Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genetics ; 225(2)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37616582

RESUMO

Meiosis is a specialized cell division program that is essential for sexual reproduction. The two meiotic divisions reduce chromosome number by half, typically generating haploid genomes that are packaged into gametes. To achieve this ploidy reduction, meiosis relies on highly unusual chromosomal processes including the pairing of homologous chromosomes, assembly of the synaptonemal complex, programmed formation of DNA breaks followed by their processing into crossovers, and the segregation of homologous chromosomes during the first meiotic division. These processes are embedded in a carefully orchestrated cell differentiation program with multiple interdependencies between DNA metabolism, chromosome morphogenesis, and waves of gene expression that together ensure the correct number of chromosomes is delivered to the next generation. Studies in the budding yeast Saccharomyces cerevisiae have established essentially all fundamental paradigms of meiosis-specific chromosome metabolism and have uncovered components and molecular mechanisms that underlie these conserved processes. Here, we provide an overview of all stages of meiosis in this key model system and highlight how basic mechanisms of genome stability, chromosome architecture, and cell cycle control have been adapted to achieve the unique outcome of meiosis.


Assuntos
Recombinação Genética , Saccharomycetales , Saccharomycetales/genética , Meiose/genética , Saccharomyces cerevisiae/genética , Complexo Sinaptonêmico
2.
Genetics ; 206(2): 717-750, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28592505

RESUMO

Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs. horizontal genetic accidents in the making of populations. The facility with which novel yeast genomes can now be studied, combined with the already numerous available reference genomes, offer privileged perspectives to further examine these fundamental biological questions using yeasts both as eukaryotic models and as fungi of practical importance.


Assuntos
Evolução Molecular , Variação Genética , Genoma Fúngico , Saccharomyces cerevisiae/genética , Evolução Biológica , Transferência Genética Horizontal , Genética Populacional , Genótipo , Fenótipo
3.
Genetics ; 203(3): 1027-67, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27384026

RESUMO

The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation.


Assuntos
Duplicação Cromossômica/genética , Cromossomos Fúngicos/genética , Replicação do DNA/genética , Saccharomyces cerevisiae/genética , Cromátides/genética , DNA Helicases/genética , DNA Polimerase Dirigida por DNA/genética , Fase S/genética , Fuso Acromático/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA