ribossomos/genética , Deleção de Sequência/genética , Triticum/virologia
2.
Front Plant Sci ; 13: 864832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498652

RESUMO

Diverse elements within the 5' untranslated region of an mRNA can influence the translation efficiency at the main AUG codon. We previously identified a core picornaviral like Y16X11-AUG motif with 16-nt polypyrimidine CU tract separated by an 11-nt spacer sequence from the 13th AUG codon, which is recognized as the preferred initiation site within the Triticum mosaic virus (TriMV) internal ribosome entry site (IRES) element. The motif is proposed to function as an internal ribosomal landing site at the designated start codon. Here, we exposed the cooperative role of multiple CU-rich segments flanking the TriMV YX-AUG motif to reach and drive internal initiation of translation at the preferred start site. We propose that these auxiliary domains may enhance the ribosome capacity and their delivery at proximity of the correct initiation site. These polypyrimidine tracts can be modulated with a cryptic AUG in a position-dependent manner to replace the native YX-AUG motif, and thus uncovering a new layer of control of start codon selection. In line with these observations, mass spectrometry analysis of proteins directly interacting with translationally impaired TriMV IRES mutants that bear these motifs indicated an enrichment in 40S and 60S ribosomal related proteins, revealing a new function of polypyrimidine tracts to regulate IRES-driven translation. Accessibility of these RNA regions for in trans interaction was validated by SHAPE analysis of the entire TriMV leader sequence and supported by the ability of anti-sense oligonucleotides designed to block the CU tracts accessibility to impair IRES activity. This is the first evidence that defines the core modular domains required for ribosomal recruitment and start codon selection in a complex, multi-AUG viral 5' UTR for translation in plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA