Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Microb Ecol ; 87(1): 42, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38356037

RESUMO

The estuarine system functions as natural filters due to its ability to facilitate material transformation, planktonic bacteria play a crucial role in the cycling of complex nutrients and pollutants within estuaries, and understanding the community composition and assembly therein is crucial for comprehending bacterial ecology within estuaries. Despite extensive investigations into the composition and community assembly of two bacterial fractions (free-living, FLB; particle-attached, PAB), the process by which bacterioplankton communities in these two habitats assemble in the nearshore and offshore zones of estuarine ecosystems remains poorly understood. In this study, we conducted sampling in the Yangtze River Estuary (YRE) to investigate potential variations in the composition and community assembly of FLB and PAB in nearshore and offshore regions. We collected 90 samples of surface, middle, and bottom water from 16 sampling stations and performed 16S rRNA gene amplicon analysis along with environmental factor measurements. The results unveiled that the nearshore communities demonstrated significantly greater species richness and Chao1 indices compared to the offshore communities. In contrast, the nearshore communities had lower values of Shannon and Simpson indices. When compared to the FLB, the PAB exhibit a higher level of biodiversity and abundance. However, no distinct alpha and beta diversity differences were observed between the bottom, middle, and surface water layers. The community assembly analysis indicated that nearshore communities are predominantly shaped by deterministic processes, particularly due to heterogeneous selection of PAB; In contrast, offshore communities are governed more by stochastic processes, largely due to homogenizing dispersal of FLB. Consequently, the findings of this study demonstrate that nearshore and PAB communities exhibit higher levels of species diversity, while stochastic and deterministic processes exert distinct influences on communities among near- and offshore regions. This study further sheds new light on our understanding of the mechanisms governing bacterial communities in estuarine ecosystems.


Assuntos
Ecossistema , Rios , Rios/microbiologia , Plâncton/genética , Estuários , RNA Ribossômico 16S/genética , Bactérias/genética , Água
2.
Environ Res ; 252(Pt 3): 119040, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692424

RESUMO

Floods in global large rivers modulate the transport of dissolved organic carbon (DOC) and estuarine hydrological characteristics significantly. This study investigated the impact of a severe flood on the sources and age of DOC in the Yangtze River Estuary (YRE) in 2020. Comparing the flood period in 2020 to the non-flood period in 2017, we found that the flood enhanced the transport of young DOC to the East China Sea (ECS), resulting in significantly enriched Δ14C-DOC values. During the flood period, the proportion of modern terrestrial organic carbon (OC) was significantly higher compared to the non-flood period. Conversely, the proportion of pre-aged sediment OC was significantly lower during the flood period. The high turbidity associated with the flood facilitated rapid transformation and mineralization of sedimentary and fresh terrestrial OC, modifying the sources of DOC. The flux of modern terrestrial OC transported to the ECS during the flood period was 1.58 times higher than that of the non-flood period. These findings suggest that floods can modulate the sources and decrease the age of DOC, potentially leading to increased greenhouse gas emissions. Further research is needed to understand the long-term impacts of floods on DOC dynamics in global estuaries.


Assuntos
Carbono , Estuários , Inundações , Rios , China , Rios/química , Carbono/análise , Monitoramento Ambiental , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise
3.
Environ Res ; 251(Pt 1): 118579, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423497

RESUMO

Halogenated organic contaminants, such as chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs), are some of the most important emerging environmental pollutants. However, empirical data on Cl/Br-PAHs in estuarine and marine ecosystems are limited, rendering assessments of Cl/Br-PAH contamination in estuarine and offshore environments uncertain. Here the occurrence, sources, and ecological risks of 7 Cl-PAHs and 18 Br-PAHs were determined in surface sediments of the Yangtze River Estuary (YRE), a highly urbanized and industrialized area, and its adjacent marine area. The concentrations of Cl-PAHs ranged from 4.50 to 18.38 ng g-1 (average 7.19 ng g-1), while those of Br-PAHs ranged from 4.80 to 61.18 ng g-1 (average 14.11 ng g-1). The dominant Cl-PAH and Br-PAH in surface sediment were 9-chlorofluorene (17.79%) and 9-bromofluorene (58.49%), respectively. The distributions and compositions of Cl/Br-PAHs in the surface sediments varied considerably due to complex hydrodynamic and depositional conditions in the YRE and its adjacent marine area, as well as differences in physicochemical properties of different Cl/Br-PAHs. Positive matrix factorization revealed that the primary sources of Cl/Br-PAHs in the study area were e-waste dismantling (33.6%), waste incineration (23.2%), and metal smelting (11.0%). According to the risk quotient, the Cl/Br-PAHs in sediments posed no toxic risk to aquatic organisms.


Assuntos
Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos , Rios , Poluentes Químicos da Água , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , China , Rios/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Água do Mar/química , Água do Mar/análise
4.
Environ Monit Assess ; 196(4): 348, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446276

RESUMO

Environmental flow (e-flow) is the water demand of one given ecosystem, which can become the flow regulation target for protection and restoration of river or estuarine ecosystems. In this study, an e-flow assessment based on the flow-ecological health index (EHI) relation model was conducted to improve ecosystem health of the Yangtze River Estuary (YRE). Monitoring data of hydrology, biology, and water environment in the last decades were used for the model establishment. For the description of the YRE ecosystem, an EHI system was developed by cumulative frequency distribution curves and adaption of national standards. After preprocessing original flow values into proportional flow values, the generalized additive model and Monte Carlo random sampling were used for the establishment of the flow-EHI relation model. From the model calculation, the e-flow assessment results were that, in proportional flow values, the suitable flow range was 1.05-1.35, and the optimum flow range was 1.15-1.25 (flows in Yangtze River Datong Station). For flow regulation in two crucial periods, flows of 42,630-65,545 m3/s or over 14,675 m3/s are needed for the suitable flow of YRE in summer (June-August) or January, respectively. An adaptive management framework of ecological health-based estuarine e-flow assessment for YRE was contrived due to the limitation of current established model when facing the extreme drought in summer, 2022. The methodology and framework in this study are expected to provide valuable management and data support for the sustainable development of estuarine ecosystems and to bring inspiration for further studies at even continental or global levels.


Assuntos
Ecossistema , Estuários , Rios , Monitoramento Ambiental , China , Água
5.
Ecotoxicol Environ Saf ; 259: 115025, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216861

RESUMO

In this paper, water and sediments were sampled at eight monitoring stations in the coastal areas of the Yangtze River Estuary in summer and autumn 2021. Two sulfonamide resistance genes (sul1 and sul2), six tetracycline resistance genes (tetM, tetC, tetX, tetA, tetO, and tetQ), one integrase gene (intI1), 16 S rRNA genes, and microbial communities were examined and analyzed. Most resistance genes showed relatively higher abundance in summer and lower abundance in autumn. One-way analysis of variance (ANOVA) showed significant seasonal variation of some ARGs (7 ARGs in water and 6 ARGs in sediment). River runoff and WWTPs are proven to be the major sources of resistance genes along the Yangtze River Estuary. Significant and positive correlations between intI1 and other ARGs were found in water samples (P < 0.05), implying that intI1 may influence the spread and propagation of resistance genes in aquatic environments. Proteobacteria was the dominant phylum along the Yangtze River Estuary, with an average proportion of 41.7%. Redundancy analysis indicated that the ARGs were greatly affected by temperature, dissolved oxygen, and pH in estuarine environments. Network analysis showed that Proteobacteria and Cyanobacteria were the potential host phyla for ARGs in the coastal areas of the Yangtze River Estuary.


Assuntos
Estuários , Microbiota , Resistência a Tetraciclina/genética , Rios/microbiologia , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Antibacterianos/análise , Tetraciclina/análise , Sulfanilamida , Sulfonamidas/análise , Água/análise , Microbiota/genética , China , Monitoramento Ambiental
6.
J Environ Manage ; 338: 117784, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989952

RESUMO

Damming alters downstream sediment supply relationships and erosion in the estuarine delta. Given that sediment grainsize serves as a key parameter for the ability to adsorb heavy metals from water, the assessment of estuarine heavy metal risk needs to get connected initially. Hence, fine suspended sediment (<63 µm) in the Yangtze River estuary (YRE) was divided into four grainsize fractions to simulate the surface suspended sediment concentration (SSC) and grainsize composition before and after the completion of the Three Gorges Dam (TGD). Representative months were selected for flood peak reduction (October) and runoff compensation in the dry season (March) to maximize the scheduling impact of the TGD on runoff and riverine sediment input to the YRE. An improved Water Quality Index (WQI) approach was proposed to assess the combined risk alteration of five heavy metals in six estuarine sensitive targets due to TGD-induced sediment characteristics. The results demonstrated that TGD significantly but tardily reduced the SSC and the proportion of fine sediment in the YRE, decreasing the risk of heavy metals resuspension. Seasonally, the total SSC became higher in the flood season than in the dry season during post-TGD period. However, the fine SSC in the flood season was averaged only 59.7% of that in the dry season due to the pronounced grainsize coarsening effect. As the significant reduction in fine SSC overcomes the increase in heavy metal content per unit of SS, the integrated resuspension risk declined significantly, particularly for Pb and Cr. Spatially, the risk reduction for sensitive targets near the turbidity maximum zone (TMZ) is 8.4 times greater than for inner river channel. However, undiminished anthropogenic metal inputs to the YRE signified greater pressures on the depositional environment.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Metais Pesados/análise , Estuários , Rios , Sedimentos Geológicos , China , Poluentes Químicos da Água/análise
7.
J Basic Microbiol ; 62(12): 1514-1525, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35835725

RESUMO

An estuary plays an important role in material and energy exchange between the land and sea, where complex physical, chemical, and biological processes occur. Here, we investigated the assembly processes of free-living (FL) and particle-associated (PA) bacterial communities in two seawater layers at five stations in the Yangtze River Estuary (YRE) by using 16S rRNA sequencing methods. The results indicated that Proteobacteria was the most abundant phylum in the YRE. The α-diversity of PA community was significantly higher than FL community, and analysis of similarity showed significantly different (Global R = 0.2809, p < 0.005). RDA revealed that phosphate (PO4 3- ) was significantly correlated with PA bacterial community abundance (p < 0.05). An ecological null model showed that both PA and FL bacterial communities were mainly influenced by stochastic processes (PA: 100%, FL: 70%), which PA attached to nutrient particles and are less affected by environmental filtration. Dispersal limitation (50%) was the main assembly process of the PA community, while homogeneous selection (30%) and drift (30%) were important processes in the FL community assembly. The available substrate for colonization limits the transformation from FL to PA bacteria. This study would improve our understanding of FL and PA bacterial community structure and factors affecting assembly process in estuarine environments.


Assuntos
Estuários , Rios , Rios/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Processos Estocásticos , China
8.
Environ Monit Assess ; 194(5): 329, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35384557

RESUMO

Chlorinated paraffins (CPs) are high production volume chemicals with immense scientific research interest due to their wide distribution, persistence, toxicity, and bioaccumulation potential. In this study, 87 surface sediments were collected from the Yangtze River Estuary (YRE) and the adjacent East China Sea (ECS). We investigated the concentrations, spatial distribution, and composition profiles of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) using ultra-high-performance liquid chromatography coupled with Orbitrap Fusion Tribrid mass spectrometry. The sedimentary concentrations of SCCPs and MCCPs ranged from 2.85 to 94.7 ng·g-1 (median 13.7 ng·g-1) and 3.33 to 77.8 ng·g-1 (median 13.3 ng·g-1), respectively. Higher CP concentrations were found in YRE sediments. The values decreased away from the location, implying a direct influence of the Yangtze River. The SCCP concentrations were higher than those of MCCPs in most sediment samples. Overall, the predominant homologs were C13Cl5-7 and C14Cl6-8 for MCCPs and SCCPs, respectively. Overall, the sediment-dwelling organisms in the region are susceptible to low ecological risks.


Assuntos
Hidrocarbonetos Clorados , Rios , China , Meios de Cultura/análise , Monitoramento Ambiental/métodos , Estuários , Hidrocarbonetos Clorados/análise , Parafina/análise , Parafina/química
9.
Environ Monit Assess ; 193(1): 44, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33410980

RESUMO

The purpose of this paper is to understand the sources of potentially toxic elements (PTE) and provide some suggestions to control PTE pollution. For this purpose, data from 30 monitoring stations for 2009-2018 were used to assess the PTE concentrations of Hg, Cu, Pb, Cd, Zn, and As in the Yangtze River Estuary. The PTE concentrations varied significantly (P < 0.05) by one-way ANOVA in the ranges of 0.002-0.224 (Hg, 0.043 ± 0.032), 0-9.700 (Cu, 1.600 ± 1.000), 0-3.900 (Pb, 1.000 ± 0.700), 0.002-0.370 (Cd, 0.050 ± 1.000), 0.100-85.000 (Zn, 14.000 ± 13.000), and 0.998-3.290 µg/L (As, 1.857 ± 0.455). Generally, the PTE concentrations decreased from year to year and were consistently satisfied the "grade-one seawater" quality standard after 2014. The concentrations of Cu, Cd, Zn, and As decreased as far from inshore, while increased closer to land in the estuary. Concentrations of Pb and Hg showed differences because of local industrial and aquacultural activities. This study identified three clusters and two PTE sources and provided some constructive suggestions for pollution control in PTE.


Assuntos
Metais Pesados , Poluentes Químicos da Água , China , Monitoramento Ambiental , Estuários , Metais Pesados/análise , Medição de Risco , Rios , Água do Mar , Poluentes Químicos da Água/análise
10.
Environ Monit Assess ; 190(1): 15, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234976

RESUMO

Riverbed scour of bridge piers can cause rapid loss in foundation strength, leading to sudden bridge collapse. This study used multi-beam echo sounders (Seabat 7125) to map riverbed surrounding the foundations of four major bridges in the lower, middle, and upper reaches of the 700-km Yangtze River Estuary (YRE) during June 2015 and September 2016. The high-resolution data were utilized to analyze the morphology of the bridge scour and the deformation of the wide-area riverbed (i.e., 5-18 km long and 1.3-8.3 km wide). In addition, previous bathymetric measurements collected in 1998, 2009, and 2013 were used to determine riverbed erosion and deposition at the bridge reaches. Our study shows that the scour depth surrounding the bridge foundations progressed up to 4.4-19.0 m in the YRE. Over the past 5-15 years, the total channel erosion in some river reaches was up to 15-17 m, possessing a threat to the bridge safety in the YRE. Tide cycles seemed to have resulted in significant variation in the scour morphology in the lower and middle YRE. In the lower YRE, the riverbed morphology displayed one long erosional ditch on both sides of the bridge foundations and a long-strip siltation area distributed upstream and downstream of the bridge foundations; in the middle YRE, the riverbed morphology only showed erosional morphology surrounding the bridge foundations. Large dunes caused deep cuts and steeper contours in the bridge scour. Furthermore, this study demonstrates that the high-resolution grid model formed by point cloud data of multi-beam echo sounders can clearly display the morphology of the bridge scour in terms of wide areas and that the sonar technique is a very useful tool in the assessment of bridge scours.


Assuntos
Engenharia/métodos , Monitoramento Ambiental/métodos , Estuários , Sedimentos Geológicos/análise , Rios , Colapso Estrutural/prevenção & controle , China , Simulação por Computador , Materiais de Construção , Hidrodinâmica
11.
Water Res ; 267: 122454, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39293343

RESUMO

Nitrous oxide (N2O) is atmospheric trace gas that contributes to climate change and affects stratospheric and ground-level ozone concentrations. Ammonia oxidizers and denitrifiers contribute to N2O emissions in estuarine waters. However, as an important climate factor, how temperature regulates microbial N2O production in estuarine water remains unclear. Here, we have employed stable isotope labeling techniques to demonstrate that the N2O production in estuarine waters exhibited differential thermal response patterns between nearshore and offshore regions. The optimal temperatures (Topt) for N2O production rates (N2OR) were higher at nearshore than offshore sites. 15N-labeled nitrite (15NO2-) experiments revealed that at the nearshore sites dominated by ammonia-oxidizing bacteria (AOB), the thermal tolerance of 15N-N2OR increases with increasing salinity, suggesting that N2O production by AOB-driven nitrifier denitrification may be co-regulated by temperature and salinity. Metatranscriptomic and metagenomic analyses of enriched water samples revealed that the denitrification pathway of AOB is the primary source of N2O, while clade II N2O-reducers dominated N2O consumption. Temperature regulated the expression patterns of nitrite reductase (nirK) and nitrous oxide reductase (nosZ) genes from different sources, thereby influencing N2O emissions in the system. Our findings contribute to understanding the sources of N2O in estuarine waters and their response to global warming.

12.
Heliyon ; 10(7): e28796, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38633655

RESUMO

Pollution characteristics, distribution, risk and sources of 7 heavy metals in sediments of Yangtze River Estuary were investigated. Total concentration ranges of As, Cr, Cu, Cd, Pb, Zn and Ni were [0, 16.5], [1.48, 51.3], [2.66, 318], [0, 0.99], [35.6, 992], [8, 91.3] and [1.88, 108] mg/kg, respectively. Based on the potential ecological risk index and Geoaccumulation index, it was determined that Pb is the most polluted heavy metal. According to class I standard of "Marine sediment quality" of China, mean baseline levels multiples were Pb (8.34) > Cu (0.57) > Cr (0.37) > Zn (0.355) > Ni (0.352) > As (0.28) > Cd (0.00). The study also found the heavy metal content of Pb is the most serious, but most of the Pb content comes from the residual state, which has minimal impact on the environment. The East Nanhui Shoal was identified as the most polluted sub-area in terms of Pb pollution, followed by other specific locations. Considering the pollution level and transport costs, the study concluded that dredge soils of the Yangtze River Estuary Deepwater Channel are not suitable for the restoration of East Hengsha Shoal.

13.
Environ Sci Pollut Res Int ; 31(21): 30440-30453, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38607491

RESUMO

The massive use of antibiotics has led to the escalation of microbial resistance in aquatic environment, resulting in an increasing concern regarding antibiotic resistance genes (ARGs), posing a serious threat to ecological safety and human health. In this study, surface water samples were collected at eight sampling sites along the Yangtze River Estuary. The seasonal and spatial distribution patterns of 10 antibiotics and target genes in two major classes (sulfonamides and tetracyclines) were analyzed. The findings indicated a high prevalence of sulfonamide and tetracycline resistance genes along the Yangtze River Estuary. Kruskal-Wallis analysis revealed significant seasonal variations in the abundance of all target genes. The accumulation of antibiotic resistance genes in the coastal area of the Yangtze River Estuary can be attributed to the influence of urban instream runoff and the discharge of effluents from wastewater treatment plants. ANISOM analysis indicated significant seasonal differences in the microbial community structure. VPA showed that environmental factors contribute the most to ARG variation. PLS-PM demonstrate that environmental factors and microbial communities pose direct effect to ARG variation. Analysis of driving factors influencing ARGs in this study may shed new insights into the mechanism of the maintenance and propagation of ARGs.


Assuntos
Resistência Microbiana a Medicamentos , Estuários , Rios , Rios/microbiologia , Resistência Microbiana a Medicamentos/genética , China , Monitoramento Ambiental , Antibacterianos/farmacologia , Genes Bacterianos , Estações do Ano
14.
Environ Sci Pollut Res Int ; 31(22): 32091-32110, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38648002

RESUMO

Pollution from heavy metals in estuaries poses potential risks to the aquatic environment and public health. The complexity of the estuarine water environment limits the accurate understanding of its pollution prediction. Field observations were conducted at seven sampling sites along the Yangtze River Estuary (YRE) during summer, autumn, and winter 2021 to analyze the concentrations of seven heavy metals (As, Cd, Cr, Pb, Cu, Ni, Zn) in water and surface sediments. The order of heavy metal concentrations in water samples from highest to lowest was Zn > As > Cu > Ni > Cr > Pb > Cd, while that in surface sediments samples was Zn > Cr > As > Ni > Pb > Cu > Cd. Human health risk assessment of the heavy metals in water samples indicated a chronic and carcinogenic risk associated with As. The risks of heavy metals in surface sediments were evaluated using the geo-accumulation index (Igeo) and potential ecological risk index (RI). Among the seven heavy metals, As and Cd were highly polluted, with Cd being the main contributor to potential ecological risks. Principal component analysis (PCA) was employed to identify the sources of the different heavy metals, revealing that As originated primarily from anthropogenic emissions, while Cd was primarily from atmospheric deposition. To further analyze the influence of water quality indicators on heavy metal pollution, an artificial neural network (ANN) model was utilized. A modified model was proposed, incorporating biochemical parameters to predict the level of heavy metal pollution, achieving an accuracy of 95.1%. This accuracy was 22.5% higher than that of the traditional model and particularly effective in predicting the maximum 20% of values. Results in this paper highlight the pollution of As and Cd along the YRE, and the proposed model provides valuable information for estimating heavy metal pollution in estuarine water environments, facilitating pollution prevention efforts.


Assuntos
Monitoramento Ambiental , Estuários , Metais Pesados , Redes Neurais de Computação , Rios , Poluentes Químicos da Água , Metais Pesados/análise , China , Medição de Risco , Poluentes Químicos da Água/análise , Rios/química , Sedimentos Geológicos/química
15.
Mar Pollut Bull ; 205: 116570, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38861798

RESUMO

The study applied a tiered ecological risk assessment method to evaluate the long-term status and trend of the ecological risks of dissolved heavy metals from 2011 to 2019 in the Yangtze River Estuary and Zhejiang coastal waters, China. The results for spring, summer, and autumn of 2019 indicated that Pb, Cd, and Zn posed no adverse ecological risk, Cu posed a potential ecological risk, and As posed an ecological risk. The annual results from 2011 to 2019 suggested that Pb, Cd, and Zn posed no adverse ecological risks, and As and Cu posed an ecological risk. The trend analysis in the nine years showed that the ecological risk of Cu is gradually decreasing, while that of As is still a concern. The overall trend is attributed to the environmental protection policies that reduced these contaminants' terrestrial sources and atmospheric sources.


Assuntos
Monitoramento Ambiental , Estuários , Metais Pesados , Rios , Poluentes Químicos da Água , Metais Pesados/análise , China , Medição de Risco , Poluentes Químicos da Água/análise , Rios/química , Água do Mar/química
16.
Mar Pollut Bull ; 201: 116241, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479325

RESUMO

Nutrients directly control the level of primary productivity and are crucial for the stability of marine ecosystems. Focusing on the survey results in August 2020 of the Yangtze River Estuary, this study elucidated the distribution characteristics and controlling factors of three nutrients: NO3-N, PO4-P, SiO3-Si. The results showed that the concentrations of NO3-N, PO4-P, SiO3-Si in the study area were generally higher near the shore than far shore, with average concentrations of 11.40, 0.70, and 23.73 µmol/L, respectively. The ocean currents drove the distribution of nutrients, and the transport of CDW and YSCC increased the nutrient levels. The resuspension of sediment caused by factors such as terrain and weather may lead to an abnormal increase in nutrients in the bottom waters. The main controlling factors of the three nutrients were different. NO3-N was significantly affected by human activities, PO4-P and SiO3-Si were mainly affected by natural factors.


Assuntos
Estuários , Rios , Humanos , Ecossistema , Estações do Ano , Nutrientes , China , Monitoramento Ambiental
17.
Front Microbiol ; 15: 1367062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572235

RESUMO

The Yangtze River estuary (YRE) are strongly influenced by the Kuroshio and terrigenous input from rivers, leading to the formation of distinct water masses, however, there remains a limited understanding of the full extent of this influence. Here the variation of water masses and bacterial communities of 58 seawater samples from the YRE and its adjacent waters were investigated. Our findings suggested that there were 5 water masses in the studied area: Black stream (BS), coastal water in the East China Sea (CW), nearshore mixed water (NM), mixed water in the middle and deep layers of the East China Sea (MM), and deep water blocks in the middle of the East China Sea (DM). The CW mass harbors the highest alpha diversity across all layers, whereas the NM mass exhibits higher diversity in the surface layer but lower in the middle layers. Proteobacteria was the most abundant taxa in all water masses, apart from that, in the surface layer masses, Cyanobacterium, Bacteroidota, and Actinobacteriota were the highest proportion in CW, while Bacteroidota and Actinobacteriota were the highest proportion in NM and BS; in the middle layer, Bacteroidota and Actinobacteriota were dominant phylum in CW and BS masses, but Cyanobacterium was main phylum in NM mass; in the bottom layer, Bacteroidota and Actinobacteriota were the dominant phylum in CW, while Marininimicrobia was the dominated phylum in DM and MM masses. Network analysis suggests water masses have obvious influence on community topological characteristics, moreover, community assembly across masses also differ greatly. Taken together, these results emphasized the significant impact of water masses on the bacterial composition, topological characteristics and assembly process, which may provide a theoretical foundation for predicting alterations in microbial communities within estuarine ecosystems under the influence of water masses.

18.
Water Res ; 249: 120942, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043348

RESUMO

Estuaries are hotspots where terrestrially originated dissolved organic matter (DOM) is modified in molecular composition before entering marine environments. However, very few research has considered nitrogen (N) modifications of DOM molecules in estuaries, limiting our understanding of dissolved organic nitrogen (DON) cycling and the associated carbon cycling in estuaries. This study integrated optical, stable isotopes (δ15N and δ13C) and molecular composition (FT-ICR MS) to characterize the transformation of DOM in the Yangtze River Estuary. Both concentration of dissolved organic carbon (DOC) and DON decreased with increasing salinity, while their δ13C and δ15N increased with the increasing salinity. A significant positive correlation was found between δ15N and δ13C during the transportation of DOM to marginal seas, indicating that the behavior of both DOC and DON are primarily controlled by the mixing of freshwater and the seawater in the YRE. During the mixing process, the DON addition was observed using the conservative mixing curves. In the view of molecular composition, DOM molecules became more aromatic as the number of N atoms increased. Spearman correlations reveal that DOM molecules with fewer N atoms exhibited a higher enrichment in protein-like components, while those with more N atoms were more enriched in humic-like components. In addition, the δ15N and δ13C tended to increase as the N content of DOM decreased. Therefore, DON molecules with fewer N atoms were likely to be transformed into those with more N atoms based on the isotopic fractionation theory. This study establishes a linkage between the molecular composition and the δ15N of DOM, and discovers the N transformation pattern within DOM molecules during the transportation to marginal seas.


Assuntos
Matéria Orgânica Dissolvida , Nitrogênio , Isótopos de Nitrogênio/análise , Oceanos e Mares , Nitrogênio/análise , Estuários , Rios/química
19.
Water Res ; 266: 122427, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39276472

RESUMO

Aniline accelerators and antioxidants (AAs) are high-production-volume industrial additives that have recently attracted emerging concern given their ubiquity in environmental compartments and the associated (eco)toxic effects. Nonetheless, available information on the multi-media behavior of AAs and their transformation products (TPs) remains scarce. Therefore, we determined the residues of twenty-four AA(TP)s in paired dissolved phases (i.e., filtered water), suspended particulate matter (SPM), and sediment samples collected from the Yangtze River Estuary (YRE), a highly urbanized estuary in the East China. The median total concentrations of targeted compounds were 0.73 ng/g dw, 34.4 ng/L, and 39.6 ng/L in sediments, surface and bottom water, respectively. Diphenylamine (DPA) was the most abundant congener in SPM, while 1,3-diphenylguanidine (DPG) and dicyclohexylamine (DChA) dominated in the dissolved phases and sediments. Various anthropogenic emissions and (a)biotic degradation may collectively shape the matrix-specific accumulation patterns and spatial trends of these compounds across the YRE. However, the vertical patterns of AA(TP)s were obscure, probably due to the estuarine hydrodynamics and/or the modest sample size. The SPM fractions of AA(TP)s in water (Ф: 7.9-100%) and the sediment sorption coefficients (KOC: 0.01-6.56) both positively correlated with their hydrophobicity as indicated by the octanol-water partition coefficient (KOW). Moreover, risk quotients implied moderate to high aquatic toxicity posed by several AA(TP)s at certain YRE sites. The estimated total annual fluxes of our analytes transported via water and sediments towards the East China Sea were 5.90-365.5 tons and 4.23-1,100 kg, respectively. This work provides a systematic investigation of multi-media processes and ecological risks of AA(TP)s in a highly-urbanized estuary, contributing to holistic comprehension of these emerging contaminants in estuarine environments.

20.
Mar Pollut Bull ; 198: 115904, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38096696

RESUMO

Organophosphate esters (OPEs) as substitutes for PBDEs have been widely detected in the marine environment, while little is known about the pollution characteristics and variation of OPEs in estuarine environments with complex hydrodynamic conditions and land-based input. Yangtze River Estuary (YRE) is a typical highly urbanized and industrialized estuary, with a complex hydrological environment and geochemical behavior. This study found that the concentrations of OPEs in both seawater and sediments in the YRE were higher in spring than in summer. Alkyl OPEs were the first contributor, with TnBP and TiBP as the main components, where the contribution of alkyl OPEs had exceeded 75 % in both seawater and sediments in spring, and 60 % in summer seawater, and even 80 % in sediments. In spring, OPEs peaked in the central to southern region near the YRE. In summer, OPEs were mainly concentrated in the southern branch waterway and southern nearshore area of the YRE and showed a decreasing trend to the northeast. The OPEs in the sediments were mainly concentrated in the Yangtze River Mud Area (YREMA) and the Zhe-Min Coastal Mud Area (ZMCMA). Based on the fugacity model and principal component analysis, sediments could be released into the aquatic environment as an endogenous source, and exogenous sources were mainly municipal and industrial sewage discharge sources, urban and marine traffic discharge sources, and atmospheric deposition sources. The ecological risk analysis showed that the Σ14OPEs had exhibited a low to moderate ecological risk in the southern branch waterway and the south-central region offshore.


Assuntos
Retardadores de Chama , Poluentes Químicos da Água , Estuários , Rios , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Água do Mar , Organofosfatos/análise , Medição de Risco , China , Ésteres/análise , Retardadores de Chama/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA