Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.047
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Biotechnol ; 24(1): 51, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090578

RESUMO

This study explores the potential antibacterial applications of zinc oxide nanoparticles (ZnO NPs) enhanced with silver (Ag) using plant gel (ZnO-AgO NPs). The problem addressed is the increasing prevalence of pathogenic bacteria and the need for new, effective antimicrobial agents. ZnO NPs possess distinctive physicochemical properties that enable them to selectively target bacterial cells. Their small size and high surface area-to-volume ratio allow efficient cellular uptake and interaction with bacterial cells. In this study, the average size of the synthesized ZnO-Ag nanoparticles was 77.1 nm, with a significant standard deviation of 33.7 nm, indicating a wide size distribution. The nanoparticles demonstrated remarkable antibacterial efficacy against gram-negative and gram-positive bacteria, with inhibition zones of 14.33 mm for E. coli and 15.66 mm for B. subtilis at a concentration of 300 µg/ml. Minimum inhibitory concentrations (MIC) were determined to be 100 µg/ml for E. coli and 75 µg/ml for S. saprophyticus. Additionally, ZnO-Ag NPs exhibited excellent biocompatibility, making them appropriate for various pharmacological uses. This study utilizes Ferula latisecta gels, offering a sustainable and eco-friendly approach to nanoparticle synthesis. Incorporating of Ag into ZnO NPs significantly enhances their antimicrobial properties, with the combined results showing great inhibition effects on pathogenic microbes. The findings suggest that ZnO-Ag NPs could be a promising candidate for addressing the challenges posed by drug-resistant bacterial infections and enhancing antimicrobial treatments.


Assuntos
Antibacterianos , Ferula , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Óxido de Zinco , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Bactérias Gram-Positivas/efeitos dos fármacos , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Ferula/química , Géis/química , Géis/farmacologia , Escherichia coli/efeitos dos fármacos
2.
BMC Plant Biol ; 24(1): 110, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355449

RESUMO

The utilization of Trichoderma longibrachiatum filtrate as a safe biocontrol method for producing zinc nanoparticles is a promising approach for managing pests and diseases in agricultural crops. The identification of Trichoderma sp. was achieved through PCR amplification and sequencing of 18s as ON203115, while the synthesis of ZnO-NPs was accomplished by employing Trichoderma filtration. The presence of ZnO-NPs was confirmed by observing a color change to dark green, along with the use of visible and UV spectrophotometers, and the formation and chemical structure of ZnO-NPs were examined. Direct exposure to ZnO-NPs exhibited a significant inhibitory effect on the growth of Fusarium oxysporum at 80.73% compared with control. Also, the percent mortality of Meloidogyne incognita second juveniles stage (J2s) results showed 11.82%, 37.63%, 40.86%, and 89.65% after 6, 12, 24, and 72 h, respectively in vitro. Disease resistance was assessed in the greenhouse against M. incognita and F. oxysporum using the drench application of ZnO-NPs. The application of ZnO-NPs significantly reduced the disease severity of F. oxysporum and improved the quality and quantity of sweet pepper yield. In addition, the application of ZnO-NPs to M. incognita resulted in a significant reduction in the number of nematode galls, egg masses per root, eggs/egg mass, and females by 98%, 99%, 99.9%, and 95.5% respectively.Furthermore, it was observed that the application of ZnO-NPs to pepper plants not only inhibited the growth of F. oxysporum and M. incognita, but also promoted the recovery of pepper plants as indicated by improvements in stem length by 106%, root length 102%, fresh weight 112%, root fresh weight 107%, and leaf area 118% compared to healthy control plants. Additionally, real-time PCR application and DD-PCR technique revealed that the application of ZnO-NPs stimulated the secretion of certain enzymes. These findings suggest that the biosynthesized ZnO-NPs possess anti-nematode and antifungal properties, making them effective for protecting plants against M. incognita and F. oxysporum invasion in soil. This study significantly contributes to our understanding of the nematicidal and fungicidal activities of ZnO-NPs in suppressing soil-borne diseases.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Tylenchoidea , Óxido de Zinco , Animais , Feminino , Solo , Óxido de Zinco/farmacologia , Zinco
3.
BMC Plant Biol ; 24(1): 474, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811913

RESUMO

BACKGROUND: The biosynthesis of zinc oxide nanoparticles (ZnO NPs) using Enterobacter sp. and the evaluation of their antimicrobial and copper stress (Cu+ 2)-reducing capabilities in Vicia faba (L.) plants. The green-synthesized ZnO NPs were validated using X-ray powder diffraction (XRD); Fourier transformed infrared (FTIR), Ultraviolet-Visible spectroscopy (UV-Vis), Transmission electron microscope (TEM) and scanning electron microscopy (SEM) techniques. ZnO NPs could serve as an improved bactericidal agent for various biological applications. as well as these nanoparticles used in alleviating the hazardous effects of copper stress on the morphological and physiological traits of 21-day-old Vicia faba (L.) plants. RESULTS: The results revealed that different concentrations of ZnO NPs (250, 500, or 1000 mg L-1) significantly alleviated the toxic effects of copper stress (100 mM CuSO4) and increased the growth parameters, photosynthetic efficiency (Fv/Fm), and pigments (Chlorophyll a and b) contents in Cu-stressed Vicia faba (L.) seedlings. Furthermore, applying high concentration of ZnO NPs (1000 mg L-1) was the best dose in maintaining the levels of antioxidant enzymes (CAT, SOD, and POX), total soluble carbohydrates, total soluble proteins, phenolic and flavonoid in all Cu-stressed Vicia faba (L.) seedlings. Additionally, contents of Malondialdehyde (MDA) and hydrogen peroxide (H2O2) were significantly suppressed in response to high concentrations of ZnO NPs (1000 mg L-1) in all Cu-stressed Vicia faba (L.) seedlings. Also, it demonstrates strong antibacterial action (0.9 mg/ml) against various pathogenic microorganisms. CONCLUSIONS: The ZnO NPs produced in this study demonstrated the potential to enhance plant detoxification and tolerance mechanisms, enabling plants to better cope with environmental stress. Furthermore, these nanoparticles could serve as an improved bactericidal agent for various biological applications.


Assuntos
Cobre , Enterobacter , Nanopartículas Metálicas , Vicia faba , Óxido de Zinco , Vicia faba/efeitos dos fármacos , Vicia faba/metabolismo , Óxido de Zinco/farmacologia , Enterobacter/efeitos dos fármacos , Enterobacter/metabolismo , Nanopartículas Metálicas/química , Química Verde , Nanopartículas/química , Antibacterianos/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Antioxidantes/metabolismo , Plântula/efeitos dos fármacos
4.
Small ; : e2400732, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764258

RESUMO

Currently, methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis is a clinically life-threatening disease, however, long-term antibiotic treatment can lead to bacterial resistance, posing a huge challenge to treatment and public health. In this study, glucose-derived carbon spheres loaded with zinc oxide (ZnO@HTCS) are successfully constructed. This composite demonstrates the robust ability to generate reactive oxygen species (ROS) under ultrasound (US) irradiation, eradicating 99.788% ± 0.087% of MRSA within 15 min and effectively treating MRSA-induced osteomyelitis infection. Piezoelectric force microscopy tests and finite element method simulations reveal that the ZnO@HTCS composite exhibits superior piezoelectric catalytic performance compared to pure ZnO, making it a unique piezoelectric sonosensitizer. Density functional theory calculations reveal that the formation of a Mott-Schottky heterojunction and an internal piezoelectric field within the interface accelerates the electron transfer and the separation of electron-hole pairs. Concurrently, surface vacancies of the composite enable the adsorption of a greater amount of oxygen, enhancing the piezoelectric catalytic effect and generating a substantial quantity of ROS. This work not only presents a promising approach for augmenting piezoelectric catalysis through construction of a Schottky heterojunction interface but also provides a novel, efficient therapeutic strategy for treating osteomyelitis.

5.
Small ; 20(5): e2305511, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37726230

RESUMO

Microorganisms have attracted much attention to act as biotemplates for fabricating micro/nanostructured functional particles. However, it is still challenging to produce tunable hierarchical particles based on microorganisms with intricate architectures and superior stability. Herein, a novel strategy is developed to fabricate biohybrid urchin-like magnetic ZnO microspheres based on Chlorella (Ch.) with tunable hierarchical core-shell structures. Using Ch. cells as microspherical templates, Fe3 O4 nanoparticles and ZnO nanorod (NR) arrays are deposited in sequence to form the final biohybrid heterostructure microspheres (Ch.@Fe3 O4 @ZnO NRs). Ordered growth and structural regulation of 3D ZnO NR arrays are achieved via a facile and controllable manner. Compared with the prepared microspheres with diverse structure configurations of ZnO shells, the Ch.@Fe3 O4 @ZnO NRs possess excellent light absorption and photoelectrocatalysis performance toward tetracycline degradation (normalized apparent rate constant, k = 366.3 h-1 g-1 ), which is significantly larger than that of ZnO nanoflower/nanoparticle loaded types. It also proves that the synergistic enhancement of well-oriented ZnO NR arrays, heterojunction structures, and biomass features is the fundamental reason for outstanding photoelectrocatalytic activity. Due to the remarkable stability and versatility, this work provides abundant opportunities to construct biohybrid multilevel micro/nanostructures with significant potentials for practical applications.

6.
Small ; 20(31): e2312006, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38431945

RESUMO

A high soluble and stable ɛ-Zn(OH)2 precursor is synthesized at below room temperature to efficiently prepare ZnO whiskers. The experimental results indicate that the formation of ZnO whiskers is carried out mainly via two steps: the formation of ZnO seeds from ɛ-Zn(OH)2 via the in situ solid conversion, and the following growth of whiskers via dissolution-precipitation route. The decrease of temperature from 25 to 5 °C promotes the formation of ɛ-Zn(OH)2 with higher solubility and stability, which balances the conversion and dissolution rates of precursor. The Rietveld refinement, DFT calculations and MD simulations reveal that the primary reason for these characteristics is the expansion of ɛ-Zn(OH)2 lattice due to temperature, causing difficulties in the dehydration of adjacent ─OH. Simultaneously, the larger specific surface area favors the dissolution of ɛ-Zn(OH)2. Based on this precursor, well-dispersed ZnO whiskers with 9.82 µm in length, 242.38 nm in diameter, and an average aspect ratio of 41 are successfully synthesized through a SDSN-assisted hydrothermal process at 80 °C. The process has an extremely high solid content of 2.5% (mass ratio of ZnO to solution) and an overall yield of 92%, which offers a new approach for the scaled synthesis of high aspect ratio ZnO whiskers by liquid-phase method.

7.
Small ; : e2403360, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105450

RESUMO

Ultraviolet A (UVA) radiation causes various irreversible damages to human skin, so the research about UVA-specific sensing device is urgent. 2D black phosphorus (BP) is used in many photosensors due to its advantages of high carrier mobility and tunable bandgap, but its application for UVA-specific photosensor is not reported. Here, a MXene-BP/Zinc oxide (ZnO) hybrid structure with lamellar-spherical interfaces like finger lime fruit is prepared by the layer-by-layer assembly (LLA) method, and p-n junctions are constructed between BP and ZnO with the Ti3C2Tx electrode, showing excellent photoelectric performance. Density functional theory (DFT) calculations demonstrate that the enhanced performance is attributed to the rapid separation of photogenerated carriers in the presence of a built-in electric field at interface. Furthermore, a flexible MXene-BP/ZnO based UVA-specific photosensor is prepared, which shows a specific response to UVA as high as 7 mA W-1 and excellent mechanical stability, maintaining 98.46% response after 100 bending cycles. In particular, the integrated anti-UVA skin protection device shows excellent UVA-specific identification and wireless transmission capability, which can provide timely UVA exposure information and skin protection warning for the visually impaired. This work demonstrates a new approach for further developments of advanced photoelectric sensing technology toward improving people's skin health protection.

8.
Small ; 20(4): e2304393, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712098

RESUMO

Healed defects on photocatalysts surface and their interaction with plasmonic nanoparticles (NPs) have attracted attention in H2 production process. In this study, surface oxygen vacancy (Vo ) defects are created on ZnO (Vo -ZnO) NPs by directly pyrolyzing zeolitic imidazolate framework. The surface defects on Vo -ZnO provide active sites for the diffusion of single Au atoms and as nucleation sites for the formation of Au NPs by the in situ photodeposition process. The electronically healed surface defects by single Au atoms help in the formation of a heterojunction between the ZnO and plasmonic Au NPs. The formed Au/Vo -Au:ZnO-4 heterojunction prolongs photoelectron lifetimes and increases donor charge density. Therefore, the optimized photocatalysts of Au/Vo -Au:ZnO-4 has 21.28 times higher H2 production rate than the pristine Vo -ZnO under UV-visible light in 0.35 m Na2 SO4 and 0.25 m Na2 SO3 . However in 0.35 m Na2 S and 0.25 m Na2 SO3 , the H2 production rate is 25.84 mmole h-1 g-1 . Furthermore, Au/Vo -Au:ZnO-4 shows visible light activity by generating hot carries via induced surface plasmonic effects. It has 48.58 times higher H2 production rate than pristine Vo -ZnO. Therefore, this study infers new insight for defect healing mediated preparation of Au/Vo -Au:ZnO heterojunction for efficient photocatalytic H2 production.

9.
Small ; 20(11): e2306712, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37929649

RESUMO

Li metal anodes have attracted attention due to their high specific capacity and low electrochemical potential. Nevertheless, the uncontrolled growth of Li dendrites hinders the practical application of Li metal batteries. Although the various approaches have made performance improvements, safety hazards still exist since Li dendrites are still growing along the anode to the separator during the continuous plating/stripping process. Herein, a straightforward method is proposed to achieve stable Li metal batteries with directional growth control by using a functional ZnO@C/cellulose membrane as a separator. The abundant pore structure and functional groups of biomass cellulose enhance the Li-ion transport and interface compatibility. The ZnO transforms in situ to form a Li-Zn alloy layer which is uniformly coated to the separator to direct uniform ion concentration polarization and charge distribution polarization, control the growth direction of Li, significantly improve the cycling stability, and promote the reversibility of the Li plating/exfoliation process. As a result, the symmetric cell exhibits an extreme lifetime of more than 4500 h and low polarization at 3 mA cm-2 . The cycling performance of the Li||LiFePO4 full cell reaches a capacity retention of 98% after 270 cycles at a mass loading of 10 mg cm-2 .

10.
Small ; 20(6): e2306104, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775948

RESUMO

Microwave absorbers with high efficiency and mechanical robustness are urgently desired to cope with more complex and harsh application scenarios. However, manipulating the trade-off between microwave absorption performance and mechanical properties is seldom realized in microwave absorbers. Here, a chemistry-tailored charge dynamic engineering strategy is proposed for sparking hetero-interfacial polarization and thus coordinating microwave attenuation ability with the interfacial bonding, endowing polymer-based composites with microwave absorption efficiency and mechanical toughness. The absorber designed by this new conceptual approach exhibits remarkable Ku-band microwave absorption efficiency (-55.3 dB at a thickness of 1.5 mm) and satisfactory effective absorption bandwidth (5.0 GHz) as well as desirable interfacial shear strength (97.5 MPa). The calculated differential charge density depicts the uneven distribution of space charge and the intense hetero-interfacial polarization, clarifying the structure-performance relationship from a theoretical perspective. This work breaks through traditional single performance-oriented design methods and ushers a new direction for next-generation microwave absorbers.

11.
Small ; 20(13): e2307298, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37972284

RESUMO

As the electron transport layer in quantum dot light-emitting diodes (QLEDs), ZnO suffers from excessive electrons that lead to luminescence quenching of the quantum dots (QDs) and charge-imbalance in QLEDs. Therefore, the interplay between ZnO and QDs requires an in-depth understanding. In this study, DFT and COSMOSL simulations are employed to investigate the effect of sulfur atoms on ZnO. Based on the simulations, thiol ligands (specifically 2-hydroxy-1-ethanethiol) to modify the ZnO nanocrystals are adopted. This modification alleviates the excess electrons without causing any additional issues in the charge injection in QLEDs. This modification strategy proves to be effective in improving the performance of red-emitting QLEDs, achieving an external quantum efficiency of over 23% and a remarkably long lifetime T95 of >12 000 h at 1000 cd m-2. Importantly, the relationship between ZnO layers with different electronic properties and their effect on the adjacent QDs through a single QD measurement is investigated. These findings show that the ZnO surface defects and electronic properties can significantly impact the device performance, highlighting the importance of optimizing the ZnO-QD interface, and showcasing a promising ligand strategy for the development of highly efficient QLEDs.

12.
Small ; 20(30): e2312187, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38501874

RESUMO

Zn dendrite growth and side reactions restrict the practical use of Zn anode. Herein, the design of a novel 3D hierarchical structure is demonstrated with self-zincophilic dual-protection constructed by ZnO and Zn nanoparticles immobilized on carbon fibers (ZnO/Zn⊂CF) as a versatile host on the Zn surface. The unique 3D frameworks with abundant zinc nucleation storage sites can alleviate the structural stress during the plating/stripping process and overpower Zn dendrite growth by moderating Zn2+ flux. Moreover, given the dual protection design, it can reduce the contact area between active zinc and electrolyte, inhibiting hydrogen evolution reactions. Importantly, density functional theory calculations and experimental results confirm that the introduced O atoms in ZnO/Zn⊂CF enhance the interaction between Zn2+ and the host and reduce Zn nucleation overpotential. As expected, the ZnO/Zn⊂CF-Zn electrode exhibits stable Zn plating/stripping with low polarization for 4200 h at 0.2 mA cm-2 and 0.2 mAh cm-2. Furthermore, the symmetrical cell displays a significantly long cycling life of over 1800 h, even at 30 mA cm-2. The fabricated full cells also show impressive cycling performance when coupled with V2O3 cathodes.

13.
Small ; : e2405139, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129665

RESUMO

In spite of extensive research and appreciable progress, in aqueous zinc-ion batteries, Zn metal anode is struggling with low Zn utility and poor cycling stability. In this study, a 3D "electrochemical welding" composite electrode is designed by introduction of ZnO/C nanofibers film to copper foils as an anode according to pre-electrodeposition active Zn (Zn@ZnO/C-Cu). The flow of Zn2+ through carbon fiber layer is regulated by zincophilic ZnO, promoting homogeneous diffusion of Zn2+ to Cu foil. In subsequent Zn deposition/stripping processes, the hydrophobicity of ZnO/C fiber layer reduces water at the interface of Zn@ZnO/C-Cu and results in uniform electric field significant suppressing growth of Zn dendritic and side reactions. Thus, pre-electrodeposition active Zn electrochemical welds ZnO/C nanofibers and Cu foil collectively provide stable charge/electron transfer and stripping/plating of Zn with low polarization and excellent cycling performance. The assembled symmetrical batteries exhibit stable cycling performance for over 470 h under 20% utilization of Zn at 5 mA cm-2, and an average coulombic efficiency of 99.9% at low negative/positive capacity ratio (N/P = 1) after 1000 cycles in the Zn@ZnO/C-Cu||Na2V6O16·1.5H2O full cell.

14.
Small ; : e2403661, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994824

RESUMO

Efficient conversion of biomass wastes into valuable chemicals has been regarded as a sustainable approach for green and circular economy. Herein, a highly efficient catalytic conversion of glycerol (Gly) into glycerol carbonate (GlyC) by carbonylation with the commercially available urea is presented using low-cost transition metal single atoms supported on zinc oxide quantum dots (M1-ZnO QDs) as a catalyst without using any solvent. A facile one-step wet chemical synthesis allows various types of metal single atoms to simultaneously dope and introduce Lewis-acid defects in the ZnO QD structure. It is found that doping with a trace amount of isolated metal atoms greatly boosts the catalytic activity with Gly conversion of 90.7%, GlyC selectivity of 100.0%, and GlyC yield of 90.6%. Congruential results from both Density Functional Theory (DFT) and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (in situ DRIFTS) studies reveal that the superior catalytic performance can be attributed to the enriched Lewis acid sites that endow optimal adsorption, formation of the intermediate for coupling between urea and Gly, and desorption of GlyC. Moreover, the tiny size of ZnO QDs efficiently promotes the accessibility of these active sites to the reactants.

15.
Small ; 20(32): e2312230, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38516959

RESUMO

All inorganic CsPbI2Br perovskite (AIP) has attracted great attention due to its excellent resistance against thermal stress as well as the remarkable capability to deliver high-voltage output. However, CsPbI2Br perovskite solar cells (PeSCs) still encounter critical challenges in attaining both high efficiency and mechanical stability for commercial applications. In this work, formamidine disulfide dihydrochloride (FADD) modified ZnO electron transport layer (ETL) has been developed for fabricating inverted devices on either rigid or flexible substrate. It is found that the FADD modification leads to efficient defects passivation, thereby significantly reducing charge recombination at the AIP/ETL interface. As a result, rigid PeSCs (r-PeSCs) deliver an enhanced efficiency of 16.05% and improved long-term thermal stability. Moreover, the introduced FADD can regulate the Young's modulus (or Derjaguin-Muller-Toporov (DMT) modilus) of ZnO ETL and dissipate stress concentration at the AIP/ETL interface, effectively restraining the crack generation and improving the mechanical stability of PeSCs. The flexible PeSCs (f-PeSCs) exhibit one of the best performances so far reported with excellent stability against 6000 bending cycles at a curvature radius of 5 mm. This work thus provides an effective strategy to simultaneously improve the photovoltaic performance and mechanical stability.

16.
Small ; : e2403147, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989706

RESUMO

All-solid-state batteries (ASSBs) possess the advantage of ensuring safety while simultaneously maximizing energy density, making them suitable for next-generation battery models. In particular, sulfide solid electrolytes (SSEs) are viewed as promising candidates for ASSB electrolytes due to their excellent ionic conductivity. However, a limitation exists in the form of interfacial side reactions occurring between the SSEs and cathode active materials (CAMs), as well as the generation of sulfide-based gases within the SSE. These issues lead to a reduction in the capacity of CAMs and an increase in internal resistance within the cell. To address these challenges, cathode composite materials incorporating zinc oxide (ZnO) are fabricated, effectively reducing various side reactions occurring in CAMs. Acting as a semiconductor, ZnO helps mitigate the rapid oxidation of the solid electrolyte facilitated by an electronic pathway, thereby minimizing side reactions, while maintaining electron pathways to the active material. Additionally, it absorbs sulfide-based gases, thus protecting the lithium ions within CAMs. In this study, the mass spectrometer is employed to observe gas generation phenomena within the ASSB cell. Furthermore, a clear elucidation of the side reactions occurring at the cathode and the causes of capacity reduction in ASSB are provided through density functional theory calculations.

17.
Small ; 20(23): e2309422, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38200681

RESUMO

The notorious shuttle effect and sluggish conversion kinetics of intermediate polysulfides (Li2S4, Li2S6, Li2S8) are severely hindered the large-scale development of Lithium-sulfur (Li-S) batteries. Rectifying interface effect has been a solution to regulate the electron distribution of catalysts via interfacial charge exchange. Herein, a ZnTe-ZnO heterojunction encapsulated in nitrogen-doped hierarchical porous carbon (ZnTe-O@NC) derived from metal-organic framework is fabricated. Theoretical calculations and experiments prove that the built-in electric field constructed at ZnTe-ZnO heterojunction via the rectifying interface contact, thus promoting the charge transfer as well as enhancing adsorption and conversion kinetics toward polysulfides, thereby stimulating the catalytic activity of the ZnTe. Meanwhile, the nitrogen-doped hierarchical porous carbon acts as confinement substrate also enables fast electrons/ions transport, combining with ZnTe-ZnO heterojunction realize a synergistic confinement-adsorption-catalysis toward polysulfides. As a result, the Li-S batteries with S/ZnTe-O@NC electrodes exhibit an impressive rate capability (639.7 mAh g-1 at 3 C) and cycling performance (70% capacity retention at 1 C over 500 cycles). Even with a high sulfur loading, it still delivers a superior electrochemical performance. This work provides a novel perspective on designing highly catalytic materials to achieve synergistic confinement-adsorption-catalysis for high-performance Li-S batteries.

18.
BMC Microbiol ; 24(1): 254, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982372

RESUMO

Various eco-friendly techniques are being researched for synthesizing ZnO-NPs, known for their bioactivity. This study aimed at biosynthesizing ZnO-NPs using Streptomyces baarnensis MH-133, characterizing their physicochemical properties, investigating antibacterial activity, and enhancement of their efficacy by combining them with a water-insoluble active compound (Ka) in a nanoemulsion form. Ka is a pure compound of 9-Ethyl-1,4,6,9,10-pentahydroxy-7,8,9,10-tetrahydrotetracene-5,12-dione obtained previously from our strain of Streptomyces baarnensis MH-133. Biosynthesized ZnO-NPs employing Streptomyces baarnensis MH-133 filtrate and zinc sulfate (ZnSO4.7H2O) as a precursor were purified and characterized by physicochemical investigation. High-resolution-transmission electron microscopy (HR-TEM) verified the effective biosynthesis of ZnO-NPs (size < 12 nm), whereas dynamic light scattering (DLS) analysis showed an average size of 17.5 nm. X-ray diffraction (XRD) exhibited characteristic diffraction patterns that confirmed crystalline structure. ZnO-NPs efficiently inhibited both Gram-positive and Gram-negative bacteria (MICs: 31.25-125 µg/ml). The pure compound (Ka) was combined with ZnO-NPs to improve effectiveness and reduce dose using checkerboard microdilution. Niteen treatments of Ka and ZnO-NPs combinations obtained by checkerboard matrix inhibited Klebsiella pneumonia. Eleven combinations had fractional inhibitory concentration index (FICi) between 1.03 and 2, meaning indifferent, another five combinations resulted from additive FICi (0.625-1) and only one combination with FICi of 0.5, indicating synergy. In the case of methicillin-resistant S. aureus (MRSA), Ka-ZnO-NPs combinations yielded 23 treatments with varying degrees of interaction. The results showed eleven treatments with indifferent interaction, eight additive interactions, and two synergies with FICi of 0.5 and 0.375. The combinations that exhibited synergy action were transformed into a nanoemulsion form to improve their solubility and bioavailability. The HR-TEM analysis of the nanoemulsion revealed spherical oil particles with a granulated core smaller than 200 nm and no signs of aggregation. Effective dispersion was confirmed by DLS analysis which indicated that Ka-ZnO-NPs nanoemulsion droplets have an average size of 53.1 nm and a polydispersity index (PI) of 0.523. The killing kinetic assay assessed the viability of methicillin-resistant Staphylococcus aureus (MRSA) and K. pneumonia post-treatment with Ka-ZnO-NPs combinations either in non-formulated or nanoemulsion form. Results showed Ka-ZnO-NPs combinations show concentration and time-dependent manner, with higher efficacy in nanoemulsion form. The findings indicated that Ka-ZnO-NPs without formulation at MIC values killed K. pneumonia after 24 h but not MRSA. Our nanoemulsion loaded with the previously mentioned combinations at MIC value showed bactericidal effect at MIC concentration of Ka-ZnO-NPs combination after 12 and 18 h of incubation against MRSA and K. pneumonia, respectively, compared to free combinations. At half MIC value, nanoemulsion increased the activity of the combinations to cause a bacteriostatic effect on MRSA and K. pneumonia after 24 h of incubation. The free combination showed a bacteriostatic impact for 6 h before the bacteria regrew to increase log10 colony forming unit (CFU)/ml over the initial level. Similarly, the cytotoxicity study revealed that the combination in nanoemulsion form decreased the cytotoxicity against kidney epithelial cells of the African green monkey (VERO) cell line. The IC50 for Ka-ZnO-NPs non-formulated treatment was 8.17/1.69 (µg/µg)/ml, but in nano-emulsion, it was 22.94 + 4.77 (µg/µg)/mL. In conclusion, efficient Ka-ZnO-NPs nanoemulsion may be a promising solution for the fighting of ESKAPE pathogenic bacteria according to antibacterial activity and low toxicity.


Assuntos
Antibacterianos , Química Verde , Testes de Sensibilidade Microbiana , Streptomyces , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Streptomyces/metabolismo , Streptomyces/química , Antibacterianos/farmacologia , Antibacterianos/química , Química Verde/métodos , Humanos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos
19.
Microb Pathog ; 195: 106854, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151738

RESUMO

BACKGROUND: P. aeruginosa, a biofilm-forming bacteria, is the main cause of pulmonary infection in CF patients. We applied ZnO-np as a therapeutic agent for eradicating multi-drug resistance and biofilm-forming P. aeruginosa isolated from young CF patients. METHODS: A total of 73 throat and sputum samples taken from young CF patients were inquired. ZnO-np was synthesized and characterized in terms of size, shape, and structure for anti-bacterial activity. The antibiotic susceptibility of isolates before and after the addition of 16 µg/ml of ZnO was evaluated using disc diffusion and microtiter methods, respectively. The gene expression level of QS genes was assessed after treatment with 16 µg/ml ZnO-np. RESULTS: The optimum concentration of ZnO-np with a higher inhibitory zone was 16 µg/ml (MIC) and 32 µg/ml (MBC). All isolates were resistant to applied antibiotics, and about 45 % of isolates were strong biofilm-forming bacteria. After treatment with 16 µg/ml ZnO-np, all strains became susceptible to the applied antibiotic except for amikacin, which confers an intermediate pattern. About 63 % and 20 % of isolates were, respectively, non-biofilm and weak biofilm-forming bacteria following the addition of ZnO-np. Relative gene expression of gacA, lasR, and rhlR genes were downregulated significantly (P < 0.001). Although the retS did not have a significant reduction (P = 0.2) CONCLUSION: ZnO-np at a concentration of 16 µg/ml could significantly reduce the P. aeruginosa infection by altering the antibiotic susceptibility pattern and inhibiting biofilm formation. Due to their photocatalytic properties and their ability to penetrate the extracellular polysaccharide layer, ZnO nanoparticles can produce ROS, which increases their susceptibility to antibiotics. Nasal delivery of ZnO-np in the form of aerosol can be considered a potential strategy to decrease the mortality rate in CF patients at an early age.

20.
Microb Pathog ; 191: 106679, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718953

RESUMO

A crucial pathogenic mechanism in many bacterial diseases is the ability to create biofilms. Biofilms are suspected to play a role in over 80 % of microbial illnesses in humans. In light of the critical requirement for efficient management of bacterial infections, researchers have explored alternative techniques for treating bacterial disorders. One of the most promising ways to address this issue is through the development of long-lasting coatings with antibacterial properties. In recent years, antibacterial treatments based on metallic nanoparticles (NPs) have emerged as an effective strategy in the fight over bacterial drug resistance. Zinc oxide nanoparticles (ZnO-NPs) are the basis of a new composite coating material. This article begins with a brief overview of the mechanisms that underlie bacterial resistance to antimicrobial drugs. A detailed examination of the properties of metallic nanoparticles (NPs) and their potential use as antibacterial drugs for curing drug-sensitive and resistant bacteria follows. Furthermore, we assess metal nanoparticles (NPs) as powerful agents to fight against antibiotic-resistant bacteria and the growth of biofilm, and we look into their potential toxicological effects for the development of future medicines.


Assuntos
Antibacterianos , Bactérias , Infecções Bacterianas , Biofilmes , Nanopartículas Metálicas , Óxido de Zinco , Biofilmes/efeitos dos fármacos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Humanos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Biotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA