Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 234(4): 1237-1248, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35243635

RESUMO

RNA C-to-U editing is important to the expression and function of organellar genes in plants. Although several families of proteins have been identified to participate in this process, the underlying mechanism is not fully understood. Here we report the function of EMP80 in the C-to-U editing at the nad7-769 and atp4-118 sites, and the potential recruitment of ZmDYW2 as a trans deaminase in maize (Zea mays) mitochondria. Loss of EMP80 function arrests embryogenesis and endosperm development in maize. EMP80 is a PPR-E+ protein localised to mitochondria. An absence of EMP80 abolishes the C-to-U RNA editing at nad7-769 and atp4-118 sites, resulting in a cysteine-to-arginine (Cys→Arg) change in Nad7 and Atp4 in the emp80 mutant. The amino acid change consequently reduces the assembly of complexes I and V, leading to an accumulation of the F1 subcomplex of complex V. EMP80 was found to interact with atypical DYW-type PPR protein ZmDYW2, which interacts with ZmNUWA. Co-expression of ZmNUWA enhances the interaction between EMP80 and ZmDYW2, suggesting that EMP80 potentially recruits ZmDYW2 as a trans deaminase through protein-protein interaction, and ZmNUWA may function as an enhancer of this interaction.


Assuntos
Proteínas de Plantas , Zea mays , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Zea mays/metabolismo
2.
Plant Commun ; 5(5): 100836, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38327059

RESUMO

RNA cytidine-to-uridine editing is essential for plant organellar gene expression. Pentatricopeptide repeat (PPR)-E+ proteins have been proposed to bind to target sites and recruit the cytidine deaminase AtDYW2, facilitated by AtNUWA. Here we analyze the function of ZmNUWA, ZmDYW2A, and ZmDYW2B and their relationships with other editing factors in maize. The zmdyw2a and zmdyw2b single mutants are normal, but the zmdyw2a::zmdyw2b and zmnuwa mutants are severely arrested in seed development. ZmNUWA, ZmDYW2A, and ZmDYW2B are dual localized in mitochondria and plastids. Loss of ZmNUWA decreases the editing at 99 mitochondrial sites and 8 plastid sites. Surprisingly, loss of ZmDYW2A:ZmDYW2B affects almost the same set of sites targeted by PPR-E+ proteins. ZmNUWA interacts with ZmDYW2A and ZmDYW2B, suggesting that ZmNUWA recruits ZmDYW2A/2B in the editing of PPR-E+-targeted sites in maize. Further protein interaction analyses show that ZmNUWA and ZmDYW2A/2B interact with ZmMORF1, ZmMORF8, ZmMORF2, and ZmMORF9 and that ZmOZ1 interacts with ZmORRM1, ZmDYW2A, ZmDYW2B, ZmMORF8, and ZmMORF9. These results suggest that the maize mitochondrial PPR-E+ editosome contains PPR-E+, ZmDYW2A/2B, ZmNUWA, and ZmMORF1/8, whereas the plastid PPR-E+ editosome is composed of PPR-E+, ZmDYW2A/2B, ZmNUWA, ZmMORF2/8/9, ZmORRM1, and ZmOZ1.


Assuntos
Mitocôndrias , Proteínas de Plantas , Plastídeos , Edição de RNA , Zea mays , Zea mays/genética , Zea mays/metabolismo , Plastídeos/metabolismo , Plastídeos/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA