Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077023

RESUMO

The YfeA gene, belonging to the well-conserved ABC (ATP-binding cassette) transport system Yfe, encodes the substrate-binding subunit of the iron, zinc, and manganese transport system in bacteria. As a potential vaccine candidate in Glaesserella parasuis, the functional mechanisms of YfeA in the infection process remain obscure. In this study, vaccination with YfeA effectively protected the C56BL6 mouse against the G. parasuis SC1401 challenge. Bioinformatics analysis suggests that YfeA is highly conserved in G. parasuis, and its metal-binding sites have been strictly conserved throughout evolution. Stimulation of RAW 264.7 macrophages with YfeA verified that toll-like receptors (TLR) 2 and 4 participated in the positive transcription and expression of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. The activation of TLR2 and TLR4 utilized the MyD88/MAL and TRIF/TRAM pairs to initiate TLRs signaling. Furthermore, YfeA was shown to stimulate nuclear translocation of NF-κB and activated diverse mitogen-activated protein (MAP) kinase signaling cascades, which are specific to the secretion of particular cytokine(s) in murine macrophages. Separate blocking TLR2, TLR4, MAPK, and RelA (p65) pathways significantly decreased YfeA-induced pro-inflammatory cytokine production. In addition, YfeA-stimulated RAW 264.7 produces the pro-inflammatory hallmark, reactive oxygen species (ROS). In conclusion, our findings indicate that YfeA is a novel pro-inflammatory mediator in G. parasuis and induces TLR2 and TLR4-dependent pro-inflammatory activity in RAW 264.7 macrophages through P38, JNK-MAPK, and NF-κB signaling pathways.


Assuntos
Haemophilus parasuis , Proteínas Periplásmicas de Ligação , Animais , Citocinas/metabolismo , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
2.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 9): 286-293, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473105

RESUMO

The substrate-binding protein YfeA (also known as YPO2439 or y1897) is a polyspecific metal-binding protein that is crucial for nutrient acquisition and virulence in Yersinia pestis, the causative microbe of plague. YfeA folds into a monomeric c-clamp like other substrate-binding proteins and has two metal-binding sites (sites 1 and 2). Site 2 is a bidentate surface site capable of binding Zn and Mn atoms and is a unique feature of YfeA. Occasionally, the site 2 residues of two YfeA molecules will cooperate with the histidine tag of a third YfeA molecule in coordinating the same metal and lead to metal-dependent crystallographic packing. Here, three crystal structures of YfeA are presented at 1.85, 2.05 and 2.25 Šresolution. A comparison of the structures reveals that the metal can be displaced at five different locations ranging from ∼4 to ∼16 Šaway from the canonical site 2. These observations reveal different configurations of site 2 that enable cooperative metal binding and demonstrate how site 2 is dynamic and freely available for inter-protein metal coordination.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cloretos/metabolismo , Compostos de Manganês/metabolismo , Yersinia pestis/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Conformação Proteica
3.
Acta Crystallogr D Struct Biol ; 75(Pt 9): 831-840, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31478906

RESUMO

In the structural biology of bacterial substrate-binding proteins (SBPs), a growing number of comparisons between substrate-bound and substrate-free forms of metal atom-binding (cluster A-I) SBPs have revealed minimal structural differences between forms. These observations contrast with SBPs that bind substrates such as amino acids or nucleic acids and may undergo >60° rigid-body rotations. Substrate transfer in these SBPs is described by a Venus flytrap model, although this model may not apply to all SBPs. In this report, structures are presented of substrate-free (apo) and reconstituted substrate-bound (holo) YfeA, a polyspecific cluster A-I SBP from Yersinia pestis. It is demonstrated that an apo cluster A-I SBP can be purified by fractionation when co-expressed with its cognate transporter, adding an alternative strategy to the mutagenesis or biochemical treatment used to generate other apo cluster A-I SBPs. The apo YfeA structure contains 111 disordered protein atoms in a mobile helix located in the flexible carboxy-terminal lobe. Metal binding triggers a 15-fold reduction in the solvent-accessible surface area of the metal-binding site and reordering of the 111 protein atoms in the mobile helix. The flexible lobe undergoes a 13.6° rigid-body rotation that is driven by a spring-hammer metal-binding mechanism. This asymmetric rigid-body rotation may be unique to metal atom-binding SBPs (i.e. clusters A-I, A-II and D-IV).


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Yersinia pestis/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Zinco/metabolismo
4.
Acta Crystallogr D Struct Biol ; 73(Pt 7): 557-572, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28695856

RESUMO

Gram-negative bacteria use siderophores, outer membrane receptors, inner membrane transporters and substrate-binding proteins (SBPs) to transport transition metals through the periplasm. The SBPs share a similar protein fold that has undergone significant structural evolution to communicate with a variety of differentially regulated transporters in the cell. In Yersinia pestis, the causative agent of plague, YfeA (YPO2439, y1897), an SBP, is important for full virulence during mammalian infection. To better understand the role of YfeA in infection, crystal structures were determined under several environmental conditions with respect to transition-metal levels. Energy-dispersive X-ray spectroscopy and anomalous X-ray scattering data show that YfeA is polyspecific and can alter its substrate specificity. In minimal-media experiments, YfeA crystals grown after iron supplementation showed a threefold increase in iron fluorescence emission over the iron fluorescence emission from YfeA crystals grown from nutrient-rich conditions, and YfeA crystals grown after manganese supplementation during overexpression showed a fivefold increase in manganese fluorescence emission over the manganese fluorescence emission from YfeA crystals grown from nutrient-rich conditions. In all experiments, the YfeA crystals produced the strongest fluorescence emission from zinc and could not be manipulated otherwise. Additionally, this report documents the discovery of a novel surface metal-binding site that prefers to chelate zinc but can also bind manganese. Flexibility across YfeA crystal forms in three loops and a helix near the buried metal-binding site suggest that a structural rearrangement is required for metal loading and unloading.


Assuntos
Metais/metabolismo , Proteínas Periplásmicas de Ligação/química , Peste/microbiologia , Fatores de Virulência/química , Yersinia pestis/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ferro/metabolismo , Manganês/metabolismo , Modelos Moleculares , Proteínas Periplásmicas de Ligação/metabolismo , Conformação Proteica , Alinhamento de Sequência , Especificidade por Substrato , Fatores de Virulência/metabolismo , Yersinia pestis/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA