Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
1.
Cell ; 173(6): 1468-1480.e9, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29731167

RESUMO

The cell wall, a defining feature of plants, provides a rigid structure critical for bonding cells together. To overcome this physical constraint, plants must process cell wall linkages during growth and development. However, little is known about the mechanism guiding cell-cell detachment and cell wall remodeling. Here, we identify two neighboring cell types in Arabidopsis that coordinate their activities to control cell wall processing, thereby ensuring precise abscission to discard organs. One cell type produces a honeycomb structure of lignin, which acts as a mechanical "brace" to localize cell wall breakdown and spatially limit abscising cells. The second cell type undergoes transdifferentiation into epidermal cells, forming protective cuticle, demonstrating de novo specification of epidermal cells, previously thought to be restricted to embryogenesis. Loss of the lignin brace leads to inadequate cuticle formation, resulting in surface barrier defects and susceptible to infection. Together, we show how plants precisely accomplish abscission.


Assuntos
Arabidopsis/fisiologia , Parede Celular/metabolismo , Lignina/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Membrana Celular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , NADPH Oxidases/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Pseudomonas syringae , Propriedades de Superfície
2.
EMBO J ; 43(17): 3752-3786, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009675

RESUMO

Cytokinetic abscission marks the final stage of cell division, during which the daughter cells physically separate through the generation of new barriers, such as the plasma membrane or cell wall. While the contractile ring plays a central role during cytokinesis in bacteria, fungi and animal cells, the process diverges in Apicomplexa. In Toxoplasma gondii, two daughter cells are formed within the mother cell by endodyogeny. The mechanism by which the progeny cells acquire their plasma membrane during the disassembly of the mother cell, allowing daughter cells to emerge, remains unknown. Here we identify and characterize five T. gondii proteins, including three protein phosphatase 2A subunits, which exhibit a distinct and dynamic localization pattern during parasite division. Individual downregulation of these proteins prevents the accumulation of plasma membrane at the division plane, preventing the completion of cellular abscission. Remarkably, the absence of cytokinetic abscission does not hinder the completion of subsequent division cycles. The resulting progeny are able to egress from the infected cells but fail to glide and invade, except in cases of conjoined twin parasites.


Assuntos
Citocinese , Proteína Fosfatase 2 , Proteínas de Protozoários , Toxoplasma , Toxoplasma/enzimologia , Toxoplasma/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Membrana Celular/metabolismo , Animais , Divisão Celular , Humanos
3.
Mol Cell ; 75(1): 131-144.e3, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31204167

RESUMO

In Saccharomyces cerevisiae, dicentric chromosomes stemming from telomere fusions preferentially break at the fusion. This process restores a normal karyotype and protects chromosomes from the detrimental consequences of accidental fusions. Here, we address the molecular basis of this rescue pathway. We observe that tandem arrays tightly bound by the telomere factor Rap1 or a heterologous high-affinity DNA binding factor are sufficient to establish breakage hotspots, mimicking telomere fusions within dicentrics. We also show that condensins generate forces sufficient to rapidly refold dicentrics prior to breakage by cytokinesis and are essential to the preferential breakage at telomere fusions. Thus, the rescue of fused telomeres results from a condensin- and Rap1-driven chromosome folding that favors fusion entrapment where abscission takes place. Because a close spacing between the DNA-bound Rap1 molecules is essential to this process, Rap1 may act by stalling condensins.


Assuntos
Adenosina Trifosfatases/genética , Cromossomos Fúngicos/metabolismo , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/genética , Telômero/metabolismo , Fatores de Transcrição/genética , Adenosina Trifosfatases/metabolismo , Pontos de Quebra do Cromossomo , Cromossomos Fúngicos/ultraestrutura , Citocinese/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Cariótipo , Modelos Genéticos , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Shelterina , Telômero/ultraestrutura , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo
4.
Bioessays ; 46(5): e2400011, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403725

RESUMO

How chromatin bridges are detected by the abscission checkpoint during mammalian cell division is unknown. Here, we discuss recent findings from our lab showing that the DNA topoisomerase IIα (Top2α) enzyme binds to catenated ("knotted") DNA next to the midbody and forms abortive Top2-DNA cleavage complexes (Top2ccs) on chromatin bridges. Top2ccs are then processed by the proteasome to promote localization of the DNA damage sensor protein Rad17 to Top2-generated double-strand DNA ends on DNA knots. In turn, Rad17 promotes local recruitment of the MRN protein complex and downstream ATM-Chk2-INCENP signaling to delay abscission and prevent chromatin bridge breakage in cytokinesis.


Assuntos
Cromatina , Citocinese , DNA Topoisomerases Tipo II , Proteínas de Ligação a DNA , Humanos , DNA Topoisomerases Tipo II/metabolismo , Citocinese/fisiologia , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , DNA/metabolismo , Transdução de Sinais
5.
Plant J ; 118(6): 2188-2201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581688

RESUMO

Moving from sole cropping to intercropping is a transformative change in agriculture, contributing to yield. Soybeans adapt to light conditions in intercropping by adjusting the onset of reproduction and the inflorescence architecture to optimize reproductive success. Maize-soybean strip intercropping (MS), maize-soybean relay strip intercropping (IS), and sole soybean (SS) systems are typical soybean planting systems with significant differences in light environments during growth periods. To elucidate the effect of changes in the light environment on soybean flowering processes and provide a theoretical basis for selecting suitable varieties in various planting systems to improve yields, field experiments combining planting systems (IS, MS, and SS) and soybean varieties (GQ8, GX7, ND25, and NN996) were conducted in 2021 and 2022. Results showed that growth recovery in the IS resulted in a balance in the expression of TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT) in the meristematic tissues of soybeans, which promoted the formation of new branches or flowers. IS prolonged the flowering time (2-7 days) and increased the number of forming flowers compared with SS (93.0 and 169%) and MS (67.3 and 103.3%) at the later soybean flowering stage. The higher carbon and nitrogen content in the middle and bottom canopies of soybean contributed to decreased flower abscission by 26.7 and 30.2%, respectively, compared with SS. Canopy light environment recovery promoted branch and flower formation and transformation of flowers into pods with lower flower-pod abscission, which contributed to elevating soybean yields in late-maturing and multibranching varieties (ND25) in IS.


Assuntos
Flores , Glycine max , Luz , Zea mays , Glycine max/fisiologia , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Zea mays/fisiologia , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Flores/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Agricultura/métodos , Produção Agrícola/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Produtos Agrícolas/crescimento & desenvolvimento
6.
J Cell Sci ; 136(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37387255

RESUMO

Cell division involves separating the genetic material and cytoplasm of a mother cell into two daughter cells. The last step of cell division, abscission, consists of cutting the cytoplasmic bridge, a microtubule-rich membranous tube connecting the two cells, which contains the midbody, a dense proteinaceous structure. Canonically, abscission occurs 1-3 h after anaphase. However, in certain cases, abscission can be severely delayed or incomplete. Abscission delays can be caused by mitotic defects that activate the abscission 'NoCut' checkpoint in tumor cells, as well as when cells exert abnormally strong pulling forces on the bridge. Delayed abscission can also occur during normal organism development. Here, we compare the mechanisms triggering delayed and incomplete abscission in healthy and disease scenarios. We propose that NoCut is not a bona fide cell cycle checkpoint, but a general mechanism that can control the dynamics of abscission in multiple contexts.


Assuntos
Microtúbulos , Células-Tronco , Animais , Citoplasma , Citosol , Anáfase
7.
Plant J ; 113(5): 954-968, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36587275

RESUMO

Reactive oxygen species (ROS) have been emerging as a key regulator in plant organ abscission. However, the mechanism underlying the regulation of ROS homeostasis in the abscission zone (AZ) is not completely established. Here, we report that a DOF (DNA binding with one finger) transcription factor LcDOF5.6 can suppress the litchi fruitlet abscission through repressing the ROS accumulation in fruitlet AZ (FAZ). The expression of LcRbohD, a homolog of the Arabidopsis RBOHs that are critical for ROS production, was significantly increased during the litchi fruitlet abscission, in parallel with an increased accumulation of ROS in FAZ. In contrast, silencing of LcRbohD reduced the ROS accumulation in FAZ and decreased the fruitlet abscission in litchi. Using in vitro and in vivo assays, we revealed that LcDOF5.6 was shown to inhibit the expression of LcRbohD via direct binding to its promoter. Consistently, silencing of LcDOF5.6 increased the expression of LcRbohD, concurrently with higher ROS accumulation in FAZ and increased fruitlet abscission. Furthermore, the expression of key genes (LcIDL1, LcHSL2, LcACO2, LcACS1, and LcEIL3) in INFLORESCENCE DEFICIENT IN ABSCISSION signaling and ethylene pathways were altered in LcRbohD-silenced and LcDOF5.6-silenced FAZ cells. Taken together, our results demonstrate an important role of the LcDOF5.6-LcRbohD module during litchi fruitlet abscission. Our findings provide new insights into the molecular regulatory network of organ abscission.


Assuntos
Arabidopsis , Litchi , Espécies Reativas de Oxigênio/metabolismo , Litchi/genética , Litchi/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
8.
Plant Mol Biol ; 114(5): 99, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285107

RESUMO

Leaf senescence and abscission in autumn are critical phenological events in deciduous woody perennials. After leaf fall, dormant buds remain on deciduous woody perennials, which then enter a winter dormancy phase. Thus, leaf fall is widely believed to be linked to the onset of dormancy. In Rosaceae fruit trees, DORMANCY-ASSOCIATED MADS-box (DAM) transcription factors control bud dormancy. However, apart from their regulatory effects on bud dormancy, the biological functions of DAMs have not been thoroughly characterized. In this study, we revealed a novel DAM function influencing leaf senescence and abscission in autumn. In Prunus mume, PmDAM6 expression was gradually up-regulated in leaves during autumn toward leaf fall. Our comparative transcriptome analysis using two RNA-seq datasets for the leaves of transgenic plants overexpressing PmDAM6 and peach (Prunus persica) DAM6 (PpeDAM6) indicated Prunus DAM6 may up-regulate the expression of genes involved in ethylene biosynthesis and signaling as well as leaf abscission. Significant increases in 1-aminocyclopropane-1-carboxylate accumulation and ethylene emission in DEX-treated 35S:PmDAM6-GR leaves reflect the inductive effect of PmDAM6 on ethylene biosynthesis. Additionally, ethephon treatments promoted autumn leaf senescence and abscission in apple and P. mume, mirroring the changes due to PmDAM6 overexpression. Collectively, these findings suggest that PmDAM6 may induce ethylene emission from leaves, thereby promoting leaf senescence and abscission. This study clarified the effects of Prunus DAM6 on autumn leaf fall, which is associated with bud dormancy onset. Accordingly, in Rosaceae, DAMs may play multiple important roles affecting whole plant growth during the tree dormancy induction phase.


Assuntos
Etilenos , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Proteínas de Plantas , Prunus , Etilenos/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Dormência de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Senescência Vegetal , Plantas Geneticamente Modificadas , Prunus/genética , Prunus/crescimento & desenvolvimento , Prunus/fisiologia , Prunus persica/genética , Prunus persica/crescimento & desenvolvimento , Prunus persica/metabolismo , Estações do Ano
9.
Plant Cell Physiol ; 65(7): 1197-1211, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38635460

RESUMO

JOINTLESS (J) was isolated in tomato (Solanum lycopersicum) from mutants lacking a flower pedicel abscission zone (AZ) and encodes a MADS-box protein of the SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 subfamily. The loss of J function also causes the return to leaf initiation in the inflorescences, indicating a pivotal role in inflorescence meristem identity. Here, we compared jointless (j) mutants in different accessions that exhibit either an indeterminate shoot growth, producing regular sympodial segments, or a determinate shoot growth, due to the reduction of sympodial segments and causal mutation of the SELF-PRUNING (SP) gene. We observed that the inflorescence phenotype of j mutants is stronger in indeterminate (SP) accessions such as Ailsa Craig (AC), than in determinate (sp) ones, such as Heinz (Hz). Moreover, RNA-seq analysis revealed that the return to vegetative fate in j mutants is accompanied by expression of SP, which supports conversion of the inflorescence meristem to sympodial shoot meristem in j inflorescences. Other markers of vegetative meristems such as APETALA2c and branching genes such as BRANCHED 1 (BRC1a/b) were differentially expressed in the inflorescences of j(AC) mutant. We also found in the indeterminate AC accession that J represses homeotic genes of B- and C-classes and that its overexpression causes an oversized leafy calyx phenotype and has a dominant negative effect on AZ formation. A model is therefore proposed where J, by repressing shoot fate and influencing reproductive organ formation, acts as a key determinant of inflorescence meristems.


Assuntos
Regulação da Expressão Gênica de Plantas , Inflorescência , Meristema , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/genética , Inflorescência/crescimento & desenvolvimento , Inflorescência/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação , Fenótipo
10.
BMC Plant Biol ; 24(1): 182, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475753

RESUMO

BACKGROUND: Cotton boll shedding is one of the main factors adversely affecting the cotton yield. During the cotton plant growth period, low light conditions can cause cotton bolls to fall off prematurely. In this study, we clarified the regulatory effects of low light intensity on cotton boll abscission by comprehensively analyzing the transcriptome and metabolome. RESULTS: When the fruiting branch leaves were shaded after pollination, all of the cotton bolls fell off within 5 days. Additionally, H2O2 accumulated during the formation of the abscission zone. Moreover, 10,172 differentially expressed genes (DEGs) and 81 differentially accumulated metabolites (DAMs) were identified. A KEGG pathway enrichment analysis revealed that the identified DEGs and DAMs were associated with plant hormone signal transduction and flavonoid biosynthesis pathways. The results of the transcriptome analysis suggested that the expression of ethylene (ETH) and abscisic acid (ABA) signaling-related genes was induced, which was in contrast to the decrease in the expression of most of the IAA signaling-related genes. A combined transcriptomics and metabolomics analysis revealed that flavonoids may help regulate plant organ abscission. A weighted gene co-expression network analysis detected two gene modules significantly related to abscission. The genes in these modules were mainly related to exosome, flavonoid biosynthesis, ubiquitin-mediated proteolysis, plant hormone signal transduction, photosynthesis, and cytoskeleton proteins. Furthermore, TIP1;1, UGT71C4, KMD3, TRFL6, REV, and FRA1 were identified as the hub genes in these two modules. CONCLUSIONS: In this study, we elucidated the mechanisms underlying cotton boll abscission induced by shading on the basis of comprehensive transcriptomics and metabolomics analyses of the boll abscission process. The study findings have clarified the molecular basis of cotton boll abscission under low light intensity, and suggested that H2O2, phytohormone, and flavonoid have the potential to affect the shedding process of cotton bolls under low light stress.


Assuntos
Reguladores de Crescimento de Plantas , Transcriptoma , Gossypium/genética , Peróxido de Hidrogênio/metabolismo , Perfilação da Expressão Gênica/métodos , Metaboloma , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas
11.
BMC Plant Biol ; 24(1): 771, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39134964

RESUMO

BACKGROUND: In Angiosperms, the continuation of plant species is intricately dependent on the funiculus multifaceted role in nutrient transport, mechanical support, and dehiscence of seeds. SEEDSTICK (STK) is a MADS-box transcription factor involved in seed size and abscission, and one of the few genes identified as affecting funiculus growth. Given the importance of the funiculus to a correct seed development, allied with previous phenotypic observations of stk mutants, we performed a transcriptomic analysis of stk funiculi from floral stage 17, using RNA-sequencing, to infer on the deregulated networks of genes. RESULTS: The generated dataset of differentially expressed genes was enriched with cell wall biogenesis, cell cycle, sugar metabolism and transport terms, all in accordance with stk phenotype observed in funiculi from floral stage 17. We selected eight differentially expressed genes for transcriptome validation using qPCR and/or promoter reporter lines. Those genes were involved with abscission, seed development or novel functions in stk funiculus, such as hormones/secondary metabolites transport. CONCLUSION: Overall, the analysis performed in this study allowed delving into the STK-network established in Arabidopsis funiculus, fulfilling a literature gap. Simultaneously, our findings reinforced the reliability of the transcriptome, making it a valuable resource for candidate genes selection for functional genetic studies in the funiculus. This will enhance our understanding on the regulatory network controlled by STK, on the role of the funiculus and how seed development may be affected by them.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Domínio MADS , Sementes , Transcriptoma , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Fertilização/genética
12.
New Phytol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39061105

RESUMO

Abscission is the shedding of plant organs in response to developmental and environmental cues. Abscission involves cell separation between two neighboring cell types, residuum cells (RECs) and secession cells (SECs) in the floral abscission zone (AZ) in Arabidopsis thaliana. However, the regulatory mechanisms behind the spatial determination that governs cell separation are largely unknown. The class I KNOTTED-like homeobox (KNOX) transcription factor BREVIPEDICELLUS (BP) negatively regulates AZ cell size and number in Arabidopsis. To identify new players participating in abscission, we performed a genetic screen by activation tagging a weak complementation line of bp-3. We identified the mutant ebp1 (enhancer of BP1) displaying delayed floral organ abscission. The ebp1 mutant showed a concaved surface in SECs and abnormally stacked cells on the top of RECs, in contrast to the precisely separated surface in the wild-type. Molecular and histological analyses revealed that the transcriptional programming during cell differentiation in the AZ is compromised in ebp1. The SECs of ebp1 have acquired REC-like properties, including cuticle formation and superoxide production. We show that SEPARATION AFFECTING RNA-BINDING PROTEIN1 (SARP1) is upregulated in ebp1 and plays a role in the establishment of the cell separation layer during floral organ abscission in Arabidopsis.

13.
J Exp Bot ; 75(8): 2417-2434, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294133

RESUMO

Plants shed organs such as leaves, petals, or fruits through the process of abscission. Monitoring cues such as age, resource availability, and biotic and abiotic stresses allow plants to abscise organs in a timely manner. How these signals are integrated into the molecular pathways that drive abscission is largely unknown. The INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) gene is one of the main drivers of floral organ abscission in Arabidopsis and is known to transcriptionally respond to most abscission-regulating cues. By interrogating the IDA promoter in silico and in vitro, we identified transcription factors that could potentially modulate IDA expression. We probed the importance of ERF- and WRKY-binding sites for IDA expression during floral organ abscission, with WRKYs being of special relevance to mediate IDA up-regulation in response to biotic stress in tissues destined for separation. We further characterized WRKY57 as a positive regulator of IDA and IDA-like gene expression in abscission zones. Our findings highlight the promise of promoter element-targeted approaches to modulate the responsiveness of the IDA signaling pathway to harness controlled abscission timing for improved crop productivity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Flores/metabolismo , Regiões Promotoras Genéticas/genética , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
14.
J Exp Bot ; 75(16): 4837-4850, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38972665

RESUMO

The modification of seed shattering has been a recurring theme in rice evolution. The wild ancestor of cultivated rice disperses its seeds, but reduced shattering was selected during multiple domestication events to facilitate harvesting. Conversely, selection for increased shattering occurred during the evolution of weedy rice, a weed invading cultivated rice fields that has originated multiple times from domesticated ancestors. Shattering requires formation of a tissue known as the abscission zone (AZ), but how the AZ has been modified throughout rice evolution is unclear. We quantitatively characterized the AZ characteristics of relative length, discontinuity, and intensity in 86 cultivated and weedy rice accessions. We reconstructed AZ evolutionary trajectories and determined the degree of convergence among different cultivated varieties and among independent weedy rice populations. AZ relative length emerged as the best feature to distinguish high and low shattering rice. Cultivated varieties differed in average AZ morphology, revealing lack of convergence in how shattering reduction was achieved during domestication. In contrast, weedy rice populations typically converged on complete AZs, irrespective of origin. By examining AZ population-level morphology, our study reveals its evolutionary plasticity, and suggests that the genetic potential to modify the ecologically and agronomically important trait of shattering is plentiful in rice lineages.


Assuntos
Evolução Biológica , Oryza , Sementes , Oryza/genética , Oryza/anatomia & histologia , Oryza/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Sementes/anatomia & histologia , Sementes/genética , Domesticação , Plantas Daninhas/crescimento & desenvolvimento , Plantas Daninhas/fisiologia , Plantas Daninhas/anatomia & histologia
15.
Cell Mol Life Sci ; 80(8): 235, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37523003

RESUMO

Cellular abscission is the final step of cytokinesis that leads to the physical separation of the two daughter cells. The scaffold protein ALIX and the ESCRT-I protein TSG101 contribute to recruiting ESCRT-III to the midbody, which orchestrates the final membrane scission of the intercellular bridge. Here, we addressed the transport mechanisms of ALIX and ESCRT-III subunit CHMP4B to the midbody. Structured illumination microscopy revealed gradual accumulation of ALIX at the midbody, resulting in the formation of spiral-like structures extending from the midbody to the abscission site, which strongly co-localized with CHMP4B. Live-cell microscopy uncovered that ALIX appeared together with CHMP4B in vesicular structures, whose motility was microtubule-dependent. Depletion of ALIX led to structural alterations of the midbody and delayed recruitment of CHMP4B, resulting in delayed abscission. Likewise, depletion of the kinesin-1 motor KIF5B reduced the motility of ALIX-positive vesicles and delayed midbody recruitment of ALIX, TSG101 and CHMP4B, accompanied by impeded abscission. We propose that ALIX, TSG101 and CHMP4B are associated with endosomal vesicles transported on microtubules by kinesin-1 to the cytokinetic bridge and midbody, thereby contributing to their function in abscission.


Assuntos
Citocinese , Cinesinas , Transporte Biológico , Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos
16.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33837152

RESUMO

Animal cytokinesis ends with the formation of a thin intercellular membrane bridge that connects the two newly formed sibling cells, which is ultimately resolved by abscission. While mitosis is completed within 15 min, the intercellular bridge can persist for hours, maintaining a physical connection between sibling cells and allowing exchange of cytosolic components. Although cell-cell communication is fundamental for development, the role of intercellular bridges during embryogenesis has not been fully elucidated. In this work, we characterized the spatiotemporal characteristics of the intercellular bridge during early zebrafish development. We found that abscission is delayed during the rapid division cycles that occur in the early embryo, giving rise to the formation of interconnected cell clusters. Abscission was accelerated when the embryo entered the midblastula transition (MBT) phase. Components of the ESCRT machinery, which drives abscission, were enriched at intercellular bridges post-MBT and, interfering with ESCRT function, extended abscission beyond MBT. Hallmark features of MBT, including transcription onset and cell shape modulations, were more similar in interconnected sibling cells compared to other neighboring cells. Collectively, our findings suggest that delayed abscission in the early embryo allows clusters of cells to coordinate their behavior during embryonic development.


Assuntos
Blástula/embriologia , Citocinese , Animais , Blástula/citologia , Blástula/metabolismo , Forma Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
17.
Aerobiologia (Bologna) ; 40(3): 415-423, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39345943

RESUMO

Bioaerosols are useful indicators of plant phenology and can demonstrate the impacts of climate change on both local and regional scales (e.g. pollen monitoring/flowering phenology). Analysing bioaerosols with eDNA approaches are becoming more popular to quantify the diversity of airborne plant environmental DNA (eDNA) and flowering season of plants and trees. Leaf abscission from broadleaved trees and other perennial species can also indicate the status of plant health in response to climate. This happens primarily during autumn in response to seasonal growth conditions and environmental factors, such as changing photoperiod and reduced temperatures. During this period biological material is released in larger quantities to the environment. Here, rural bioaerosol composition during late summer and autumn was captured by MiSEQ sequencing of the rRNA internal transcribed spacer 2 (ITS2) region, a common marker for taxonomic variation. Meteorological parameters were recorded from a proximal weather station. The composition of atmospheric taxa demonstrated that deciduous tree DNA forms part of the bioaerosol community during autumn and, for several common broadleaved tree species, atmospheric DNA abundance correlated to high wind events. This suggests that both flowering and autumn storms cause bioaerosols from deciduous trees that can be detected with eDNA approaches. This is an aspect that must be considered when eDNA methods are used to analyse either pollen or other fragments from trees. Supplementary Information: The online version contains supplementary material available at 10.1007/s10453-024-09826-w.

18.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39273425

RESUMO

Sulfur dioxide (SO2) is the most effective preservative for table grapes as it reduces the respiratory intensity of berries and inhibits mold growth. However, excessive SO2 causes berry abscission during storage, resulting in an economic loss postharvest. In this study, grapes were exogenously treated with SO2, SO2 + 1.5% chitosan, SO2 + 1.5% eugenol, and SO2 + eugenol-loaded chitosan nanoparticles (SN). In comparison to SO2 treatment, SN treatment reduced the berries' abscission rate by 74% while maintaining the quality of the berries. Among the treatments, SN treatment most effectively inhibited berry abscission and maintained berry quality. RNA-sequencing (RNA-seq) revealed that SN treatment promoted the expression of genes related to cell wall metabolism. Among these genes, VlCOMT was detected as the central gene, playing a key role in mediating the effects of SN. Dual luciferase and yeast one-hybrid (Y1H) assays demonstrated that VlbZIP14 directly activated VlCOMT by binding to the G-box motif in the latter's promoter, which then participated in lignin synthesis. Our results provide key insights into the molecular mechanisms underlying the SN-mediated inhibition of berry abscission and could be used to improve the commercial value of SO2-treated postharvest table grapes.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Lignina , Proteínas de Plantas , Fatores de Transcrição , Vitis , Vitis/efeitos dos fármacos , Vitis/genética , Vitis/crescimento & desenvolvimento , Vitis/metabolismo , Lignina/biossíntese , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Quitosana/farmacologia , Dióxido de Enxofre/farmacologia , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Regiões Promotoras Genéticas
19.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928124

RESUMO

Yield in many crops is affected by abscission during the early stages of fruitlet development. The reasons for fruitlet abscission are often unclear but they may include genetic factors because, in some crops, self-pollinated fruitlets are more likely to abscise than cross-pollinated fruitlets. Pollen parentage can also affect final fruit size and fruit quality. Here, we aimed to understand the effects of pollen parentage on fruitlet retention and nut quality in orchards of macadamia (Macadamia integrifolia Maiden & Betche). We identified the pollen parent of macadamia 'cultivar '816' embryos by analysing single nucleotide polymorphisms (SNPs) in their DNA using customised MassARRAY and Single Allele Base Extension Reaction (SABER) methods. This allowed us to determine the proportions of self-fertilised and cross-fertilised progeny during premature fruit drop at 6 weeks and 10 weeks after peak anthesis, as well as at nut maturity. We determined how pollen parentage affected nut-in-shell (NIS) mass, kernel mass, kernel recovery, and oil concentration. Macadamia trees retained cross-fertilised fruitlets rather than self-fertilised fruitlets. The percentage of progeny that were cross-fertilised increased from 6% at 6 weeks after peak anthesis to 97% at nut maturity, with each tree producing on average 22 self-fertilised nuts and 881 cross-fertilised nuts. Three of the four cross-pollen parents provided fruit with significantly higher NIS mass, kernel mass, or kernel recovery than the few remaining self-fertilised fruit. Fruit that were cross-fertilised by '842', 'A4', or 'A203' had 16-29% higher NIS mass and 24-44% higher kernel mass than self-fertilised fruit. Nuts that were cross-fertilised by 'A4' or 'A203' also had 5% or 6% higher kernel recovery, worth approximately $US460-540 more per ton for growers than self-fertilised nuts. The highly selective abscission of self-fertilised fruitlets and the lower nut quality of self-fertilised fruit highlight the critical importance of cross-pollination for macadamia productivity.


Assuntos
Frutas , Macadamia , Polimorfismo de Nucleotídeo Único , Macadamia/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Autofertilização , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/efeitos dos fármacos , DNA de Plantas/genética , Nozes/genética , Nozes/crescimento & desenvolvimento , Polinização
20.
J Integr Plant Biol ; 66(4): 749-770, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38420861

RESUMO

Auxin regulates flower and fruit abscission, but how developmental signals mediate auxin transport in abscission remains unclear. Here, we reveal the role of the transcription factor BEL1-LIKE HOMEODOMAIN11 (SlBEL11) in regulating auxin transport during abscission in tomato (Solanum lycopersicum). SlBEL11 is highly expressed in the fruit abscission zone, and its expression increases during fruit development. Knockdown of SlBEL11 expression by RNA interference (RNAi) caused premature fruit drop at the breaker (Br) and 3 d post-breaker (Br+3) stages of fruit development. Transcriptome and metabolome analysis of SlBEL11-RNAi lines revealed impaired flavonoid biosynthesis and decreased levels of most flavonoids, especially quercetin, which functions as an auxin transport inhibitor. This suggested that SlBEL11 prevents premature fruit abscission by modulating auxin efflux from fruits, which is crucial for the formation of an auxin response gradient. Indeed, quercetin treatment suppressed premature fruit drop in SlBEL11-RNAi plants. DNA affinity purification sequencing (DAP-seq) analysis indicated that SlBEL11 induced expression of the transcription factor gene SlMYB111 by directly binding to its promoter. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay showed that S. lycopersicum MYELOBLASTOSIS VIRAL ONCOGENE HOMOLOG111 (SlMYB111) induces the expression of the core flavonoid biosynthesis genes SlCHS1, SlCHI, SlF3H, and SlFLS by directly binding to their promoters. Our findings suggest that the SlBEL11-SlMYB111 module modulates flavonoid biosynthesis to fine-tune auxin efflux from fruits and thus maintain an auxin response gradient in the pedicel, thereby preventing premature fruit drop.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/metabolismo , Quercetina/farmacologia , Quercetina/metabolismo , Ácidos Indolacéticos/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA