Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 36(8): e23089, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35532246

RESUMO

Recently, the effects of competing endogenous RNA (ceRNA) on molecular biological mechanism of cancer have aroused great interest. In this study, long noncoding RNA-microRNA-messenger RNA (lncRNA-miRNA-mRNA) ceRNA network was screened and constructed based on the Cancer Genome Atlas (TCGA) database, and its efficacy in predicting the prognosis of breast cancer patients was evaluated. The RNA-sequencing, miRNA-sequencing, and corresponding clinical information were downloaded from the TCGA database, and differentially expressed genes were screened after data searching. The similarity between two groups of genes was analyzed by weighted correlation network analysis (WGCNA). Next, the interaction among lncRNA, miRNA, and mRNA was predicted followed construction of the lncRNA-miRNA-mRNA ceRNA network. Finally, univariate and multivariate Cox regression analysis was used to screen prognostic factors to construct prognostic risk model. Receiver operating characteristic (ROC) curve was used to evaluate the efficacy of this model in predicting the prognosis of breast cancer patients. In total 5056 differentially expressed lncRNAs, 712 differentially expressed miRNAs, and 9878 differentially expressed mRNAs were identified in breast cancer tissues. WGCNA predicted that 823 lncRNAs and 1813 mRNAs were closely related to breast cancer. The lncRNA-miRNA-mRNA ceRNA network involved in breast cancer was constructed based on 27 lncRNA, 14 miRNAs, and 4 mRNAs. ZC3H12B, HRH1, TMEM132C, and PAG were the possible independent risk factors for the prognosis of breast cancer patients with the area under the signal characteristic curve under ROC curve of 0.609. This study suggested that the prognosis risk model based on ZC3H12B, HRH1, TMEM132C, and PAG1 accurately predicted the prognosis of breast cancer patients.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Proteínas Adaptadoras de Transdução de Sinal , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Proteínas de Membrana/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética
2.
RNA ; 25(7): 840-856, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30988100

RESUMO

ZC3H12B is the most enigmatic member of the ZC3H12 protein family. The founding member of this family, Regnase-1/MCPIP1/ZC3H12A, is a well-known modulator of inflammation and is involved in the degradation of inflammatory mRNAs. In this study, for the first time, we characterized the properties of the ZC3H12B protein. We show that the biological role of ZC3H12B depends on an intact NYN/PIN RNase domain. Using RNA immunoprecipitation, experiments utilizing actinomycin D and ELISA, we show that ZC3H12B binds interleukin-6 (IL-6) mRNA in vivo, regulates its turnover, and results in reduced production of IL-6 protein upon stimulation with IL-1ß. We verified that regulation of IL-6 mRNA stability occurs via interaction of ZC3H12B with the stem-loop structure present in the IL-6 3'UTR. The IL-6 transcript is not the only target of ZC3H12B. ZC3H12B also interacts with other known substrates of Regnase-1 and ZC3H12D, such as the 3'UTRs of IER3 and Regnase-1, and binds IER3 mRNA in vivo. Using immunofluorescence, we examined the localization of ZC3H12B within the cell. ZC3H12B forms small, granule-like structures in the cytoplasm that are characteristic of proteins involved in mRNA turnover. The overexpression of ZC3H12B inhibits proliferation by stalling the cell cycle in the G2 phase. This effect of ZC3H12B is also NYN/PIN dependent. The analysis of the ZC3H12B mRNA level reveals its highest expression in the human brain and the neuroblastoma cell line SH-SY5Y, although the factors regulating its expression remain elusive. Down-regulation of ZC3H12B in SH-SY5Y cells by specific shRNAs results in up-regulation of ZC3H12B-target mRNAs.


Assuntos
Regiões 3' não Traduzidas/genética , Regulação da Expressão Gênica , Interleucina-6/genética , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Encéfalo/metabolismo , Células HeLa , Humanos , Interleucina-1beta/farmacologia , Interleucina-6/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Domínios Proteicos , Estabilidade de RNA , RNA Mensageiro/genética , Ribonucleases/genética , Homologia de Sequência , Fatores de Transcrição/genética
3.
Comput Struct Biotechnol J ; 20: 4717-4732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147669

RESUMO

We developed a bioinformatics-led substrate discovery workflow to expand the known substrate repertoire of MALT1. Our approach, termed GO-2-Substrates, integrates protein function information, including GO terms from known substrates, with protein sequences to rank substrate candidates by similarity. We applied GO-2-Substrates to MALT1, a paracaspase and master regulator of NF-κB signalling in adaptive immune responses. With only 12 known substrates, the evolutionarily conserved paracaspase functions and phenotypes of Malt1 -/- mice strongly implicate the existence of undiscovered substrates. We tested the ranked predictions from GO-2-Substrates of new MALT1 human substrates by co-expression of candidates transfected with the oncogenic constitutively active cIAP2-MALT1 fusion protein or CARD11/BCL10/MALT1 active signalosome. We identified seven new MALT1 substrates by the co-transfection screen: TANK, TAB3, CASP10, ZC3H12D, ZC3H12B, CILK1 and ILDR2. Using catalytically inactive cIAP2-MALT1 (Cys464Ala), a MALT1 inhibitor, MLT-748, and noncleavable P1-Arg to Ala mutant versions of each substrate in dual transfections, we validated the seven new substrates in vitro. We confirmed the cleavage of endogenous TANK and the RNase ZC3H12D in B cells by Western blotting and mining TAILS N-terminomics datasets, where we also uncovered evidence for these and 12 other candidate substrates by endogenous MALT1. Thus, protein function information improves substrate predictions. The new substrates and other high-ranked MALT1 candidate substrates should open new biological frontiers for further validation and exploration of the function of MALT1 within and beyond NF-κB regulation.

4.
Discov Oncol ; 12(1): 51, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35201481

RESUMO

Extracellular vesicles (EVs) play crucial roles in intercellular communication. miRNAs derived from EVs emerge as promising diagnostic indicators and therapeutic targets in a variety of malignancies. Tremendous studies have revealed the function of miRNAs derived from EVs in tumorigenesis, metastasis and other aspects. The mechanism of action of EV-derived miRNAs, however, in ovarian cancer remains largely unknown. In this study, EVs were enriched from the ovarian cancer cell lines. EVs as a whole could promote cell proliferation, invasion and new vasculature formation. However, the down-regulated EV-derived miR-320a was demonstrated to potentially suppress tumorigenesis, metastasis and angiogenesis. Moreover, EV-derived miR-320a has been proved to directly regulate a previously unknown target, ZC3H12B. An unreported role of ZC3H12B in promoting ovarian cancer cell proliferation has been elucidated and miR-320a could mediate the expression of ZC3H12B, thereby inhibiting the downstream response. As for the practical clinic values, lower expression of EV-derived miR-320a correlates with shorter survival period, indicating that EV-derived miR-320a may also serve as a prognostic biomarker in ovarian cancer. This research provides new insight into the molecular mechanism of EV-derived miR-320a in ovarian cancer and may provide new therapeutic and prognostic strategies for ovarian cancer treatment.

5.
Mol Ther Oncolytics ; 20: 484-498, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33718596

RESUMO

Previous evidence has highlighted M2 macrophage regulation of cancer cells via exosome shuttling of microRNAs (miRNAs or miRs). The current study set out to explore the possible role of M2 macrophage-derived exosomal miR-155-5p in regard to immune escape of colon cancer cells. Experimental data from quantitative reverse-transcriptase PCR (qRT-PCR) and western blot analysis revealed highly expressed miR-155-5p and interleukin (IL)-6 and poorly expressed ZC3H12B in M2 macrophage-derived exosomes. Additionally, miR-155-5p could be transferred by M2 macrophage-isolated exosomes to colon cancer cells, which targeted ZC3H12B by binding to the 3¢ UTR, as identified by dual luciferase reporter gene. Meanwhile, gain- and loss-of function experimentation on miR-155-5p and ZC3H12B in SW48 and HT29 cells cocultured with M2 macrophage-secreted exosomes demonstrated that miR-155-5p overexpression or ZC3H12B silencing promoted the proliferation and antiapoptosis ability of SW48 and HT29 cells, as well as augmenting the CD3+ T cell proliferation and the proportion of interferon (IFN)-γ+ T cells. Xenograft models confirmed that M2 macrophage-derived exosomal miR-155-5p reduced the ZC3H12B expression to upregulate IL-6, which consequently induced immune escape and tumor formation. Collectively, our findings indicated that M2 macrophage-derived exosomal miR-155-5p can potentially promote the immune escape of colon cancer by impairing ZC3H12B-mediated IL-6 stability reduction, thereby promoting the occurrence and development of colon cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA