Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Clin Exp Pharmacol Physiol ; 48(5): 735-747, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33609055

RESUMO

Obesity and type 2 diabetes mellitus are risk factors for hypertension, coronary heart disease, cardiac arrhythmias including atrial fibrillation, heart failure and sudden cardiac death. The effects of obesity and diabesity on heart rhythm were investigated in the Zucker diabetic fatty (ZDF) and Zucker fatty (ZF) compared to the Zucker lean (ZL) control rat. In vivo biotelemetry techniques were used to assess the electrocardiogram and other cardiac and metabolic parameters. ZDF rats were characterized by age-dependent elevations in fasting and non-fasting blood glucose, glucose intolerance and weight gain and ZF rats were characterized by smaller elevations in fasting and non-fasting blood glucose and greater weight gain compared to ZL rats. Heart rate (HR) was progressively reduced in ZDF, ZF and ZL rats. At 195 days (6.5 months) of age there were significant differences in HR between ZDF (265 ± 8 bpm, n = 10), ZF (336 ± 9 bpm, n = 10) and ZL (336 ± 10 bpm, n = 10) rats and significant differences in HRV between ZDF (22 ± 1 bpm, n = 10), ZF (27 ± 1 bpm, n = 10) and ZL (31 ± 1 bpm, n = 10) rats. Power spectral analysis revealed no significant (P > 0.05) differences in HRV at low frequencies, reduced HRV at high frequencies and increased sympathovagal balance in ZDF compared to ZF and ZL rats. HR was reduced by ageing and additionally reduced by diabesity in the absence of changes in physical activity and body temperature. Reductions in HRV associated with altered sympathovagal drive might partly underlie disturbed HR in the ZDF rat. Possible explanations for reduced HR and future mechanistic studies are discussed.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Insulina , Masculino , Obesidade , Ratos
2.
Molecules ; 25(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121151

RESUMO

Salvianolic acid A (SAA), an important bioactive polyphenolic acid found in Salvia miltiorrhiza Bunge, may be used for treating metabolic disorders due to its anti-inflammatory activity. Since chronic inflammation plays an important role in type 2 diabetes mellitus (T2DM) complicated with atherosclerosis (AS), SAA may have beneficial effects on AS. Here, we evaluated the effects of SAA on metabolic disorders in male Zucker diabetic fatty (ZDF) rats induced by a high-fat diet and Vitamin D3 injections. Compared with the model group, the SAA high dosage (1 mg/kg) group exhibited decreased hemoglobin A1C levels but unchanged blood glucose levels. The disrupted lipid profiles were ameliorated by SAA, with significantly decreased levels of blood cholesterol, LDL-C and triglyceride. The protective effects of SAA against early AS were further confirmed by histopathological examination of aortic tissues. In addition, we observed that SAA decreased serum hs-CRP levels and suppressed the activation of NLRP3 inflammasome and NF-κB signaling in aortic tissues of ZDF rats. Collectively, our results demonstrate the potential of SAA to alleviate AS and T2DM in ZDF rats as a result of its anti-inflammatory effects.


Assuntos
Alcenos/farmacologia , Aterosclerose/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Polifenóis/farmacologia , Animais , Aterosclerose/sangue , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inflamassomos/metabolismo , Lipídeos/sangue , Masculino , Ratos , Ratos Zucker
3.
J Nutr ; 149(10): 1766-1775, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31254347

RESUMO

BACKGROUND: We previously reported that a whole-egg-based diet attenuated weight gain in rats with type 2 diabetes (T2D) and more effectively maintained vitamin D status than an equivalent amount of supplemental cholecalciferol. OBJECTIVES: The objective of this study was to determine the lowest dose of whole egg effective at maintaining vitamin D homeostasis and attenuating the obese phenotype in T2D rats. METHODS: Zucker diabetic fatty (ZDF) rats (n = 40; age 6 wk; prediabetic) and their lean controls (n = 40; age 6 wk) were randomly assigned to a diet containing 20% casein (CAS) or 20%, 10%, 5%, or 2.5% protein from whole egg (20% EGG, 10% EGG, 5% EGG, and 2.5% EGG, respectively). All diets contained 20% total protein (wt:wt). All rats received their respective diets for 8 wk, at a stage of growth and development that translates to adolescence in humans, until 14 wk of age, a point at which ZDF rats exhibit overt T2D. Weight gain was measured 5 d/wk, and circulating 25-hydroxyvitamin D [25(OH)D] was measured by ELISA. Mean values were compared by 2-factor ANOVA. RESULTS: The 20% EGG diet maintained serum 25(OH)D at 30 nmol/L in ZDF rats, whereas the 10%, 5%, and 2.5% EGG diets did not prevent insufficiency, resulting in mean serum 25(OH)D concentrations of 24 nmol/L in ZDF rats. Body weight gain was reduced by 29% (P < 0.001) and 31% (P < 0.001) in ZDF rats consuming 20% and 10% EGG diets, respectively, and by 16% (P = 0.004) and 12% (P = 0.030) in ZDF rats consuming 5% and 2.5% EGG diets, respectively, compared with CAS. CONCLUSIONS: Whole-egg-based diets exerted a dose-dependent response with respect to attenuating weight gain. These data could support dietary recommendations aimed at body weight management in individuals predisposed to obesity and T2D.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Dieta , Ovos , Obesidade/prevenção & controle , Ração Animal , Animais , Glicemia , Humanos , Distribuição Aleatória , Ratos , Ratos Zucker
4.
J Hepatol ; 67(2): 349-359, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28365312

RESUMO

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) contributes to impaired glucose tolerance, leading to type 2 diabetes (T2D); however, the precise mechanisms and target molecules that are involved remain unclear. Activating transcription factor 3 (ATF3) is associated with ß-cell dysfunction that is induced by severe stress signals in T2D. We aimed to explore the exact functional role of ATF3 as a mechanistic link between hepatic steatosis and T2D development. METHODS: Zucker diabetic fatty (ZDF) rats were utilized for animal experiments. An in vivo-jetPEI siRNA delivery system against ATF3 was used for loss-of-function experiments. We analyzed the baseline cross-sectional data derived from the biopsy-proven NAFLD registry (n=322). Human sera and liver tissues were obtained from 43 patients with biopsy-proven NAFLD and from seven healthy participants. RESULTS: ATF3 was highly expressed in the livers of ZDF rats and in human participants with NAFLD and/or T2D. Insulin resistance and hepatic steatosis were associated with increased ATF3 expression and decreased fatty acid oxidation via mitochondrial dysfunction and were attenuated by in vivo ATF3 silencing. Knockdown of ATF3 also ameliorated glucose intolerance, impaired insulin action, and inflammatory responses in ZDF rats. In patients with NAFLD and/or T2D, a significant positive correlation was observed between hepatic ATF3 expression and surrogate markers of T2D, mitochondrial dysfunction, and macrophage infiltration. CONCLUSIONS: Increased hepatic ATF3 expression is closely associated with hepatic steatosis and incident T2D; therefore, ATF3 may serve as a potential therapeutic target for NAFLD and hepatic steatosis-induced T2D. LAY SUMMARY: Hepatic activating transcription factor 3 (ATF3) may play an important role in oxidative stress-mediated hepatic steatosis and the development of type 2 diabetes (T2D) in a Zucker diabetic fatty (ZDF) rat model and in human patients with non-alcoholic fatty liver disease (NAFLD). Therefore, ATF3 may be a useful biomarker for predicting the progression of NAFLD and the development of T2D. Furthermore, given the significant association between hepatic ATF3 expression and both hepatic steatosis and impaired glucose homeostasis, in vivo ATF3 silencing may be a potential central strategy for preventing and managing NAFLD and T2D.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fator 3 Ativador da Transcrição/antagonistas & inibidores , Fator 3 Ativador da Transcrição/genética , Adulto , Idoso , Animais , Biomarcadores/metabolismo , Estudos de Coortes , Estudos Transversais , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Resistência à Insulina , Fígado/metabolismo , Fígado/patologia , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo , Estudos Prospectivos , RNA Interferente Pequeno/genética , Ratos , Ratos Zucker , Regulação para Cima
5.
Can J Physiol Pharmacol ; 95(3): 281-287, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28177677

RESUMO

Mammalian target for rapamycin complex 1 (mTORC1) is a common target for the action of immunosuppressant macrolide rapamycin and glucose-lowering metformin. Inhibition of mTORC1 can exert both beneficial and detrimental effects in different pathologies. Here, we investigated the differential effects of rapamycin (1.2 mg/kg per day delivered subcutaneously for 6 weeks) and metformin (300 mg/kg per day delivered orally for 11 weeks) treatments on male Zucker diabetic fatty (ZDF) rats that mimic the cardiorenal pathology of type 2 diabetic patients and progress to insulin insufficiency. Rapamycin and metformin improved proteinuria, and rapamycin also reduced urinary gamma glutamyl transferase (GGT) indicating improvement of tubular health. Metformin reduced food and water intake, and urinary sodium and potassium, whereas rapamycin increased urinary sodium. Metformin reduced plasma alkaline phosphatase, but induced transaminitis as evidenced by significant increases in plasma AST and ALT. Metformin also induced hyperinsulinemia, but did not suppress fasting plasma glucose after ZDF rats reached 17 weeks of age, and worsened lipid profile. Rapamycin also induced mild transaminitis. Additionally, both rapamycin and metformin increased plasma uric acid and creatinine, biomarkers for cardiovascular and renal disease. These observations define how rapamycin and metformin differentially modulate metabolic profiles that regulate cardiorenal pathology in conditions of severe type 2 diabetes.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Resistência à Insulina , Metformina/farmacologia , Complexos Multiproteicos/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Biomarcadores/sangue , Biomarcadores/urina , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/etiologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/enzimologia , Nefropatias Diabéticas/enzimologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/prevenção & controle , Modelos Animais de Doenças , Progressão da Doença , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Proteinúria/enzimologia , Proteinúria/etiologia , Proteinúria/prevenção & controle , Ratos Zucker , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo
6.
Am J Physiol Renal Physiol ; 310(9): F909-22, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26823284

RESUMO

Type II diabetes is the most prevalent form of diabetes. One of the primary complications of diabetes that significantly affects quality of life is bladder dysfunction. Many studies on diabetic bladder dysfunction have been performed in models of type I diabetes; however, few have been performed in animal models of type II diabetes. Using the Zucker Diabetic Fatty (ZDF) rat model of type II diabetes, we examined the contractility and sensitivity of bladder smooth muscle in response to mediators of depolarization-induced contraction, muscarinic receptor-mediated contraction, ATP-induced contraction, and neurogenic contraction. Studies were performed at 16 and 27 wk of age to monitor the progression of diabetic bladder dysfunction. Voiding behavior was also quantified. The entire bladder walls of diabetic rats were hypertrophied compared with that of control rats. Contractility and sensitivity to carbachol and ATP were increased at 27 wk in bladder smooth muscle strips from diabetic rats, suggesting a compensated state of diabetic bladder dysfunction. Purinergic signaling was increased in response to exogenous ATP in bladders from diabetic animals; however, the purinergic component of neurogenic contractions was decreased. The purinergic component of neurogenic contraction was reduced by P2X receptor desensitization, but was unchanged by P2X receptor inhibition in diabetic rats. Residual and tetrodotoxin-resistant components of neurogenic contraction were increased in bladder strips from diabetic animals. Overall, our results suggest that in the male ZDF rat model, the bladder reaches the compensated stage of function by 27 wk and has increased responsiveness to ATP.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Bexiga Urinária/patologia , Trifosfato de Adenosina/farmacologia , Envelhecimento/patologia , Animais , Carbacol/farmacologia , Estimulação Elétrica , Hipertrofia , Técnicas In Vitro , Contração Isométrica , Masculino , Agonistas Muscarínicos/farmacologia , Ratos , Ratos Zucker , Bexiga Urinaria Neurogênica/patologia , Micção
7.
Br J Nutr ; 116(8): 1326-1335, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27724997

RESUMO

We previously reported that rice endosperm protein (REP) has renoprotective effects in Goto-Kakizaki rats, a non-obese diabetic model. However, whether these effects occur in obese diabetes remains unclear. This study aimed to clarify the effects of REP on obese diabetes, especially on fatty liver and diabetic nephropathy, using the obese diabetic model Zucker diabetic fatty (ZDF) rats. In total, 7-week-old male ZDF rats were fed diets containing 20 % REP or casein (C) for 8 weeks. Changes in fasting blood glucose levels and urinary markers were monitored during the experimental period. Hepatic lipids and metabolites were measured and renal glomeruli were observed morphologically. HbA1c levels were significantly lower in rats fed REP, compared with C (P<0·05). Compared with C in the liver, REP prevented lipid accumulation (total lipid, TAG and total cholesterol, P<0·01). Liver metabolome analysis indicated that levels of metabolites associated with glycolysis, the pentose phosphate pathway and carnitine metabolism were significantly greater in the REP group than in the C group (P<0·05), suggesting activation of both glucose catabolism and fatty acid oxidation. The metabolite increases promoted by REP may contribute to suppression of liver lipid accumulation. Urinary excretion of albumin and N-acetyl-ß-d-glucosaminidase was significantly reduced in rats fed REP for 8 weeks (P<0·01). In addition, there was a distinct suppression of mesangial matrix expansion and glomerular hypertrophy in response to REP (P<0·01). Thus, REP had preventive effects on obese diabetes, fatty liver and diabetic nephropathy.


Assuntos
Diabetes Mellitus Tipo 2/dietoterapia , Nefropatias Diabéticas/dietoterapia , Dieta Vegetariana , Endosperma/química , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Oryza/química , Proteínas de Vegetais Comestíveis/uso terapêutico , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Erros Inatos do Metabolismo dos Carboidratos/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/fisiopatologia , Dieta Vegetariana/efeitos adversos , Progressão da Doença , Metabolismo Energético , Glicerol Quinase/deficiência , Hiperfosfatemia/etiologia , Hiperfosfatemia/prevenção & controle , Hipoadrenocorticismo Familiar , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/complicações , Tamanho do Órgão , Proteínas de Vegetais Comestíveis/efeitos adversos , Ratos Zucker , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/prevenção & controle , Aumento de Peso
8.
J Pineal Res ; 60(1): 109-17, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26514550

RESUMO

Excessive activity of NADPH oxidase (Nox) is considered to be of importance for the progress of diabetic nephropathy. The aim of the study was to elucidate the effect of melatonin, known for its nephroprotective properties, on Nox activity under diabetic conditions. The experiments were performed on three groups of animals: (i) untreated lean (?/+) Zucker diabetic fatty (ZDF) rats; (ii) untreated obese diabetic (fa/fa) ZDF rats; and (iii) ZDF fa/fa rats treated with melatonin (20 mg/L) in drinking water. Urinary albumin excretion was measured weekly. After 4 wk of the treatment, the following parameters were determined in kidney cortex: Nox activity, expression of subunits of the enzyme, their phosphorylation and subcellular distribution. Histological studies were also performed. Compared to ?/+ controls, ZDF fa/fa rats exhibited increased renal Nox activity, augmented expression of Nox4 and p47(phox) subunits, elevated level of p47(phox) phosphorylation, and enlarged phospho-p47(phox) and p67(phox) content in membrane. Melatonin administration to ZDF fa/fa rats resulted in the improvement of renal functions, as manifested by considerable attenuation of albuminuria and some amelioration of structural abnormalities. The treatment turned out to nearly normalize Nox activity, which was accompanied by considerably lowered expression and diminished membrane distribution of regulatory subunits, that is, phospho-p47(phox) and p67(phox) . Thus, it is concluded that: (i) melatonin beneficial action against diabetic nephropathy involves attenuation of the excessive activity of Nox; and (ii) the mechanism of melatonin inhibitory effect on Nox is based on the mitigation of expression and membrane translocation of its regulatory subunits.


Assuntos
Membrana Celular/enzimologia , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Melatonina/farmacologia , NADH NADPH Oxirredutases/biossíntese , NADPH Oxidases/biossíntese , Animais , Membrana Celular/patologia , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/enzimologia , Nefropatias Diabéticas/patologia , Ratos , Ratos Zucker
9.
Can J Physiol Pharmacol ; 94(7): 752-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27172260

RESUMO

Kinins are the endogenous ligands of the constitutive B2 receptor (B2R) and the inducible B1 receptor (B1R). Whereas B2R prevents insulin resistance, B1R is involved in insulin resistance and metabolic syndrome. However, the contribution of B1R in type 2 diabetes associated with obesity remains uncertain. The aim of the present study was to examine the impact of 1-week treatment with a selective B1R antagonist (SSR240612, 10 mg/kg per day, by gavage) on hyperglycemia, hyperinsulinemia, leptinemia, body mass gain, and abnormal plasma fatty acids in obese Zucker diabetic fatty (ZDF) rats. Treatment with SSR240612 abolished the body mass gain and reduced polyphagia, polydipsia, and plasma fatty acid alterations in ZDF rats without affecting hyperglycemia, hyperinsulinemia, and hyperleptinemia. The present study suggests that the upregulated B1R plays a role in body mass gain and circulating fatty acid alterations in ZDF rats. However, mechanisms other than B1R induction would be implicated in glucose metabolism disorder in ZDF rats, based on the finding that SSR240612 did not reverse hyperglycemia and hyperinsulinemia.


Assuntos
Antagonistas de Receptor B1 da Bradicinina/uso terapêutico , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Ácidos Graxos/sangue , Obesidade/sangue , Obesidade/tratamento farmacológico , Animais , Antagonistas de Receptor B1 da Bradicinina/farmacologia , Dioxóis/farmacologia , Dioxóis/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Masculino , Ratos , Ratos Zucker , Receptor B1 da Bradicinina/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Resultado do Tratamento
10.
Am J Physiol Heart Circ Physiol ; 308(4): H291-302, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25485897

RESUMO

Hearts from type 2 diabetic (T2DM) subjects are chronically subjected to hyperglycemia and hyperlipidemia, both thought to contribute to oxidizing conditions and contractile dysfunction. How redox alterations and contractility interrelate, ultimately diminishing T2DM heart function, remains poorly understood. Herein we tested whether the fatty acid palmitate (Palm), in addition to its energetic contribution, rescues function by improving redox [glutathione (GSH), NAD(P)H, less oxidative stress] in T2DM rat heart trabeculae subjected to high glucose. Using cardiac trabeculae from Zucker Diabetic Fatty (ZDF) rats, we assessed the impact of low glucose (EG) and high glucose (HG), in absence or presence of Palm or insulin, on force development, energetics, and redox responses. We found that in EG ZDF and lean trabeculae displayed similar contractile work, yield of contractile work (Ycw), representing the ratio of force time integral over rate of O2 consumption. Conversely, HG had a negative impact on Ycw, whereas Palm, but not insulin, completely prevented contractile loss. This effect was associated with higher GSH, less oxidative stress, and augmented matrix GSH/thioredoxin (Trx) in ZDF mitochondria. Restoration of myocardial redox with GSH ethyl ester also rescued ZDF contractile function in HG, independently from Palm. These results support the idea that maintained redox balance, via increased GSH and Trx antioxidant activities to resist oxidative stress, is an essential protective response of the diabetic heart to keep contractile function.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Estresse Oxidativo , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Cardiomiopatias Diabéticas/fisiopatologia , Glutationa/metabolismo , Coração/efeitos dos fármacos , Coração/fisiopatologia , Insulina/sangue , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxirredução , Consumo de Oxigênio , Palmitatos/sangue , Palmitatos/farmacologia , Ratos , Ratos Zucker , Tiorredoxinas/metabolismo
11.
Am J Physiol Regul Integr Comp Physiol ; 308(4): R321-9, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25540099

RESUMO

Bariatric surgery rapidly improves Type 2 diabetes mellitus (T2DM). Our objective was to profile and compare the extent and duration of improved glycemic control following Roux-en-Y gastric (RYGB) bypass surgery and vertical sleeve gastrectomy (SG) and compare against calorie restriction/weight loss and medical combination therapy-based approaches using the Zucker diabetic fatty rat (ZDF) rodent model of advanced T2DM. Male ZDF rats underwent RYGB (n = 15) or SG surgery (n = 10) at 18 wk of age and received postsurgical insulin treatment, as required to maintain mid-light-phase glycemia within a predefined range (10-15 mmol/l). In parallel, other groups of animals underwent sham surgery with ad libitum feeding (n = 6), with body weight (n = 8), or glycemic matching (n = 8) to the RYGB group, using food restriction or a combination of insulin, metformin, and liraglutide, respectively. Both bariatric procedures decreased the daily insulin dose required to maintain mid-light-phase blood glucose levels below 15 mmol/l, compared with those required by body weight or glycemia-matched rats (P < 0.001). No difference was noted between RYGB and SG with regard to initial efficacy. SG was, however, associated with higher food intake, weight regain, and higher insulin requirements vs. RYGB at study end (P < 0.05). Severe hypoglycemia occurred in several rats after RYGB. RYGB and SG significantly improved glycemic control in a rodent model of advanced T2DM. While short-term outcomes are similar, long-term efficacy appears marginally better after RYGB, although this is tempered by the increased risk of hypoglycemia.


Assuntos
Glicemia/efeitos dos fármacos , Restrição Calórica , Diabetes Mellitus Tipo 2/tratamento farmacológico , Gastrectomia , Derivação Gástrica , Hipoglicemiantes/farmacologia , Obesidade/terapia , Redução de Peso/efeitos dos fármacos , Fatores Etários , Animais , Comportamento Animal , Biomarcadores/sangue , Glicemia/metabolismo , Terapia Combinada , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Quimioterapia Combinada , Ingestão de Alimentos , Comportamento Alimentar , Gastrectomia/efeitos adversos , Derivação Gástrica/efeitos adversos , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Hipoglicemia/sangue , Hipoglicemia/etiologia , Hipoglicemiantes/toxicidade , Insulina/farmacologia , Liraglutida , Masculino , Metformina/farmacologia , Obesidade/sangue , Obesidade/fisiopatologia , Ratos Zucker , Fatores de Risco , Fatores de Tempo , Aumento de Peso
12.
Diabetes Obes Metab ; 17(7): 703-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25846481

RESUMO

Failure of pancreatic ß cells to compensate for insulin resistance is a prerequisite for the development of type 2 diabetes. Sustained elevated circulating levels of free fatty acids and glucose contribute to ß-cell failure. Selective inhibition of histone deacetylase (HDAC)-3 protects pancreatic ß cells against inflammatory and metabolic insults in vitro. In the present study, we tested the ability of a selective HDAC3 inhibitor, BRD3308, to reduce hyperglycaemia and increase insulin secretion in a rat model of type 2 diabetes. At diabetes onset, an ambulatory hyperglycaemic clamp was performed. HDAC3 inhibition improved hyperglycaemia over the study period without affecting weight gain. At the end of the hyperglycaemic clamp, circulating insulin levels were significantly higher in BRD3308-treated rats. Pancreatic insulin staining and contents were also significantly higher. These findings highlight HDAC3 as a key therapeutic target for ß-cell protection in type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/metabolismo , Obesidade/tratamento farmacológico , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Graxos não Esterificados/metabolismo , Técnica Clamp de Glucose , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/uso terapêutico , Hiperglicemia/tratamento farmacológico , Insulina/sangue , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Obesidade/sangue , Obesidade/complicações , Ratos , Ratos Zucker , Aumento de Peso
13.
Diabetes Obes Metab ; 17(1): 52-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25200673

RESUMO

AIM: To determine the effect of pioglitazone treatment on in vivo and ex vivo muscle mitochondrial function in a rat model of diabetes. METHODS: Both the lean, healthy rats and the obese, diabetic rats are Zucker Diabetic Fatty (ZDF) rats. The homozygous fa/fa ZDF rats are obese and diabetic. The heterozygous fa/+ ZDF rats are lean and healthy. Diabetic Zucker Diabetic Fatty rats were treated with either pioglitazone (30 mg/kg/day) or water as a control (n = 6 per group), for 2 weeks. In vivo ¹H and ³¹P magnetic resonance spectroscopy was performed on skeletal muscle to assess intramyocellular lipid (IMCL) content and muscle oxidative capacity, respectively. Ex vivo muscle mitochondrial respiratory capacity was evaluated using high-resolution respirometry. In addition, several markers of mitochondrial content were determined. RESULTS: IMCL content was 14-fold higher and in vivo muscle oxidative capacity was 26% lower in diabetic rats compared with lean rats, which was, however, not caused by impairments of ex vivo mitochondrial respiratory capacity or a lower mitochondrial content. Pioglitazone treatment restored in vivo muscle oxidative capacity in diabetic rats to the level of lean controls. This amelioration was not accompanied by an increase in mitochondrial content or ex vivo mitochondrial respiratory capacity, but rather was paralleled by an improvement in lipid homeostasis, that is lowering of plasma triglycerides and muscle lipid and long-chain acylcarnitine content. CONCLUSION: Diminished in vivo muscle oxidative capacity in diabetic rats results from mitochondrial lipid overload and can be alleviated by redirecting the lipids from the muscle into adipose tissue using pioglitazone treatment.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Doenças Mitocondriais/prevenção & controle , Músculo Esquelético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Tiazolidinedionas/uso terapêutico , Animais , Biomarcadores/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Hipertrigliceridemia/complicações , Hipertrigliceridemia/prevenção & controle , Hipoglicemiantes/efeitos adversos , Hipolipemiantes/uso terapêutico , Masculino , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Doenças Mitocondriais/complicações , Renovação Mitocondrial/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/complicações , Fosforilação Oxidativa/efeitos dos fármacos , PPAR gama/antagonistas & inibidores , Pioglitazona , Ratos Zucker , Tiazolidinedionas/efeitos adversos
14.
Biomed Pharmacother ; 172: 116314, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387135

RESUMO

Melatonin acute treatment limits obesity of young Zücker diabetic fatty (ZDF) rats by non-shivering thermogenesis (NST). We recently showed melatonin chronically increases the oxidative status of vastus lateralis (VL) in both obese and lean adult male animals. The identification of VL skeletal muscle-based NST by uncoupling of sarcoendoplasmic reticulum Ca2+-ATPase (SERCA)- sarcolipin (SLN) prompted us to investigate whether melatonin is a SERCA-SLN calcium futile cycle uncoupling and mitochondrial biogenesis enhancer. Obese ZDF rats and lean littermates (ZL) of both sexes were subdivided into two subgroups: control (C) and 12 weeks orally melatonin treated (M) (10 mg/kg/day). Compared to the control groups, melatonin decreased the body weight gain and visceral fat in ZDF rats of both sexes. Melatonin treatment in both sex obese rats restored the VL muscle skin temperature and sensitized the thermogenic effect of acute cold exposure. Moreover, melatonin not only raised SLN protein levels in the VL of obese and lean rats of both sexes; also, the SERCA activity. Melatonin treatment increased the SERCA2 expression in obese and lean rats (both sexes), with no effects on SERCA1 expression. Melatonin increased the expression of thermogenic genes and proteins (PGC1-α, PPARγ, and NRF1). Furthermore, melatonin treatment enhanced the expression ratio of P-CaMKII/CaMKII and P-AMPK/AMPK. In addition, it rose mitochondrial biogenesis. These results provided the initial evidence that chronic oral melatonin treatment triggers the CaMKII/AMPK/PGC1α axis by upregulating SERCA2-SLN-mediated NST in ZDF diabetic rats of both sexes. This may further contribute to the body weight control and metabolic benefits of melatonin.


Assuntos
Diabetes Mellitus Experimental , Melatonina , Proteínas Musculares , Proteolipídeos , Feminino , Masculino , Animais , Ratos , Proteínas Quinases Ativadas por AMP , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Melatonina/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos Zucker , Biogênese de Organelas , Músculo Esquelético , Obesidade/tratamento farmacológico
15.
J Agric Food Chem ; 70(48): 15143-15156, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36410712

RESUMO

The effect of nonacylated and acylated anthocyanins on urinary metabolites in diabetic rats was investigated. Nonacylated anthocyanins extract from bilberries (NAAB) or acylated anthocyanins extract from purple potatoes (AAPP) was given to Zucker diabetic fatty (ZDF) rats for 8 weeks at daily doses of 25 and 50 mg/kg body weight. 1H NMR metabolomics was applied to study alterations in urinary metabolites from three time points (weeks 1, 4, and 8). Both types of anthocyanins modulated the metabolites associated with the tricarboxylic acid cycle, gut microbiota metabolism, and renal function at weeks 1 and 4, such as 2-oxoglutarate, fumarate, alanine, trigonelline, and hippurate. In addition, only a high dose of AAPP decreased monosaccharides, formate, lactate, and glucose levels at week 4, suggesting improvement in energy production in mitochondria, glucose homeostasis, and oxidative stress. This study suggested different impacts of AAPP and NAAB on the metabolic profile of urine in diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Ratos , Ratos Zucker , Diabetes Mellitus Tipo 2/tratamento farmacológico , Antocianinas , Diabetes Mellitus Experimental/tratamento farmacológico , Metaboloma , Extratos Vegetais , Glucose
16.
Life (Basel) ; 12(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36013400

RESUMO

(1) Background: Cardiovascular complications are a leading cause of morbidity and mortality in diabetic patients. The effects of obesity and diabesity on the function and structure of ventricular myocytes in the Zucker fatty (ZF) rat and the Zucker diabetic fatty (ZDF) rat compared to Zucker lean (ZL) control rats have been investigated. (2) Methods: Shortening and intracellular Ca2+ were simultaneously measured with cell imaging and fluorescence photometry, respectively. Ventricular muscle protein expression and structure were investigated with Western blot and electron microscopy, respectively. (3) Results: The amplitude of shortening was increased in ZF compared to ZL but not compared to ZDF myocytes. Resting Ca2+ was increased in ZDF compared to ZL myocytes. Time to half decay of the Ca2+ transient was prolonged in ZDF compared to ZL and was reduced in ZF compared to ZL myocytes. Changes in expression of proteins associated with cardiac muscle contraction are presented. Structurally, there were reductions in sarcomere length in ZDF and ZF compared to ZL and reductions in mitochondria count in ZF compared to ZDF and ZL myocytes. (4) Conclusions: Alterations in ventricular muscle proteins and structure may partly underlie the defects observed in Ca2+ signaling in ZDF and ZF compared to ZL rat hearts.

17.
Antioxidants (Basel) ; 10(9)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34573114

RESUMO

Developing novel drugs/targets remains a major effort toward controlling obesity-related type 2 diabetes (diabesity). Melatonin controls obesity and improves glucose homeostasis in rodents, mainly via the thermogenic effects of increasing the amount of brown adipose tissue (BAT) and increases in mitochondrial mass, amount of UCP1 protein, and thermogenic capacity. Importantly, mitochondria are widely known as a therapeutic target of melatonin; however, direct evidence of melatonin on the function of mitochondria from BAT and the mechanistic pathways underlying these effects remains lacking. This study investigated the effects of melatonin on mitochondrial functions in BAT of Zücker diabetic fatty (ZDF) rats, which are considered a model of obesity-related type 2 diabetes mellitus (T2DM). At five weeks of age, Zücker lean (ZL) and ZDF rats were subdivided into two groups, consisting of control and treated with oral melatonin for six weeks. Mitochondria were isolated from BAT of animals from both groups, using subcellular fractionation techniques, followed by measurement of several mitochondrial parameters, including respiratory control ratio (RCR), phosphorylation coefficient (ADP/O ratio), ATP production, level of mitochondrial nitrites, superoxide dismutase activity, and alteration in the mitochondrial permeability transition pore (mPTP). Interestingly, melatonin increased RCR in mitochondria from brown fat of both ZL and ZDF rats through the reduction of the proton leak component of respiration (state 4). In addition, melatonin improved the ADP/O ratio in obese rats and augmented ATP production in lean rats. Further, melatonin reduced mitochondrial nitrosative and oxidative status by decreasing nitrite levels and increasing superoxide dismutase activity in both groups, as well as inhibited mPTP in mitochondria isolated from brown fat. Taken together, the present data revealed that chronic oral administration of melatonin improved mitochondrial respiration in brown adipocytes, while decreasing oxidative and nitrosative stress and susceptibility of adipocytes to apoptosis in ZDF rats, suggesting a beneficial use in the treatment of diabesity. Further research regarding the molecular mechanisms underlying the effects of melatonin on diabesity is warranted.

18.
Drug Des Devel Ther ; 14: 3337-3350, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32884238

RESUMO

INTRODUCTION: Diabetic obese patients are susceptible to the development of cardiovascular disease, including hypertension and cardiac dysfunction culminating in diabetic cardiomyopathy (DC), which represents a life-threatening health problem with increased rates of morbidity and mortality. The aim of the study is to characterize the effects of a new benzofuran N-acylhydrazone compound, LASSBio-2090, on metabolic and cardiovascular alterations in Zucker diabetic fatty (ZDF) rats presenting DC. METHODS: Male non-diabetic lean Zucker rats (ZL) and ZDF rats treated with vehicle (dimethylsulfoxide) or LASSBio-2090 were used in this study. Metabolic parameters, cardiovascular function, left ventricle histology and inflammatory protein expression were analyzed in the experimental groups. RESULTS: LASSBio-2090 administration in ZDF rats reduced glucose levels to 85.0 ± 1.7 mg/dL (p < 0.05). LASSBio-2090 also lowered the cholesterol and triglyceride levels from 177.8 ± 31.2 to 104.8 ± 5.3 mg/dL and from 123.0 ± 11.4 to 90.9 ± 4.8 mg/dL, respectively, in obese diabetic rats (p < 0.05). LASSBio-2090 normalized plasma insulin, insulin sensitivity and endothelial function in aortas from diabetic animals (p < 0.05). It also enhanced systolic and diastolic left-ventricular function and reverted myocardial remodeling by blocking the threefold elevation of TNF-α levels in hearts from ZDF rats. CONCLUSION: LASSBio-2090 alleviates metabolic disturbance and cardiomyopathy in an obese and diabetic rat model, thus representing a novel strategy for the treatment of cardiovascular complications in obesity-associated type 2 diabetes mellitus.


Assuntos
Benzofuranos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Obesidade/tratamento farmacológico , Animais , Benzofuranos/administração & dosagem , Benzofuranos/química , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Injeções Intraperitoneais , Masculino , Estrutura Molecular , Obesidade/metabolismo , Ratos , Ratos Zucker
19.
Redox Rep ; 23(1): 153-159, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29897845

RESUMO

OBJECTIVES: Mitochondrial oxidative stress is involved in the pathogenesis of diabetic kidney disease. The objective of our study is to identify the mechanisms of renal mitochondrial oxidative stress, focusing on Sirt3, which is nicotinamide adenine dinucleotide (NAD+; oxidized NAD)-dependent deacetylase in mitochondria. METHODS: Renal mitochondrial oxidative stress and Sirt3 activity, using Zucker diabetic fatty rats (ZDFRs) and cultured proximal tubular cells under high-glucose condition were evaluated. RESULTS: At 28 weeks of age, ZDFRs exhibited the increased urinary albumin/liver-type fatty acid-binding protein (L-FABP)/8-hydroxy-2'-deoxyguanosine (8-OHdG) excretion, histological tubular cell damage, compared to non-diabetic Zucker Lean rats. In renal mitochondria, acetylated isocitrate dehydrogenase2 (IDH2) and superoxide dismutase2 (SOD2), accompanied with mitochondrial oxidative stress and mitochondrial morphologic alterations, were increased in ZDFRs, indicating inactivation of Sirt3. Additionally, expression of the NAD-degrading enzyme, CD38, was increased, and the NAD+/NADH (reduced NAD) ratio was reduced in the renal cortex of ZDFRs. High-glucose stimulation in cultured proximal tubular cells also resulted in an increase in acetylated IDH2/SOD2, CD38 overexpression and a reduction in the NAD+/NADH ratio. CONCLUSIONS: Enhancement of mitochondrial oxidative stress in the diabetic kidney was mediated by the reduction of Sirt3 activity. CD38 overexpression may be related to a reduction in the NAD+/NADH ratio in the diabetic kidney.


Assuntos
Rim/metabolismo , Mitocôndrias/metabolismo , Sirtuínas/metabolismo , Animais , Células Cultivadas , Humanos , Masculino , NAD/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Zucker , Sirtuínas/genética
20.
J Exerc Nutrition Biochem ; 21(3): 50-54, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29036766

RESUMO

PURPOSE: Although the fibroblast growth factor-21 (FGF-21) and irisin roles are well demonstrated in metabolic disease, there have been no reports investigating the effect of resistance exercise on FGF-21 and irisin levels in diabetic skeletal muscles. Therefore, this study aimed to investigate the change of FGF-21 and irisin levels in various skeletal muscles, and their association with muscle strength, following 8 weeks of resistance training using Zucker diabetic fatty rats (type 2 diabetic animal models). METHODS: Twenty-four male lean (Zucker lean control, ZLC) and diabetic (Zucker diabetic fatty, ZDF) rats (age, 8 weeks old) were separated into 3 groups, lean control (ZLC-Con, n=8), diabetic control (ZDF-Con, n=8), and diabetic exercise-trained groups (ZDF-Ex, n=8). The rats in ZDF-Ex were trained to climb a 1-m vertical (85 degrees inclined) ladder with weights. Resistance training was performed with 10 repetitions/day for 12 weeks (3 days/week). The skeletal muscle levels of FGF-21 and irisin were measured using enzyme-linked immunosorbent assays. RESULTS: The levels of FGF-21 in the soleus (SOL) and extensor digitorum longus muscles of ZDF-Ex were higher (p<0.05) compared to levels in ZDF-Con. Additionally, we found a significantly higher irisin level in the SOL muscles of ZDF-Ex compared to that in ZDF-Con. Moreover, we found that the levels of FGF-21 (R=0.532, p=0.02) and irisin (R=0.498, p=0.03) had significant correlations with grip strength. CONCLUSION: Based on these results, resistance training may be an efficient intervention for increasing FGF-21 and irisin levels in type 2 diabetic (T2DM) skeletal muscles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA