Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(28): e2311268, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38342592

RESUMO

The development of economical and efficient oxygen reduction reaction (ORR) catalysts is crucial to accelerate the widespread application rhythm of aqueous rechargeable zinc-air batteries (ZABs). Here, a strategy is reported that the modification of the binding energy for reaction intermediates by the axial N-group converts the inactive spinel MgAl2O4 into the active motif of MgAl2O4-N. It is found that the introduction of N species can effectively optimize the electronic configuration of MgAl2O4, thereby significantly reducing the adsorption strength of *OH and boosting the reaction process. This main-group MgAl2O4-N catalyst exhibits a high ORR activity in a broad pH range from acidic and alkaline environments. The aqueous ZABs assembled with MgAl2O4-N shows a peak power density of 158.5 mW cm-2, the long-term cyclability over 2000 h and the high stability in the temperature range from -10 to 50 °C, outperforming the commercial Pt/C in terms of activity and stability. This work not only serves as a significant candidate for the robust ORR electrocatalysts of aqueous ZABs, but also paves a new route for the effective reutilization of waste Mg alloys.

2.
Angew Chem Int Ed Engl ; : e202410978, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287021

RESUMO

Efficient and stable bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts are urgently needed to unlock the full potential of zinc-air batteries (ZABs). High-valence oxides (HVOs) and high entropy oxides (HEOs) are suitable candidates for their optimal electronic structures and stability but suffer from demanding synthesis. Here, a low-cost fluorine-lodged high-valent high-entropy layered double hydroxide (HV-HE-LDH) (FeCoNi2F4(OH)4) is conveniently prepared through multi-ions co-precipitation, where F- are firmly embedded into the individual hydroxide layers. Spectroscopic detections and theoretical simulations reveal high valent metal cations are obtained in FeCoNi2F4(OH)4, which enlarge the energy band overlap between metal 3d and O 2p, enhancing the electronic conductivity and charge transfer, thus affording high intrinsic OER catalytic activity. More importantly, the strengthened metal-oxygen (M-O) bonds and stable octahedral geometry (M-O(F)6) in FeCoNi2F4(OH)4 prevent structural reorganization, rendering long-term catalytic stability. Furthermore, an efficient three-phase reaction interface with fast oxygen transportation was constructed, significantly improving the ORR activity. ZABs assembled with FeCoNi2F4(OH)4@HCC (hydrophobic carbon cloth) cathodes deliver a top performance with high round-trip energy efficiency (61.3 % at 10 mA cm-2) and long-term stability (efficiency remains at 58.8 % after 1050 charge-discharge cycles).

3.
Small ; 19(29): e2300551, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37052488

RESUMO

Carbon-based electrocatalysts with both high activity and high stability are desirable for use in Zn-air batteries. However, the carbon corrosion reaction (CCR) is a critical obstacle in rechargeable Zn-air batteries. In this study, a cost-effective carbon-based novel material is reported with a high catalytic effect and good durability for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), prepared via a simple graphitization process. In situ growth of graphene is utilized in a 3D-metal-coordinated hydrogel by introducing a catalytic lattice of transition metal alloys. Due to the direct growth of few-layer graphene on the metal alloy decorated 3d-carbon network, greatly reduced CCR is observed in a repetitive OER test. As a result, an efficient bifunctional electrocatalytic performance is achieved with a low ΔE value of 0.63 V and good electrochemical durability for 83 h at a current density of 10 mA cm-2 in an alkaline media. Moreover, graphene-encapsulated transition metal alloys on the nitrogen-doped carbon supporter exhibit an excellent catalytic effect and good durability in a Zn-air battery system. This study suggests a straightforward way to overcome the CCR of carbon-based materials for an electrochemical catalyst with wide application in energy conversion and energy storage devices.

4.
Chempluschem ; 89(10): e202400278, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38963318

RESUMO

This review covers recent progress on transition metal dichalcogenides (TMDs) as bifunctional electrocatalysts for Zinc-air batteries (ZABs), emphasizing their suitable surface area, electrocatalytic active sites, stability in acidic/basic environments, and tunable electronic properties. It discusses strategies like defect engineering, doping, interface, and structural modifications of TMDs nanostructures for enhancing the performances of ZABs. Zinc-air batteries are promising energy storage devices owing to their high energy density, low cost, and environmental friendliness. However, the development of durable and efficient bifunctional electrocatalysts is a major concern for Zn-air batteries. In this review, we summarize the recent progress on transition metal dichalcogenides (TMDs) as bifunctional electrocatalysts for Zn-air batteries. We discuss the advantages of TMDs, such as high activity, good stability, and tunable electronic structure, as well as the challenges, such as low conductivity, poor durability, and limited active sites. We also highlight the strategies for fine-tuning the properties of TMDs, such as defect engineering, doping, hybridization, and structural engineering, to enhance their catalytic performance and stability. We provide a comprehensive and in-depth analysis of the applications of TMDs in Zn-air batteries, demonstrating their potential as low-cost, abundant, and environmentally friendly alternatives to noble metal catalysts. We also suggest future directions like exploring new TMDs materials and compositions, developing novel synthesis and modification techniques, investigating the interfacial interactions and charge transfer processes, and integrating TMDs with other functional materials. This review aims to illuminate the path forward for the development of efficient and durable Zn-air batteries, aligning with the broader objectives of sustainable energy solutions.

5.
ACS Appl Mater Interfaces ; 16(10): 12398-12406, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38412364

RESUMO

The metal-nitrogen-carbon (M-N-C)-based catalysts are promising to replace PGM (platinum group metal) to accelerate oxygen reduction reaction due to their excellent electrocatalytic performance. However, the inferior intrinsic activity and poor active site density confining further improvement in their performance. Modulating the electronic structure and reasonably designing the pore structure are widely acknowledged effective strategies to boost the activity of the M-N-C catalysts. However, it is a great challenge to form abundant pores to regulate the electronic structure via the facile method. Herein, a hierarchical, porous dual-atom catalyst FeNi-NPC-1000 has been architectured by the Na2CO3 template method and bimetallic doping modification strategy. Benefitting from the optimized pore and electronic structure, the as-prepared FeNi-NPC-1000 possesses a high specific surface area (1412.8 m2 g-1) and improved ORR activity (E1/2 = 0.877 V vs RHE), which is superior to that of Pt/C (E1/2 = 0.867 V vs RHE). With the evidence of AC-STEM, XAS, and DFT, the FeNi-N8-C moiety is proven to be the key active site to realize high-efficiency ORR catalysis. When assembled it as an air cathode of ZABs, FeNi-NPC-1000 displays superior discharge performance (Pmax = 367.1 mW cm-2) and a stable battery long-life. This article will provide a new strategy for designing dual-metal atomic catalysts applied in metal-air batteries.

6.
ACS Nano ; 18(23): 15035-15045, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38796777

RESUMO

Two-electron oxygen reduction reaction (2e- ORR) is of great significance to H2O2 production and reversible nonalkaline Zn-air batteries (ZABs). Multiple oxygen-containing sp2-bonded nanocarbons have been developed as electrocatalysts for 2e- ORR, but they still suffer from poor activity and stability due to the limited and mixed active sites at the edges as well as hydrophilic character. Herein, graphdiyne (GDY) with rich sp-C bonds is studied for enhanced 2e- ORR. First, computational studies show that GDY has a favorable formation energy for producing five-membered epoxy ring-dominated groups, which is selective toward the 2e- ORR pathway. Then based on the difference in chemical activity of sp-C bonds in GDY and sp2-C bonds in CNTs, we experimentally achieved conductive and hydrophobic carbon nanotubes (CNTs) covering O-modified GDY (CNTs/GDY-O) through a mild oxidation treatment combined with an in situ CNTs growth approach. Consequently, the CNTs/GDY-O exhibits an average Faraday efficiency of 91.8% toward H2O2 production and record stability over 330 h in neutral media. As a cathode electrocatalyst, it greatly extends the lifetime of 2e- nonalkaline ZABs at both room and subzero temperatures.

7.
ACS Nano ; 18(17): 11474-11486, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38632861

RESUMO

Cobalt-nitrogen-carbon (Co-N-C) catalysts with a CoN4 structure exhibit great potential for oxygen reduction reaction (ORR), but the imperfect adsorption energy toward oxygen species greatly limits their reduction efficiency and practical application potential. Here, F-coordinated Co-N-C catalysts with square-pyramidal CoN4-F1 configuration are successfully synthesized using F atoms to regulate the axial coordination of Co centers via hydrothermal and chemical vapor deposition methods. During the synthesis process, the geometry structure of the Co atom converts from six-coordinated Co-F6 to square-pyramidal CoN4-F1 in the coordinatively unsaturated state, which provides an open binding site for the O2. The introduction of axial F atoms into the CoN4 plane alters the local atomic environment around Co, significantly improving the ORR activity and Zn-air batteries performance. In situ spectroscopy proves that CoN4-F1 sites strongly combine with the OOH* intermediate and facilitate the splitting of O-O bond, making OOH* readily decompose into O* and OH* via a dissociative pathway. Theoretical calculations confirm that the axial F atom effectively reduces the electronic density of the Co centers and facilitates the desorption of the OH* intermediate, efficiently accelerating the overall ORR kinetics. This work advances a feasible synthesis mechanism of axial ligands and provides a route to construct efficient high-coordination catalysts.

8.
Nanomicro Lett ; 14(1): 36, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34918185

RESUMO

Rechargeable zinc-air batteries (ZABs) are currently receiving extensive attention because of their extremely high theoretical specific energy density, low manufacturing costs, and environmental friendliness. Exploring bifunctional catalysts with high activity and stability to overcome sluggish kinetics of oxygen reduction reaction and oxygen evolution reaction is critical for the development of rechargeable ZABs. Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts possessing prominent advantages of high metal atom utilization and electrocatalytic activity are promising candidates to promote oxygen electrocatalysis. In this work, general principles for designing atomically dispersed M-N-C are reviewed. Then, strategies aiming at enhancing the bifunctional catalytic activity and stability are presented. Finally, the challenges and perspectives of M-N-C bifunctional oxygen catalysts for ZABs are outlined. It is expected that this review will provide insights into the targeted optimization of atomically dispersed M-N-C catalysts in rechargeable ZABs.

9.
ACS Appl Mater Interfaces ; 13(45): 54032-54042, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34739216

RESUMO

Looking for a high-efficiency, durabile, and low-cost dual-functional oxygen electrocatalyst as the air electrode catalyst in rechargeable zinc-air batteries (ZABs) is urgently desirable but faces many challenges. Herein, we propose the preparation strategy of effectively using a bifunctional electrocatalyst (Fe-Nx/C) based on the zeolite imidazole organic framework-8 (ZIF-8) as the template agent, with surface modification coated by ferrocene (Fc) molecules followed by pyrolysis at high temperature under inert atmosphere. Benefiting from the surface modification of ZIF-8 with Fc molecules, more abundant multiple catalytic Fe/Fe-Nx/FeCx sites with high intrinsic activity are derived, the resultant Fe-Nx/C exhibits excellent potential gap (ΔE = 0.63 V) and durability, which is obviously superior to the Pt/C + IrO2 benchmark (ΔE = 0.77 V) and other state-of-the-art electrocatalysts. Furthermore, the assembled rechargeable ZABs employing the Fe-Nx/C as an air-electrode show a reduced charging-discharging potential difference of 0.603 V, high power density of 214.8 mW cm-2, and long-term cycling stability of more than 290 h at 2.0 mA cm-2. Therefore, this work presents a feasible strategy to prepare a high-efficiency and durability ORR/OER bifunctional electrocatalyst toward high performance ZABs and next-generation energy storage devices.

10.
Chem Asian J ; 15(22): 3737-3751, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32997441

RESUMO

Rechargeable zinc-air batteries (ZABs) are considered as one of the most promising electrochemical energy devices due to their various unique advantages. Oxygen electrocatalysis, involving the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), determines the overall performance of zinc-air batteries. Therefore, the development of highly efficient bifunctional ORR/OER catalysts is critical for the large-scale application of ZABs. Carbon-based nanomaterials have been widely reported to be efficient electrocatalysts toward both ORR and OER. The enhanced activity of these electrocatalysts are usually attributed to different doping defects, synergistic effects and even the intrinsic carbon defects. Herein, an overview of the defect engineering in carbon-based electrocatalysts for ORR and OER is provided. The different types of intrinsic carbon defects and strategies for the generation of other defects in carbon-based electrocatalysts are presented. The interaction of heteroatoms doped carbon and transition metals (TMs) is also explored. In the end, the existing challenges and future perspectives on defect engineering are discussed.

11.
Sci Bull (Beijing) ; 62(17): 1216-1226, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659516

RESUMO

Novel and highly durable air cathode electrocatalyst with three dimensional (3D)-clam-shaped structure, MnO2 nanotubes-supported Fe2O3 (Fe2O3/MnO2) composited by carbon nanotubes (CNTs) ((Fe2O3/MnO2)3/4-(CNTs)1/4) is synthesized using a facile hydrothermal process and a following direct heat-treatment in the air. The morphology and composition of this catalyst are analyzed using scanning electronic microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The morphology characteristics reveal that flower-like Fe2O3 particles are highly dispersed on both MnO2 nanotubes and CNT surfaces, coupling all three components firmly. Electrochemical measurements indicate that the synergy of catalyst exhibit superior bi-functional catalytic activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as well as stability than Pt/C and IrO2 catalysts. Using these catalysts for air-cathodes, both primary and rechargeable zinc-air batteries (ZABs) are assembled for performance validation. In a primary ZAB, this 3D-clamed catalyst shows a decent open circuit voltage (OCV, ∼1.48V) and a high discharge peak power density (349mWcm-2), corresponding to a coulombic efficiency of 92%. In a rechargeable ZABs with this bifunctional catalyst, high OCV (>1.3V) and small charge-discharge voltage gap (<1.1V) are achieved along with high specific capacity (780mAhg-1 at 30mAcm-2) and robust cycle-life (1,390 cycles at cycle profile of 20mA/10min).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA