Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
BMC Plant Biol ; 24(1): 612, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937704

RESUMO

With global warming, high temperature (HT) has become one of the most common abiotic stresses resulting in significant crop yield losses, especially for jujube (Ziziphus jujuba Mill.), an important temperate economic crop cultivated worldwide. This study aims to explore the coping mechanism of jujube to HT stress at the transcriptional and post-transcriptional levels, including identifying differentially expressed miRNAs and mRNAs as well as elucidating the critical pathways involved. High-throughput sequencing analyses of miRNA and mRNA were performed on jujube leaves, which were collected from "Fucumi" (heat-tolerant) and "Junzao" (heat-sensitive) cultivars subjected to HT stress (42 °C) for 0, 1, 3, 5, and 7 days, respectively. The results showed that 45 known miRNAs, 482 novel miRNAs, and 13,884 differentially expressed mRNAs (DEMs) were identified. Among them, integrated analysis of miRNA target genes prediction and mRNA-seq obtained 1306 differentially expressed miRNAs-mRNAs pairs, including 484, 769, and 865 DEMIs-DEMs pairs discovered in "Fucuimi", "Junzao" and two genotypes comparative groups, respectively. Furthermore, functional enrichment analysis of 1306 DEMs revealed that plant-pathogen interaction, starch and sucrose metabolism, spliceosome, and plant hormone signal transduction were crucial pathways in jujube leaves response to HT stress. The constructed miRNA-mRNA network, composed of 20 DEMIs and 33 DEMs, displayed significant differently expressions between these two genotypes. This study further proved the regulatory role of miRNAs in the response to HT stress in plants and will provide a theoretical foundation for the innovation and cultivation of heat-tolerant varieties.


Assuntos
Genótipo , MicroRNAs , RNA Mensageiro , RNA de Plantas , Ziziphus , Ziziphus/genética , Ziziphus/fisiologia , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Folhas de Planta/genética , Estresse Fisiológico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Resposta ao Choque Térmico/genética
2.
Plant Cell Environ ; 47(8): 2895-2910, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38623040

RESUMO

Phytoplasmic SAP11 effectors alter host plant architecture and flowering time. However, the exact mechanisms have yet to be elucidated. Two SAP11-like effectors, SJP1 and SJP2, from 'Candidatus Phytoplasma ziziphi' induce shoot branching proliferation. Here, the transcription factor ZjTCP7 was identified as a central target of these two effectors to regulate floral transition and shoot branching. Ectopic expression of ZjTCP7 resulted in enhanced bolting and earlier flowering than did the control. Interaction and expression assays demonstrated that ZjTCP7 interacted with the ZjFT-ZjFD module, thereby enhancing the ability of these genes to directly bind to the ZjAP1 promoter. The effectors SJP1 and SJP2 unravelled the florigen activation complex by specifically destabilising ZjTCP7 and ZjFD to delay floral initiation. Moreover, the shoot branching of the ZjTCP7-SRDX transgenic Arabidopsis lines were comparable to those of the SJP1/2 lines, suggesting the involvement of ZjTCP7 in the regulation of shoot branching. ZjTCP7 interacted with the branching repressor ZjBRC1 to enhance suppression of the auxin efflux carrier ZjPIN3 expression. ZjTCP7 also directly bound to and upregulated the auxin biosynthesis gene ZjYUCCA2, thereby promoting auxin accumulation. Our findings confirm that ZjTCP7 serves as a bifunctional regulator destabilised by the effectors SJP1 and SJP2 to modulate plant development.


Assuntos
Arabidopsis , Flores , Phytoplasma , Brotos de Planta , Plantas Geneticamente Modificadas , Phytoplasma/fisiologia , Flores/crescimento & desenvolvimento , Flores/genética , Brotos de Planta/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regiões Promotoras Genéticas/genética , Ácidos Indolacéticos/metabolismo
3.
J Exp Bot ; 75(10): 3054-3069, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38320293

RESUMO

Phytoplasmas manipulate host plant development to benefit insect vector colonization and their own invasion. However, the virulence factors and mechanisms underlying small-leaf formation caused by jujube witches' broom (JWB) phytoplasmas remain largely unknown. Here, effectors SJP1 and SJP2 from JWB phytoplasmas were identified to induce small-leaf formation in jujube (Ziziphus jujuba). In vivo interaction and expression assays showed that SJP1 and SJP2 interacted with and stabilized the transcription factor ZjTCP2. Overexpression of SJP1 and SJP2 in jujube induced ZjTCP2 accumulation. In addition, the abundance of miRNA319f_1 was significantly reduced in leaves of SJP1 and SJP2 transgenic jujube plants and showed the opposite pattern to the expression of its target, ZjTCP2, which was consistent with the pattern in diseased leaves. Overexpression of ZjTCP2 in Arabidopsis promoted ectopic leaves arising from the adaxial side of cotyledons and reduced leaf size. Constitutive expression of the miRNA319f_1 precursor in the 35S::ZjTCP2 background reduced the abundance of ZjTCP2 mRNA and reversed the cotyledon and leaf defects in Arabidopsis. Therefore, these observations suggest that effectors SJP1 and SJP2 induced small-leaf formation, at least partly, by interacting with and activating ZjTCP2 expression both at the transcriptional and the protein level, providing new insights into small-leaf formation caused by phytoplasmas in woody plants.


Assuntos
Phytoplasma , Folhas de Planta , Proteínas de Plantas , Fatores de Transcrição , Ziziphus , Ziziphus/microbiologia , Ziziphus/genética , Folhas de Planta/microbiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Phytoplasma/fisiologia , Doenças das Plantas/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , MicroRNAs/genética , MicroRNAs/metabolismo
4.
BMC Genomics ; 24(1): 80, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803656

RESUMO

BACKGROUND: Ribonuclease (RNase T2) plays crucial roles in plant evolution and breeding. However, there have been few studies on the RNase T2 gene family in Ziziphus jujuba Mill., one of important dried fruit tree species. Recently, the released sequences of the reference genome of jujube provide a good chance to perform genome-wide identification and characterization of ZjRNase gene family in the jujube. RESULTS: In this study, we identified four members of RNase T2 in jujube distributed on three chromosomes and unassembled chromosomes. They all contained two conserved sites (CASI and CASII). Analysis of the phylogenetic relationships revealed that the RNase T2 genes in jujube could be divided into two groups: ZjRNase1 and ZjRNase2 belonged to class I, while ZjRNase3 and ZjRNase4 belonged to class II. Only ZjRNase1 and ZjRNase2 expression were shown by the jujube fruit transcriptome analysis. So ZjRNase1 and ZjRNase2 were selected functional verification by overexpression transformation of Arabidopsis. The overexpression of these two genes led to an approximately 50% reduction in seed number, which deserve further attention. Moreover, the leaves of the ZjRNase1 overexpression transgenic lines were curled and twisted. Overexpression of ZjRNase2 resulted in shortened and crisp siliques and the production of trichomes, and no seeds were produced. CONCLUSION: In summary, these findings will provide new insights into the molecular mechanisms of low number of hybrid seeds in jujube and a reference for the future molecular breeding of jujube.


Assuntos
Ziziphus , Ziziphus/genética , Frutas/genética , Filogenia , Melhoramento Vegetal
5.
Pestic Biochem Physiol ; 196: 105597, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945226

RESUMO

Apolygus lucorum (Hemiptera, Insecta), cosmopolitan true bug, is a major pest of the Chinese jujube (Ziziphus jujuba). To propose control measures of A. lucorum, we investigated the molecular mechanisms of resistance in two varieties of jujube (wild jujube and winter jujube) with different sensitivities to this pest. We monitored changes of two species of jujube in the transcriptome, jasmonic acid (JA) and salicylic acid (SA) content, and the expression of genes involved in signaling pathways. The preference of A. lucorum for jujube with exogenous SA and methyl jasmonate (MeJA) were also examined. The results showed that wild jujube leaves infested by A. lucorum showed stronger resistance and non-selectivity to A. lucorum than winter jujube. By comparing data from the A. lucorum infested plants with the control, A total of 438 and 796 differentially expressed genes (DEGs) were found in winter and wild jujube leaves, respectively. GO analysis revealed that biological process termed "plant-pathogen interactions", "plant hormone transduction" and "phenylpropanoid biosynthesis". Most of DEGs enriched in JA pathways were upregulated, while most DEGs of SA pathways were downregulated. A. lucorum increased the JA content but decreased the SA content in jujube. Consistently, the JA and SA contents in winter jujube were lower than those in wild jujube leaves. The key genes ZjFAD3, ZjLOX, ZjAOS, ZjAOC3 and ZjAOC4 involved in JA synthesis of jujube leaves were significantly up-regulated after A. lucorum infestation, especially the expression and up-regulation ratio of ZjFAD3, ZjLOX and ZjAOS in wild jujube were significantly higher than those in winter jujube. MeJA-treated jujube showed an obvious repellent effect on A. lucorum. Based on these findings, we conclude that A. lucorum infestation of jujube induced the JA pathway and suppressed the SA pathway. In jujube leaves the ZjFAD3, ZjLOX and ZjAOS played important roles in increasing of JA content in jujube leaves. Thus, JA played an important role in repelling and resisting against A. lucorum in jujube.


Assuntos
Heterópteros , Ziziphus , Animais , Ziziphus/metabolismo , Transdução de Sinais , Insetos , Ácido Salicílico/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835319

RESUMO

Triterpenoids are important, pharmacologically active substances in jujube (Ziziphus jujuba Mill.), and play an important role in the plant's resistance to abiotic stress. However, regulation of their biosynthesis, and the underlying mechanism of their balance with stress resistance, remain poorly understood. In this study, we screened and functionally characterized the ZjWRKY18 transcription factor, which is associated with triterpenoid accumulation. The transcription factor is induced by methyl jasmonate and salicylic acid, and its activity was observed by gene overexpression and silencing experiments, combined with analyses of transcripts and metabolites. ZjWRKY18 gene silencing decreased the transcription of triterpenoid synthesis pathway genes and the corresponding triterpenoid content. Overexpression of the gene promoted the biosynthesis of jujube triterpenoids, as well as triterpenoids in tobacco and Arabidopsis thaliana. In addition, ZjWRKY18 binds to W-box sequences to activate promoters of 3-hydroxy-3-methyl glutaryl coenzyme A reductase and farnesyl pyrophosphate synthase, suggesting that ZjWRKY18 positively regulates the triterpenoid synthesis pathway. Overexpression of ZjWRKY18 also increased tolerance to salt stress in tobacco and Arabidopsis thaliana. These results highlight the potential use of ZjWRKY18 to improve triterpenoid biosynthesis and salt stress tolerance in plants, and provide a strong basis for metabolic engineering to improve the content of triterpenoids and breeding of jujube varieties that are resistant to stress.


Assuntos
Proteínas de Plantas , Tolerância ao Sal , Fatores de Transcrição , Triterpenos , Ziziphus , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Fatores de Transcrição/metabolismo , Triterpenos/metabolismo , Ziziphus/metabolismo
7.
BMC Genomics ; 23(1): 692, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203136

RESUMO

BACKGROUND: Plant-specific BURP domain-containing genes are involved in plant development and stress responses. However, the role of BURP family in jujube (Ziziphus jujuba Mill.) has not been investigated. RESULTS: In this study, 17 BURP genes belonging to four subfamilies were identified in jujube based on homology analysis, gene structures, and conserved motif confirmation. Gene duplication analysis indicated both tandem duplication and segmental duplication had contributed to ZjBURP expansion. The ZjBURPs were extensively expressed in flowers, young fruits, and jujube leaves. Transcriptomic data and qRT-PCR analysis further revealed that ZjBURPs also significantly influence fruit development, and most genes could be induced by low temperature, salinity, and drought stresses. Notably, several BURP genes significantly altered expression in response to low temperature (ZjPG1) and drought stresses (ZjBNM7, ZjBNM8, and ZjBNM9). CONCLUSIONS: These results provided insights into the possible roles of ZjBURPs in jujube development and stress response. These findings would help selecting candidate ZjBURP genes for cold- and drought-tolerant jujube breeding.


Assuntos
Ziziphus , Secas , Frutas , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Temperatura
8.
Dermatol Ther ; 35(7): e15535, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460145

RESUMO

Ziziphus jujuba Mill. (jujube) is an invaluable medicinal plant in traditional and modern medicine. Jujube syrup is a complex of herbal extracts including Z. jujuba, Berberis vulgaris, Rhus coriaria, Prunus domestica, and Rosa damascene. The purpose of the present study was to formulate and investigate the efficacy and safety of jujube syrup on brightening of facial skin. In this randomized, double-blind, controlled clinical study, 46 participants consumed jujube syrup or placebo (23 in each group) twice a day for 8 weeks. The number of pigments, area of pigmentation, and physician's global assessment score (PGAS) were evaluated at baseline and after 8 weeks. The results showed the amounts of total phenolics and flavonoids were 81.97 ± 0.25 and 4.98 ± 1.04 mg/ml, respectively. The amounts of organic acids (gallic acid and chlorogenic acid) were quantified at 1140 ± 17.65 and 1520 ± 25.77 µg/ml, respectively. The amounts of total phenolic and flavonoids were stable under accelerated conditions. Eight weeks after treatment, the number of pigment counts reduced to 0.545 ± 0.307 compared to the placebo group. Moreover, the pigmented area and its percentages were significantly reduced to 0.556 ± 0.285 and 0.561 ± 0.288 in jujube syrup compared with placebo, respectively. Jujube syrup is efficient and safe for treating hyperpigmentation of the face.


Assuntos
Plantas Medicinais , Ziziphus , Flavonoides/efeitos adversos , Frutas , Humanos , Extratos Vegetais/efeitos adversos
9.
Curr Genomics ; 23(1): 26-40, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35814940

RESUMO

Background: Seed abortion is a common phenomenon in Chinese jujube that seriously hinders the process of cross-breeding. However, the molecular mechanisms of seed abortion remain unclear in jujube. Methods: Here, we performed transcriptome sequencing using eight flower and fruit tissues at different developmental stages in Ziziphus jujuba Mill. 'Zhongqiusucui' to identify key genes related to seed abortion. Histological analysis revealed a critical developmental process of embryo abortion after fertilization. Results: Comparisons of gene expression revealed a total of 14,012 differentially expressed genes. Functional enrichment analyses of differentially expressed genes between various sample types uncovered several important biological processes, such as embryo development, cellular metabolism, and stress response, that were potentially involved in the regulation of seed abortion. Furthermore, gene co-expression network analysis revealed a suite of potential key genes related to ovule and seed development. We focused on three types of candidate genes, agamous subfamily genes, plant ATP-binding cassette subfamily G transporters, and metacaspase enzymes, and showed that the expression profiles of some members were associated with embryo abortion. Conclusion: This work generates a comprehensive gene expression data source for unraveling the molecular mechanisms of seed abortion and aids future cross-breeding efforts in jujube.

10.
Metab Brain Dis ; 37(8): 2995-3009, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35922734

RESUMO

Pharmacological treatments against Alzheimer disease provide only symptomatic relief and are associated with numerous side effects. Previous studies showed that a concoction of Ziziphus jujuba leaves possesses anti-amnesic effects in scopolamine-treated rats. More recently, an aqueous macerate of Z. jujuba leaves has been shown to reduce short-term memory impairment in D-galactose-treated rats. However, no study on the effect of an aqueous macerate of Z. jujuba on long-term memory impairment was performed. Therefore, this study evaluates the effect of an aqueous macerate of Z. jujuba on long-term spatial memory impairment in D-galactose-treated rats. Long-term spatial memory impairment was induced in rats by administering D-galactose (350 mg/kg/day, s.c.), once dailyfor 21 days. On the 22nd day, the integrity of this memory was assessed using the Morris water maze task. Rats that developed memory impairment were treated with tacrine (10 mg/kg, p.o.), or aspirin (20 mg/kg, p.o.), or extract (41.5, 83, and 166 mg/kg, p.o.), once daily, for 14 days. At the end of the treatment, memory impairment was once more assessed using the same paradigm. Animals were then euthanized, and some pro-inflammatory cytokine markers were analyzed in the hippocampus or blood. The extract at all doses significantly reduced the latency to attain the platforming of the water maze test. The extract (83 mg/kg) also increased the time spent in the target quadrant during the retention phase. The extract markedly reduced the concentration of pro-inflammatory cytokine markers in the hippocampus and blood. Together, these results suggest that this aqueous extract Z. jujuba reduces long-term spatial memory impairment. This effect may be mediated in part by its anti-inflammatory activity.


Assuntos
Ziziphus , Ratos , Animais , Galactose/toxicidade , Memória Espacial , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Amnésia/tratamento farmacológico , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas , Aprendizagem em Labirinto
11.
BMC Plant Biol ; 21(1): 527, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34763664

RESUMO

BACKGROUND: SEPALLATA3 (SEP3), which is conserved across various plant species, plays essential and various roles in flower and fruit development. However, the regulatory network of the role of SEP3 in flowering time at the molecular level remained unclear. RESULTS: Here, we investigated that SEP3 in Ziziphus jujuba Mill. (ZjSEP3) was expressed in four floral organs and exhibited strong transcriptional activation activity. ZjSEP3 transgenic Arabidopsis showed an early-flowering phenotype and altered the expression of some genes related to flowering. Among them, the expression of LATE ELONGATED HYPOCOTYL (AtLHY), the key gene of circadian rhythms, was significantly suppressed. Yeast one-hybrid (Y1H) and electrophoretic mobility shift assays (EMSAs) further verified that ZjSEP3 inhibited the transcription of AtLHY by binding to the CArG-boxes in its promoter. Moreover, ZjSEP3 also could bind to the ZjLHY promoter and the conserved binding regions of ZjSEP3 were found in the LHY promoter of various plant species. The ectopic regulatory pathway of ZjSEP3-AtLHY was further supported by the ability of 35S::AtLHY to rescue the early-flowering phenotype in ZjSEP3 transgenic plants. In ZjSEP3 transgenic plants, total chlorophyll content and the expression of genes involved in chlorophyll synthesis increased during vegetative stages, which should contribute to its early flowering and relate to the regulatory of AtLHY. CONCLUSION: Overall, ZjSEP3-AtLHY pathway represents a novel regulatory mechanism that is involved in the regulation of flowering time.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas , Ziziphus/genética , Motivos de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Sequência Conservada , Flores/crescimento & desenvolvimento , Genes de Plantas , Filogenia , Plantas Geneticamente Modificadas/genética , Transcrição Gênica , Transcriptoma
12.
Plant Cell Environ ; 44(10): 3257-3272, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34189742

RESUMO

Comprehensively controlling phytoplasma-associated jujube witches' broom (JWB) disease is extremely challenging for the jujube industry. Although the pathogenesis of phytoplasma disease has been highlighted in many plant species, the release of lateral buds from dormancy under JWB phytoplasma infection has not been characterized in woody perennial jujube. Here, two 16SrV-B group phytoplasma effectors, SJP1 and SJP2, were experimentally determined to induce witches' broom with increased lateral branches. In vivo interaction and subcellular localization analyses showed that both SJP1 and SJP2 were translocated from the cytoplasm to the nucleus to target the CYC/TB1-TCP transcription factor ZjBRC1. The N- and C-terminal coiled-coil domains of SJP1 and SJP2 were required for the TCP-binding ability. ZjBRC1 bound directly to the auxin efflux carrier ZjPIN1c/3 promoters and down-regulated their expression to promote the accumulation of endogenous auxin indole-3-acetic acid in jujube calli. Furthermore, JWB phytoplasma infection suppressed ZjBRC1 accumulation and induced ZjPIN1c/3 expression to stimulate lateral bud outgrowth. Therefore, SJP1 and SJP2 stimulate lateral bud outgrowth, at least partly, by repressing the ZjBRC1-controlled auxin efflux channel in jujube, representing a potential strategy for comprehensive phytoplasma-associated disease control and a resource for gene editing breeding to create new cultivars with varying degrees of shoot branching.


Assuntos
Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais/genética , Ziziphus/crescimento & desenvolvimento , Ziziphus/genética , Phytoplasma/fisiologia , Proteínas de Plantas/metabolismo , Ziziphus/metabolismo
13.
Andrologia ; 53(4): e13974, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33565101

RESUMO

In this study, because of the anti-inflammatory and antioxidant effect of the Ziziphus jujuba (ZJ), we assessed the protective properties of the ZJ extract against testis toxicity caused by Adriamycin in the rat. Twenty rats were grouped into (a) control, (b) Adriamycin, (c) ZJ group and (d) treatment group in which Adriamycin was administrated and the ZJ hydroalcoholic extract was used for three weeks. On the 21st day, two testes were removed to determine the oxidation markers and pathological evaluation. The levels of sex hormones were determined. Epididymis also was crushed, and its spermatozoa were evaluated as concentration, motility and normality. Adriamycin increased oxidative stress markers as well as Luteinising hormone, and follicle-stimulating hormone and decreased testosterone levels compared to control. In the treated group, the levels of the above markers improved. The decreased number and motility of spermatozoa in treatment group increased, and the increased rate of abnormal spermatozoa in this group decreased. Pathological evaluations also show the healing process of damaged testicular tissue in the group receiving the ZJ extract. The ZJ extract relatively improves oxidative stress, sperm characteristics, hormonal alternation and pathological changes. These findings reveal the probable role of ZJ effective compounds in repairing tissue damage.


Assuntos
Ziziphus , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Doxorrubicina/toxicidade , Humanos , Masculino , Estresse Oxidativo , Extratos Vegetais/farmacologia , Ratos , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Testículo/metabolismo , Testosterona/metabolismo
14.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299326

RESUMO

Ziziphus jujuba extracts possess a broad spectrum of biological activities, such as antioxidant and anticancer activities in melanoma cancers. Nevertheless, the compounds contain high antioxidant capacities and anticancer activities in melanoma cells, shown to be effective in hyperpigmentation disorders, but whether flavonoid glycosides from Z. jujuba regulate anti-melanogenesis remains unclear. In this study, we evaluated the anti-melanogenic activity of five flavonoid glycosides from Z. jujuba var. inermis (Bunge) Rehder seeds, including jujuboside A (JUA), jujuboside B (JUB), epiceanothic acid (EPA), betulin (BTL), and 6'''-feruloylspinosin (FRS), in B16F10 melanoma cells and zebrafish larvae. According to our results, JUB, EPA, and FRS potently inhibited α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and prevented hyperpigmentation in zebrafish larvae. In particular, under α-MSH-stimulated conditions, FRS most significantly inhibited α-MSH-induced intracellular and extracellular melanin content in B16F10 melanoma cells. Additionally, JUB, EPS, and FRS remarkably downregulated melanogenesis in α-MSH-treated zebrafish larvae, with no significant change in heart rate. Neither JUA nor BTA were effective in downregulating melanogenesis in B16F10 melanoma cells and zebrafish larvae. Furthermore, JUB, EPA, and FRS directly inhibited in vitro mushroom tyrosinase enzyme activity. JUB, EPA, and FRS also downregulated cyclic adenosine monophosphate (cAMP) levels and the phosphorylation of cAMP-response element-binding protein (CREB), and subsequent microphthalmia transcription factor (MITF) and tyrosinase expression. In conclusion, this study demonstrated that JUB, EPA, and FRS isolated from Z. jujuba var. inermis (Bunge) Rehder seeds exhibit potent anti-melanogenic properties by inhibition of the cAMP-CERB-MITF axis and consequent tyrosinase activity.


Assuntos
Flavonoides/farmacologia , Glicosídeos/farmacologia , Ziziphus/metabolismo , alfa-MSH/metabolismo , Animais , Antioxidantes/farmacologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Flavonoides/isolamento & purificação , Glicosídeos/isolamento & purificação , Larva , Melaninas/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma Experimental , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sementes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra , alfa-MSH/antagonistas & inibidores
15.
BMC Plant Biol ; 20(1): 240, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32460709

RESUMO

BACKGROUND: Low temperature is a major factor influencing the growth and development of Chinese jujube (Ziziphus jujuba Mill.) in cold winter and spring. Little is known about the molecular mechanisms enabling jujube to cope with different freezing stress conditions. To elucidate the freezing-related molecular mechanism, we conducted comparative transcriptome analysis between 'Dongzao' (low freezing tolerance cultivar) and 'Jinsixiaozao' (high freezing tolerance cultivar) using RNA-Seq. RESULTS: More than 20,000 genes were detected at chilling (4 °C) and freezing (- 10 °C, - 20 °C, - 30 °C and - 40 °C) stress between the two cultivars. The numbers of differentially expressed genes (DEGs) between the two cultivars were 1831, 2030, 1993, 1845 and 2137 under the five treatments. Functional enrichment analysis suggested that the metabolic pathway, response to stimulus and catalytic activity were significantly enriched under stronger freezing stress. Among the DEGs, nine participated in the Ca2+ signal pathway, thirty-two were identified to participate in sucrose metabolism, and others were identified to participate in the regulation of ROS, plant hormones and antifreeze proteins. In addition, important transcription factors (WRKY, AP2/ERF, NAC and bZIP) participating in freezing stress were activated under different degrees of freezing stress. CONCLUSIONS: Our research first provides a more comprehensive understanding of DEGs involved in freezing stress at the transcriptome level in two Z. jujuba cultivars with different freezing tolerances. These results may help to elucidate the molecular mechanism of freezing tolerance in jujube and also provides new insights and candidate genes for genetically enhancing freezing stress tolerance.


Assuntos
Ziziphus/metabolismo , Resposta ao Choque Frio , Congelamento , Galactose/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Redes e Vias Metabólicas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Ziziphus/genética , Ziziphus/fisiologia
16.
Molecules ; 25(4)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098024

RESUMO

Glucans possess a broad spectrum of biological activities. In this context, the present study was performed to isolate glucans from an Italian cultivar of Ziziphus jujuba Mill. at three different harvesting periods, in order to evaluate their effects on wound healing. The dry fruits were subjected to an alkaline extraction and then isolated glucans were purified by dialyzation. The crude and soluble samples were characterized by FT-IR and SEM analyses. Afterwards, total, α- and ß-glucan content was measured using an enzymatic procedure. The results highlighted that the glucan amount increased as the maturation proceeded as well as the ß-glucan percentage, which ranged from 48.2 at the first harvesting to 65.4 at the third harvesting. Furthermore, the effects of isolated glucans on the viability and migration of keratinocytes were evaluated using the in vitro MTT and scratch wound assays. The best proliferative effects on keratinocyte migration have been achieved with soluble glucans from third harvesting at 100 µM after 24 and 48 h (*** P < 0.001). The same treated group showed significant narrowing of the scratch area after 24 h and complete closure of the injury after 48 h. The findings highlighted the effectiveness of soluble glucans on regeneration of damaged skin.


Assuntos
Glucanos/farmacologia , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ziziphus/química , Movimento Celular/efeitos dos fármacos , Frutas/química , Glucanos/química , Humanos , Queratinócitos/efeitos dos fármacos , Pele/patologia
17.
Molecules ; 25(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785191

RESUMO

Phenolic compounds are well-known bioactive compounds in plants that can have a protective role against cancers, cardiovascular diseases and many other diseases. To promote local food development, a comprehensive overview of the phenolic compounds' composition and their impact on human health from typical Mediterranean plants such as Punica granatum L., Ziziphus jujuba Mill., Arbutus unedo L., Celtis australis L., Ficus carica L., Cynara cardunculus var. Scolymus L. is provided. Moreover, the potential use of these data for authenticity determination is discussed. Some of the plants' phenolic compounds and their impact to human health are very well determined, while for others, the data are scarce. However, in all cases, more data should be available about the content, profile and health impacts due to a high variation of phenolic compounds depending on genetic and environmental factors. Quantifying variation in phenolic compounds in plants relative to genetic and environmental factors could be a useful tool in food authentication control. More comprehensive studies should be conducted to better understand the importance of phenolic compounds on human health and their variation in certain plants.


Assuntos
Cynara/química , Ericaceae/química , Ficus/química , Manipulação de Alimentos , Fenóis/química , Cromatografia Líquida de Alta Pressão , Cynara/metabolismo , Ericaceae/metabolismo , Ficus/metabolismo , Humanos , Região do Mediterrâneo , Fenóis/análise , Extratos Vegetais/química , Espectrometria de Massas em Tandem
18.
Malays J Med Sci ; 27(3): 43-52, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32684805

RESUMO

BACKGROUND: Ziziphus jujuba Mill (ZJ) is a plant with anti-hypertensive property. In this regard, the present study investigated the effect of aqueous and ethyl acetate fractions of ZJ extract on acute hypertension (HTN) induced by nitro-L-arginine methyl ester (L-NAME). METHODS: The current study was carried on 49 hypertensive rats divided into seven groups, including i) control; ii) L-NAME (10 mg/kg); iii) sodium nitroprusside (SNP) (50 µg/kg) plus L-NAME; iv and v) aqueous fraction of ZJ (150 mg/kg and 300 mg/kg) plus L-NAME; vi) and vii) ethyl acetate fractions of ZJ (150 mg/kg and 300 mg/kg) plus L-NAME. The rats were orally treated with both fractions for four weeks and received intravenous L-NAME on the 28th day. The mean arterial pressure (MAP), systolic blood pressure (SBP) and heart rate (HR) of the rats were recorded then maximal changes (Δ) of MAP, SBP and HR were calculated and compared with changes of control and L-NAME. RESULTS: According to the obtained results of the present study, it was shown that the administration of L-NAME significantly increased ΔMAP, ΔSBP and ΔHR, and these effects were significantly attenuated by administration of SNP. The pre-treatment with both doses (150 mg/kg and 300 mg/kg) of aqueous and ethyl acetate fractions could significantly reduce cardiovascular responses induced by L-NAME that comparable with SNP. However, a lower dose of aqueous fractions and higher dose of ethyl acetate fractions were reported with stronger effects. CONCLUSION: The results of the current study showed that both the aqueous and ethyl acetate fractions of ZJ through the effect on nitric oxide system can prevent the development of HTN induced by L-NAME.

19.
BMC Plant Biol ; 19(1): 189, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068143

RESUMO

BACKGROUND: Chinese jujube (Ziziphus jujuba Mill.) is a non-climacteric fruit; however, the underlying mechanism of ripening and the role of abscisic acid involved in this process are not yet understood for this species. RESULTS: In the present study, a positive correlation between dynamic changes in endogenous ABA and the onset of jujube ripening was determined. Transcript analyses suggested that the expression balance among genes encoding nine-cis-epoxycarotenoid dioxygenase (ZjNCED3), ABA-8'-hydroxylase (ZjCYP707A2), and beta-glucosidase (ZjBG4, ZjBG5, ZjBG8, and ZjBG9) has an important role in maintaining ABA accumulation, while the expression of a receptor (ZjPYL8), protein phosphatase 2C (ZjPP2C4-8), and sucrose nonfermenting 1-related protein kinase 2 (ZjSnRK2-2 and ZjSnRK2-5) is important in regulating fruit sensitivity to ABA applications. In addition, white mature 'Dongzao' fruit were harvested and treated with 50 mg L- 1 ABA or 50 mg L- 1 nordihydroguaiaretic acid (NDGA) to explore the role of ABA in jujube fruit ripening. By comparative transcriptome analyses, 1103 and 505 genes were differentially expressed in response to ABA and NDGA applications on the 1st day after treatment, respectively. These DEGs were associated with photosynthesis, secondary, lipid, cell wall, and starch and sugar metabolic processes, suggesting the involvement of ABA in modulating jujube fruit ripening. Moreover, ABA also exhibited crosstalk with other phytohormones and transcription factors, indicating a regulatory network for jujube fruit ripening. CONCLUSIONS: Our study further elucidated ABA-associated metabolic and regulatory processes. These findings are helpful for improving strategies for jujube fruit storage and for gaining insights into understand complex non-climacteric fruit ripening processes.


Assuntos
Ácido Abscísico/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Regulação da Expressão Gênica de Plantas , Ziziphus/crescimento & desenvolvimento , Ziziphus/genética , Biomassa , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Etilenos/biossíntese , Frutas/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes de Plantas , Masoprocol/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Ziziphus/efeitos dos fármacos
20.
Molecules ; 24(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835666

RESUMO

Foliage of jujube (Ziziphus jujuba Mill.) as a byproduct of agriculture, is a traditional nutraceutical material in China. Previous studies have shown that it is a rich resource of polyphenols. However, information on its complete phenolic profile and the difference between cultivars is still limited. This study investigated and compared phytochemical profiles of leaves of 66 Chinese jujube cultivars. Forty-two compounds, including 22 flavonols, two flavanols, one flavanone, 13 derivatives of phenolic acids, three simple acids, and one unknown hexoside were identified/tentatively identified using high-performance liquid chromatography (HPLC) coupled with high-resolution mass spectrometry. Eight major flavonols were quantified by HPLC coupled with an ultraviolet (UV) detector. The contents of total flavonoids ranged from 2.6-25.1 mg/g dry weight (DW). Differences between cultivars were analyzed by hierarchical cluster analysis (HCA) and principal component analysis (PCA). This study presents a systematic study on the phenolic compounds in Chinese jujube leaves of different cultivars.


Assuntos
Compostos Fitoquímicos/química , Ziziphus/química , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Flavonoides/química , Flavonoides/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Folhas de Planta/química , Análise de Componente Principal , Ziziphus/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA