Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Stud Hist Philos Sci ; 107: 54-63, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137534

RESUMO

Evolution requires selection. Molecular/chemical/preDarwinian evolution is no exception. One molecule must be selected over another for molecular evolution to occur and advance. Evolution, however, has no goal. The laws of physics have no utilitarian desire, intent or proficiency. Laws and constraints are blind to "usefulness." How then were potential multi-step processes anticipated, valued and pursued by inanimate nature? Can orchestration of formal systems be physico-chemically spontaneous? The purely physico-dynamic self-ordering of Chaos Theory and irreversible non-equilibrium thermodynamic "engines of disequilibria conversion" achieve neither orchestration nor formal organization. Natural selection is a passive and after-the-fact-of-life selection. Darwinian selection reduces to the differential survival and reproduction of the fittest already-living organisms. In the case of abiogenesis, selection had to be 1) Active, 2) Pre-Function, and 3) Efficacious. Selection had to take place at the molecular level prior to the existence of non-trivial functional processes. It could not have been passive or secondary. What naturalistic mechanisms might have been at play?

2.
J Mol Evol ; 90(3-4): 307-323, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35666290

RESUMO

Recent findings, in vitro and in silico, are strengthening the idea of a simpler, earlier stage of genetically encoded proteins which used amino acids produced by prebiotic chemistry. These findings motivate a re-examination of prior work which has identified unusual properties of the set of twenty amino acids found within the full genetic code, while leaving it unclear whether similar patterns also characterize the subset of prebiotically plausible amino acids. We have suggested previously that this ambiguity may result from the low number of amino acids recognized by the definition of prebiotic plausibility used for the analysis. Here, we test this hypothesis using significantly updated data for organic material detected within meteorites, which contain several coded and non-coded amino acids absent from prior studies. In addition to confirming the well-established idea that "late" arriving amino acids expanded the chemistry space encoded by genetic material, we find that a prebiotically plausible subset of coded amino acids generally emulates the patterns found in the full set of 20, namely an exceptionally broad and even distribution of volumes and an exceptionally even distribution of hydrophobicities (quantified as logP) over a narrow range. However, the strength of this pattern varies depending on both the size and composition the library used to create a background (null model) for a random alphabet, and the precise definition of exactly which amino acids were present in a simpler, earlier code. Findings support the idea that a small sample size of amino acids caused previous ambiguous results, and further improvements in meteorite analysis, and/or prebiotic simulations will further clarify the nature and extent of unusual properties. We discuss the case of sulfur-containing amino acids as a specific and clear example and conclude by reviewing the potential impact of better understanding the chemical "logic" of a smaller forerunner to the standard amino acid alphabet.


Assuntos
Aminoácidos , Proteínas , Aminoácidos/química , Aminoácidos/genética , Código Genético , Humanos , Proteínas/química , Proteínas/genética
3.
Entropy (Basel) ; 24(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893007

RESUMO

We have proposed that the abiogenesis of life around the beginning of the Archean may have been an example of "spontaneous" microscopic dissipative structuring of UV-C pigments under the prevailing surface ultraviolet solar spectrum. The thermodynamic function of these Archean pigments (the "fundamental molecules of life"), as for the visible pigments of today, was to dissipate the incident solar light into heat. We have previously described the non-equilibrium thermodynamics and the photochemical mechanisms which may have been involved in the dissipative structuring of the purines adenine and hypoxanthine from the common precursor molecules of hydrogen cyanide and water under this UV light. In this article, we extend our analysis to include the production of the other two important purines, guanine and xanthine. The photochemical reactions are presumed to occur within a fatty acid vesicle floating on a hot (∼80 ∘C) neutral pH ocean surface exposed to the prevailing UV-C light. Reaction-diffusion equations are resolved under different environmental conditions. Significant amounts of adenine (∼10-5 M) and guanine (∼10-6 M) are obtained within 60 Archean days, starting from realistic concentrations of the precursors hydrogen cyanide and cyanogen (∼10-5 M).

4.
J Theor Biol ; 520: 110661, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-33684404

RESUMO

A series of prior publications has reported unusual properties of the set of genetically encoded amino acids shared by all known life. This work uses quantitative measures (descriptors) of size, charge and hydrophobicity to compare the distribution of the genetically encoded amino acids with random samples of plausible alternatives. Results show that the standard "alphabet" of amino acids established by the time of LUCA is distributed with unusual evenness over a broad range for the three, key physicochemical properties. However, different publications have used slightly different assumptions, including variations in the precise descriptors used, the set of plausible alternative molecules considered, and the format in which results have been presented. Here we consolidate these findings into a unified framework in order to clarify unusual features. We find that in general, the remarkable features of the full set of 20 genetically encoded amino acids are robust when compared with random samples drawn from a densely populated picture of plausible, alternative L-α-amino acids. In particular, the genetically encoded set is distributed across an exceptionally broad range of volumes, and distributed exceptionally evenly within a modest range of hydrophobicities. Surprisingly, range and evenness of charge (pKa) is exceptional only for the full amino acid structures, not for their sidechains - a result inconsistent with prior interpretations involving the role that amino acid sidechains play within protein sequences. In stark contrast, these remarkable features are far less clear when the prebiotically plausible subset of genetically encoded amino acids is compared with a much smaller pool of prebiotically plausible alternatives. By considering the nature of the "optimality theory" approach taken to derive these and prior insights, we suggest productive avenues for further research.


Assuntos
Aminoácidos , Sequência de Aminoácidos , Aminoácidos/genética , Interações Hidrofóbicas e Hidrofílicas
5.
Acta Biotheor ; 69(3): 303-318, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33249536

RESUMO

Evolution in modern life requires high replication fidelity to allow for natural selection. A simulation model utilizing simulated phenotype data on cellular probability of survival was developed to determine how self-replication fidelity could evolve in early life. The results indicate that initial survivability and replication fidelity both contribute to overall fitness as measured by growth rates of the cell population. Survival probability was the more dominant feature, and evolution was possible even with zero replication fidelity. A derived formula for the relationship of survival probability and replication fidelity with growth rate was consistent with the simulated empirical data. Quantitative assessment of continuity and other evidence was obtained for a saltation (non-continuous) evolutionary process starting from low to moderate levels of survival probability and self-replication fidelity to reach the high levels seen in modern life forms.


Assuntos
Seleção Genética , Mutação , Fenótipo
6.
Molecules ; 26(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34885977

RESUMO

Very simple chemistry can result in the rapid and high-yield production of key prebiotic inorganic molecules. The two reactions investigated here involve such simple systems, (a) carbon disulfide (CS2) and acetate (CH3COO¯) and (b) sulfur dioxide (SO2) and formate (HCOO¯). They have been carried out under non-aqueous conditions, either in an organic solvent or with a powdered salt exposed to the requisite gas. Under such dry conditions the first reaction generated the thioacetate anion [CH3COS]¯ while the second produced the radical [SO2·]¯anion. Anhydrous conditions are not rare and may have arisen on the early earth at sites where an interface between different phases (liquid/gas or solid/gas) could be generated. This is one way to rationalize the formation of molecules and ions (such as we have produced) necessary in the prebiotic world. Interpretation of our results provides insight into scenarios consistent with the more prominent theories of abiogenesis.

7.
Entropy (Basel) ; 23(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33579010

RESUMO

The non-equilibrium thermodynamics and the photochemical reaction mechanisms are described which may have been involved in the dissipative structuring, proliferation and complexation of the fundamental molecules of life from simpler and more common precursors under the UVC photon flux prevalent at the Earth's surface at the origin of life. Dissipative structuring of the fundamental molecules is evidenced by their strong and broad wavelength absorption bands in the UVC and rapid radiationless deexcitation. Proliferation arises from the auto- and cross-catalytic nature of the intermediate products. Inherent non-linearity gives rise to numerous stationary states permitting the system to evolve, on amplification of a fluctuation, towards concentration profiles providing generally greater photon dissipation through a thermodynamic selection of dissipative efficacy. An example is given of photochemical dissipative abiogenesis of adenine from the precursor HCN in water solvent within a fatty acid vesicle floating on a hot ocean surface and driven far from equilibrium by the incident UVC light. The kinetic equations for the photochemical reactions with diffusion are resolved under different environmental conditions and the results analyzed within the framework of non-linear Classical Irreversible Thermodynamic theory.

8.
Bioessays ; 40(7): e1700179, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29870581

RESUMO

Origin of life models based on "energized assemblages of building blocks" are untenable in principle. This is fundamentally a consequence of the fact that any living system is in a physical state that is extremely far from equilibrium, a condition it must itself build and sustain. This in turn requires that it carries out all of its molecular transformations-obligatorily those that convert, and thereby create, disequilibria-using case-specific mechanochemical macromolecular machines. Mass-action solution chemistry is quite unable to do this. We argue in Part 2 of this series that this inherent dependence of life on disequilibria-converting macromolecular machines is also an obligatory requirement for life at its emergence. Therefore, life must have been launched by the operation of abiotic macromolecular machines driven by abiotic, but specifically "life-like", disequilibria, coopted from mineral precipitates that are chemically and physically active. Models grounded in "chemistry-in-a-bag" ideas, however energized, should not be considered.


Assuntos
Vida , Origem da Vida , Biologia de Sistemas , Evolução Biológica , Substâncias Macromoleculares/química , Termodinâmica
9.
Mol Biol Evol ; 35(2): 404-416, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29126321

RESUMO

Even the simplest organisms are too complex to have spontaneously arisen fully formed, yet precursors to first life must have emerged ab initio from their environment. A watershed event was the appearance of the first entity capable of evolution: the Initial Darwinian Ancestor. Here, we suggest that nucleopeptide reciprocal replicators could have carried out this important role and contend that this is the simplest way to explain extant replication systems in a mathematically consistent way. We propose short nucleic acid templates on which amino-acylated adapters assembled. Spatial localization drives peptide ligation from activated precursors to generate phosphodiester-bond-catalytic peptides. Comprising autocatalytic protein and nucleic acid sequences, this dynamical system links and unifies several previous hypotheses and provides a plausible model for the emergence of DNA and the operational code.


Assuntos
Modelos Químicos , Precursores de Ácido Nucleico/metabolismo , Nucleotídeos/metabolismo , Origem da Vida , Peptídeos/metabolismo , Polimerização
10.
J Mol Evol ; 87(9-10): 271-288, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659374

RESUMO

The presence of most of the atoms involved in the building up of living cells can be explained by their intrinsic physico-chemical properties. Yet, the involvement of the alkali metal potassium cation (K+) is somewhat of a mystery for most scenarios of origins of life, as this element is less abundant than its sodium counterpart in sea water, the original medium bathing the majority of proposed sites as the cradle of life. Potassium is involved in key processes that could as well have been fulfilled by sodium (such as maintenance of an electrochemical potential or homeostatic osmolarity). However, K+ is also required for the setup of a functional translation machinery, as well as for a fairly enigmatic metabolic pathway involving the usually toxic metabolite methylglyoxal. Here we discuss the possibility that potassium has been selected because of some of its idiosyncratic properties or whether it is just the outcome of the accidental place where life was born. Specific physico-chemical properties of the K+ ion would argue in favour of positive selection in the course of life's evolution. By contrast, the latter explanation would require that life originated on potassium-rich environments, possibly continental but yet of unknown location, making K+ presence just a frozen accident of evolution.


Assuntos
Potássio/metabolismo , Animais , Humanos , Minerais/química , Minerais/metabolismo , Modelos Moleculares , Potássio/química , Sódio/metabolismo
11.
J Theor Biol ; 474: 48-51, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31059714

RESUMO

The complex physicochemical structures and chemical reactions in living organism have some common features: (1) The life processes take place in the cytosol in the cells, which, from a physicochemical point of view is an emulsion of biomolecules in a dilute aqueous suspension. (2) All living systems are homochiral with respect to the units of amino acids and carbohydrates, but (some) proteins are chiral unstable in the cytosol. (3) And living organism are mortal. These three common features together give a prerequisite for the prebiotic self-assembly at the start of the Abiogenesis. Here we argue, that it all together indicates, that the prebiotic self-assembly of structures and reactions took place in a more saline environment, whereby the homochirality of proteins not only could be obtained, but also preserved. A more saline environment for the prebiotic self-assembly of organic molecules and establishment of biochemical reactions could have been the hydrothermal vents.


Assuntos
Modelos Biológicos , Origem da Vida
12.
Bioorg Med Chem ; 27(12): 2292-2297, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30871860

RESUMO

The biochemistry of all living organisms uses complex, enzyme-catalyzed metabolic reaction networks. Yet, at life's origins, enzymes had not yet evolved. Therefore, it has been postulated that non-enzymatic metabolic pathways predated their enzymatic counterparts. In this account article, we describe our recent work to evaluate whether two ancient carbon fixation pathways, the rTCA (reductive tricarboxylic acid) cycle and the reductive AcCoA (Wood-Ljungdahl) pathway, could have operated without enzymes and therefore have originated as prebiotic chemistry. We also describe the discovery of an Fe2+-promoted complex reaction network that may represent a prebiotic predecessor to the TCA and glyoxylate cycles. The collective results support the idea that most central metabolic pathways could have roots in prebiotic chemistry.


Assuntos
Redes e Vias Metabólicas , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Ciclo do Ácido Cítrico , Enzimas/metabolismo , Glioxilatos/metabolismo , Ferro/química , Ferro/metabolismo
13.
Orig Life Evol Biosph ; 49(1-2): 19-47, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31302843

RESUMO

Pyrite and organic matter closely coexist in some hydrothermally-altered gabbroic xenoliths from the Hyblean Plateau, Sicily. The representative sample consists of plagioclase, Fe-oxides, clinopyroxene, pyrite and minor amounts of many other minerals. Plagioclase displays incipient albitization, clinopyroxene is deeply corroded. Pyrite grains are widely replaced by spongy-textured magnetite, which locally hosts Ca-(and Fe-)sulfate micrograins and blebs of condensed organic matter. Whole-rock trace element distribution evidences that incompatible elements, particularly the fluid-mobile Ba, U and Pb, are significantly enriched with respect to N-MORB values. The mineralogical and geochemical characteristics of the sample, and its U-Pb zircon age of 216.9 ± 6.7 MA, conform to the xenolith-based viewpoint that the unexposed Hyblean basement is a relict of the Ionian Tethys lithospheric domain, mostly consisting of abyssal-type serpentinized peridotites with small gabbroic intrusions. Circulating hydrothermal fluids there favored the formation of hydrocarbons trough Fischer-Tropsch-type organic synthesis, giving also rise to sulfidization episodes. Subsequent variations in temperature and redox conditions of the system induced partial de-sulfidization, Fe-oxides precipitation and sulfate-forming reactions, also promoting poly-condensation and aromatization of the already-formed hydrocarbons. Here we show organic matter adhering to a crystal face of a microscopic pyrite grain. Pyrite surfaces, as abiotic analogues of enzymes, can adsorb and concentrate organic molecules, also acting as catalysts for a broad range of proto-biochemical reactions. The present data therefore may support established abiogenesis models suggesting that pyrite surfaces carried out primitive metabolic cycles in suitable environments of the early Earth, such as endolithic recesses in mafic rocks permeated by hydrothermal fluids.


Assuntos
Evolução Química , Ferro/química , Minerais/química , Compostos Orgânicos/química , Sulfetos/química , Sicília
14.
J Mol Evol ; 86(3-4): 172-183, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29594426

RESUMO

The hypothesis of hot volcanic organic stream as the most probable and geologically plausible environment for abiogenic polycondensation is proposed. The primary synthesis of organic compounds is considered as result of an explosive volcanic (perhaps, meteorite-induced) eruption. The eruption was accompanied by a shock wave propagating in the primeval atmosphere and resulting in the formation of hot cloud of simple organic compounds-aldehydes, alcohols, amines, amino alcohols, nitriles, and amino acids-products, which are usually obtained under the artificial conditions in the spark-discharge experiments. The subsequent cooling of the organic cloud resulted in a gradual condensation and a serial precipitation of organic compounds (in order of decreasing boiling point values) into the liquid phase forming a hot, viscous and muddy organic stream (named "lithorheos"). That stream-even if the time of its existence was short-is considered here as a geologically plausible environment for abiogenic polycondensation. The substances successively prevailing in such a stream were cyanamide, acetamide, formamide, glycolonitrile, acetonitrile. An important role was played by mineral (especially, phosphate-containing) grains (named "lithosomes"), whose surface was modified with heterocyclic nitrogen compounds synthesized in the course of eruption. When such grains got into hot organic streams, their surface catalytic centers (named "lithozymes") played a decisive role in the emergence, facilitation and maintenance of prebiotic reactions and key processes characteristic of living systems. Owing to its cascade structure, the stream was a factor underlying the formation of mineral-polymeric aggregates (named "lithocytes") in the small natural streambed cavities (dimples)-as well as a factor of their further spread within larger geological locations which played a role of chemo-ecological niches. All three main stages of prebiotic evolution (primary organic synthesis, polycondensation, and formation of proto-cellular structures) are combined within a common dynamic geological process. We suppose macromolecular evolution had an extremely fast, "flash" start: the period from volcanic eruption to formation of lithocyte "populations" took not million years but just several tens of minutes. The scenario proposed can be verified experimentally with a three-module setup working with principles of dynamic (flow) chemistry in its core element.


Assuntos
Evolução Química , Temperatura Alta , Minerais/química , Compostos Orgânicos/química , Erupções Vulcânicas , Ácidos Nucleicos/química , Peptídeos/química
15.
J Theor Biol ; 451: 117-121, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29752951

RESUMO

Biosystems contain an almost infinite amount of vital important details, which together ensure their life. There are, however, some common structures and reactions in the systems: the homochirality of carbohydrates and proteins, the metabolism and the genetics. The Abiogenesis, or the origin of life, is probably not a result of a series of single events, but rather the result of a gradual process with increasing complexity of molecules and chemical reactions, and the prebiotic synthesis of molecules might not have left a trace of the establishment of structures and reactions at the beginning of the evolution. But alternatively, one might be able to determine some order in the formation of the chemical denominators in the Abiogenesis. Here we review experimental results and present a model of the start of the Abionenesis, where the spontaneous formation of homochirality in proteins is the precondition for the establishment of homochirality of carbohydrates and for the metabolism at the start of the Abiogenesis.


Assuntos
Evolução Química , Modelos Teóricos , Origem da Vida , Proteínas/química , Metabolismo dos Carboidratos , Carboidratos/química , Carboidratos/genética , Prebióticos , Proteínas/genética , Proteínas/metabolismo , Estereoisomerismo
16.
J Mol Evol ; 82(4-5): 163-72, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27048216

RESUMO

The hypothesis of direct coding, assuming the direct contact of pairs of coding molecules with amino acid side chains in hollow unit cells (cellules) of a regular crystal-structure mineral is proposed. The coding nucleobase-containing molecules in each cellule (named "lithocodon") partially shield each other; the remaining free space determines the stereochemical character of the filling side chain. Apatite-group minerals are considered as the most preferable for this type of coding (named "lithocoding"). A scheme of the cellule with certain stereometric parameters, providing for the isomeric selection of contacting molecules is proposed. We modelled the filling of cellules with molecules involved in direct coding, with the possibility of coding by their single combination for a group of stereochemically similar amino acids. The regular ordered arrangement of cellules enables the polymerization of amino acids and nucleobase-containing molecules in the same direction (named "lithotranslation") preventing the shift of coding. A table of the presumed "LithoCode" (possible and optimal lithocodon assignments for abiogenically synthesized α-amino acids involved in lithocoding and lithotranslation) is proposed. The magmatic nature of the mineral, abiogenic synthesis of organic molecules and polymerization events are considered within the framework of the proposed "volcanic scenario".


Assuntos
Aminoácidos/genética , Código Genético/genética , Aminoácidos/química , Apatitas , Minerais , Origem da Vida
17.
Orig Life Evol Biosph ; 46(1): 67-79, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26419865

RESUMO

Physical processes that characterize living matter are qualitatively distinct in that they involve encoding and transfer of specific types of information. Such information plays an active part in the control of events that are ultimately linked to the capacity of the system to persist and multiply. This algorithmicity of life is a key prerequisite for its Darwinian evolution, driven by natural selection acting upon stochastically arising variations of the encoded information. The concept of evolvability attempts to define the total capacity of a system to evolve new encoded traits under appropriate conditions, i.e., the accessible section of total morphological space. Since this is dependent on previously evolved regulatory networks that govern information flow in the system, evolvability itself may be regarded as an evolved ability. The way information is physically written, read and modified in living cells (the "coding concept") has not changed substantially during the whole history of the Earth's biosphere. This biosphere, be it alone or one of many, is, accordingly, itself a product of natural selection, since the overall evolvability conferred by its coding concept (nucleic acids as information carriers with the "rulebook of meanings" provided by codons, as well as all the subsystems that regulate various conditional information-reading modes) certainly played a key role in enabling this biosphere to survive up to the present, through alterations of planetary conditions, including at least five catastrophic events linked to major mass extinctions. We submit that, whatever the actual prebiotic physical and chemical processes may have been on our home planet, or may, in principle, occur at some time and place in the Universe, a particular coding concept, with its respective potential to give rise to a biosphere, or class of biospheres, of a certain evolvability, may itself be regarded as a unit (indeed the arch-unit) of natural selection.


Assuntos
Evolução Biológica , Seleção Genética , Exobiologia , Origem da Vida
18.
Proc Natl Acad Sci U S A ; 110(33): 13283-8, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23872841

RESUMO

Pyruvate is an important "hub" metabolite that is a precursor for amino acids, sugars, cofactors, and lipids in extant metabolic networks. Pyruvate has been produced under simulated hydrothermal vent conditions from alkyl thiols and carbon monoxide in the presence of transition metal sulfides at 250 °C [Cody GD et al. (2000) Science 289(5483):1337-1340], so it is plausible that pyruvate was formed in hydrothermal systems on the early earth. We report here that pyruvate reacts readily in the presence of transition metal sulfide minerals under simulated hydrothermal vent fluids at more moderate temperatures (25-110 °C) that are more conducive to survival of biogenic molecules. We found that pyruvate partitions among five reaction pathways at rates that depend upon the nature of the mineral present; the concentrations of H2S, H2, and NH4Cl; and the temperature. In most cases, high yields of one or two primary products are found due to preferential acceleration of certain pathways. Reactions observed include reduction of ketones to alcohols and aldol condensation, both reactions that are common in extant metabolic networks. We also observed reductive amination to form alanine and reduction to form propionic acid. Amino acids and fatty acids formed by analogous processes may have been important components of a protometabolic network that allowed the emergence of life.


Assuntos
Fontes Hidrotermais/química , Modelos Químicos , Ácido Pirúvico/química , Aldeídos/química , Catálise , Cetonas/química , Metais/química , Estrutura Molecular , Oxirredução , Sulfetos/química , Temperatura
19.
Astrobiology ; 24(S1): S76-S106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498817

RESUMO

Within the first billion years of Earth's history, the planet transformed from a hot, barren, and inhospitable landscape to an environment conducive to the emergence and persistence of life. This chapter will review the state of knowledge concerning early Earth's (Hadean/Eoarchean) geochemical environment, including the origin and composition of the planet's moon, crust, oceans, atmosphere, and organic content. It will also discuss abiotic geochemical cycling of the CHONPS elements and how these species could have been converted to biologically relevant building blocks, polymers, and chemical networks. Proposed environments for abiogenesis events are also described and evaluated. An understanding of the geochemical processes under which life may have emerged can better inform our assessment of the habitability of other worlds, the potential complexity that abiotic chemistry can achieve (which has implications for putative biosignatures), and the possibility for biochemistries that are vastly different from those on Earth.


Assuntos
Planeta Terra , Planetas , Lua , Atmosfera/química , Oceanos e Mares
20.
Theory Biosci ; 143(2): 153-160, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38722466

RESUMO

This study proposes a landscape-based scenario for the origin of viruses and cells, focusing on the adaptability of preexisting replicons from the RNP (ribonucleoprotein) world. The scenario postulates that life emerged in a subterranean "warm little pond" where organic matter accumulated, resulting in a prebiotic soup rich in nucleotides, amino acids, and lipids, which served as nutrients for the first self-replicating entities. Over time, the RNA world, followed by the RNP world, came into existence. Replicators/replicons, along with the nutritious soup from the pond, were washed out into the river and diluted. Lipid bubbles, enclosing organic matter, provided the last suitable environment for replicons to replicate. Two survival strategies emerged under these conditions: cell-like structures that obtained nutrients by merging with new bubbles, and virus-like entities that developed various techniques to transmit themselves to fresh bubbles. The presented hypothesis provides the possibility for the common origin of cells and viruses on rocky worlds hosting liquid water, like Earth.


Assuntos
Origem da Vida , Vírus , Aminoácidos/química , Lipídeos/química , Nucleotídeos , RNA , Evolução Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA