Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Ecotoxicol Environ Saf ; 280: 116583, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878333

RESUMO

The combined cadmium (Cd) and acid rain pollution poses a significant threat to the global ecological environment. Previous studies on the combined adverse effects have predominantly focused on the aboveground plant physiological responses, with limited reports on the microbial response in the rhizosphere soil. This study employed Populus beijingensis seedlings and potting experiments to simulate the impacts of combined mild acid rain (pH=4.5, MA) or highly strong acid rain (pH=3.0, HA), and soil Cd pollution on the composition and diversity of microbial communities, as well as the physiochemical properties in the rhizosphere soil. The results showed that Cd decreased the content of inorganic nitrogen, resulting in an overall decrease of 49.10 % and 46.67 % in ammonium nitrogen and nitrate nitrogen, respectively. Conversely, acid rain was found to elevate the content of total potassium and soil organic carbon by 4.68 %-6.18 % and 8.64-19.16 %, respectively. Additionally, simulated acid rain was observed to decrease the pH level by 0.29-0.35, while Cd increased the pH level by 0.11. Moreover, Cd alone reduced the rhizosphere bacterial diversity, however, when combined with acid rain, regardless of its intensity, Cd was observed to increase the diversity. Fungal diversity was not influenced by the acid rain, but Cd increased fungal diversity to some extend under HA as observed in bacterial diversity. In addition, composition of the rhizosphere bacterial community was primarily influenced by the inorganic nitrogen components, while the fungal community was driven mainly by soil pH. Furthermore, "Metabolism" was emerged as the most significant bacterial function, which was markedly affected by the combined pollution, while Cd pollution led to a shift from symbiotroph to other trophic types for fungi. These findings suggest that simulated acid rain has a mitigating effect on the diversity of rhizosphere bacteria affected by Cd pollution, and also alters the trophic type of these microorganisms. This can be attributed to the acid rain-induced direct acidic environment, as well as the indirect changes in the availability or sources of carbon, nitrogen, or potassium.


Assuntos
Chuva Ácida , Cádmio , Nitrogênio , Populus , Rizosfera , Plântula , Microbiologia do Solo , Poluentes do Solo , Cádmio/toxicidade , Cádmio/análise , Populus/efeitos dos fármacos , Populus/microbiologia , Populus/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Nitrogênio/análise , Solo/química , Microbiota/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos
2.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542480

RESUMO

Atmospheric stressors include a variety of pollutant gases such as CO2, nitrous oxide (NOx), and sulfurous compounds which could have a natural origin or be generated by uncontrolled human activity. Nevertheless, other atmospheric elements including high and low temperatures, ozone (O3), UV-B radiation, or acid rain among others can affect, at different levels, a large number of plant species, particularly those of agronomic interest. Paradoxically, both nitric oxide (NO) and hydrogen sulfide (H2S), until recently were considered toxic since they are part of the polluting gases; however, at present, these molecules are part of the mechanism of response to multiple stresses since they exert signaling functions which usually have an associated stimulation of the enzymatic and non-enzymatic antioxidant systems. At present, these gasotransmitters are considered essential components of the defense against a wide range of environmental stresses including atmospheric ones. This review aims to provide an updated vision of the endogenous metabolism of NO and H2S in plant cells and to deepen how the exogenous application of these compounds can contribute to crop resilience, particularly, against atmospheric stressors stimulating antioxidant systems.


Assuntos
Gasotransmissores , Sulfeto de Hidrogênio , Resiliência Psicológica , Humanos , Óxido Nítrico/metabolismo , Antioxidantes/metabolismo , Gasotransmissores/metabolismo , Sulfeto de Hidrogênio/metabolismo , Gases
3.
Physiol Mol Biol Plants ; 30(8): 1329-1351, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39184554

RESUMO

The current experiment was designed to evaluate the ramifications of simulated acid rain (SAR) on two pea (Pisum sativum L.) cultivars, Kashi Samridhi (Samridhi) and Kashi Nandini (Nandini), to decipher the intraspecific variations in defence mechanism considering the current scenario of rapid anthropogenic activities leading to increase in rain acidity. The pea cultivars were subjected to SAR of pH 7 (Control), 5.6, 5.0, and 4.5 under field conditions. SAR increased active oxygen species and malondialdehyde content due to increased lipid peroxidation in both cultivars; however, the increment intensity was more remarkable in Samridhi at the later growth stage. Ascorbic acid, thiol, and flavonoids were significantly increased in cultivar Nandini, along with increased peroxidase and superoxide dismutase activities. Total phenolics, glutathione reductase, and ascorbate peroxidase activities were enhanced considerably in Samridhi than in Nandini under SAR treatments. Higher stomatal density and stomatal size in Samridhi prompted greater acidic particles influx which further damaged the chloroplast and mitochondria. The present study concludes that cultivar Nandini is more proficient in inducing defence responses by elevating non-enzymatic antioxidants than Samridhi. Non-enzymatic linked defence mechanisms are more metabolically expensive, leading to less biomass accumulation in Nandini. The study depicted that innate defence responses, particularly the role of non-enzymatic antioxidants, governed the sensitivity level of cultivars towards SAR stress. Further, findings also contribute to bridging the knowledge gap regarding the responses of tropical and subtropical crops to acid rain. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01494-x.

4.
J Environ Sci (China) ; 138: 121-131, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135381

RESUMO

The chemical composition of acid rain and its impact on lake water chemistry in Chongqing, China, from 2000 to 2020 were studied in this study. The regional acid rain intensity is affected jointly by the acid gas emissions and the neutralization of alkaline substances. The pH of precipitation experienced three stages of fluctuating decline, continuous improvement, and a slight correction. Precipitation pH showed inflection points in 2010, mainly due to the total control actions of SO2 and NOx implemented in 2011. The total ion concentrations in rural areas and urban areas were 489.08 µeq/L and 618.57 µeq/L, respectively. The top four ions were SO42-, Ca2+, NH4+ and NO3-, which accounted for more than 90% of the total ion concentration, indicating the anthropogenic effects. Before 2010, SO42- fluctuated greatly while NO3- continued to rise; however, after 2010, both SO42- and NO3- began to decline rapidly, with the rates of -12.03 µeq/(L·year) and -4.11 µeq/(L·year). Because the decline rate of SO42- was 2.91 times that of NO3-, the regional acid rain has changed from sulfuric acid rain to mixed sulfuric and nitric acid rain. The lake water is weakly acidic, with an average pH of 5.86, and the acidification frequency is 30.00%. Acidification of lake water is jointly affected by acid deposition and acid neutralization capacity of lake water. Acid deposition has a profound impact on water acidification, and nitrogen (N) deposition, especially reduced N deposition, should be the focus of future research.


Assuntos
Chuva Ácida , Chuva Ácida/análise , Lagos , Concentração de Íons de Hidrogênio , Íons , China , Água , Monitoramento Ambiental
5.
J Environ Sci (China) ; 138: 496-505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135415

RESUMO

Zhuzhou was one of the most polluted cities in China with the serious acid rain. Due to the implementation of air pollution control measures from 2016 to 2018, the acid rain pollution in this city has reduced. In order to understand the recent situation, a comprehensive study on the acid rain was carried out from January 2011 to December 2020. The pH values during the study period varied from 3.3 to 7.5, with a volume-weighted mean value of 4.7. The predominant acidic components of the precipitation were SO42- and NO3-, accounting for 89.3% of the total anions. The ratio of non-sea-salt SO42- to NO3- showed a decreasing trend, revealing that the pollution type of acid rain changed from sulfuric acid type to sulfuric acid and nitric acid compound type. The correlation analysis (p < 0.05) showed that SO42- was positively correlated with NH4+, Ca2+, and Mg2+; hence, it predominated in precipitation as (NH4)2SO4, NH4HSO4, CaSO4, and MgSO4. Significant positive correlation of Ca2+ with Mg2+ shows that they may originated mainly from crust. Significant positive correlation between SO42- and F- and Cl- indicate that their source may be related to the non-ferrous metal smelting industry in Zhuzhou. Further correlation analysis shows that emissions from the non-ferrous metal smelting industry in the area have a large significant on SO42- and F- in precipitation, while Cl- may still be emitted from other anthropogenic sources.


Assuntos
Chuva Ácida , Poluentes Atmosféricos , Chuva Ácida/análise , Monitoramento Ambiental , Ânions/análise , China , Estações do Ano , Poluentes Atmosféricos/análise
6.
Chemistry ; 29(23): e202203956, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36645202

RESUMO

The interaction of CaO and Ca(OH)2 with solvated or gaseous SO2 plays a crucial role in the corrosion of urban infrastructure by acid rain or in the removal of SO2 from flue gas. We carried out a combined spectroscopic and theoretical investigation on the interaction of SO2 with a CaO(001) single crystal. First, the surface chemistry of SO2 was investigated at different temperatures using polarization-resolved IR reflection absorption spectroscopy. Three species were identified, and an in-depth density functional theory study was carried out, which allowed deriving a consistent picture. Unexpectedly, low temperature exposure to SO2 solely yields a physisorbed species. Only above 100 K, the transformation of this weakly bound adsorbate first to a chemisorbed sulfite and then to a sulfate occurs, effectively passivatating the surface. Our results provide the basis for more efficient strategies in corrosion protection of urban infrastructure and in lime-based desulfurization of flue gas.

7.
Ecotoxicol Environ Saf ; 255: 114820, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36958261

RESUMO

Biochar has been widely applied to remediate heavy metal-contaminated soils, but the environmental risk of the endogenous pollutants in biochar remains unclear. Two biochars with different endogenous cadmium (Cd) concentrations were prepared from background soil (BCB) and contaminated soil (BCC), respectively. We studied the effects of simulated acid rain (SAR) on the activation mechanism of endogenous Cd in biochar and Cd uptake of Cd by lettuce from the biochar-amended soils. SAR aging significantly increased Cd bioavailability by 27.5 % and 53.9 % in BCB and BCC, respectively. The activation of Cd from biochar may be due to the decrease of biochar pH and persistent free radicals (PFRs) and the increase of specific surface area (SSA) and O-contained functional groups in biochars. Two biochars at dosages of 2 % and 5 % rates did not change soil pore water Cd, but BCB and BCC at 10 % increased pore water Cd by 17.3 % and 219 %, respectively after SAR aging. SAR aging significantly increased the bioavailability of Cd in BCB and BCC treated soils than those before SAR aging. BCB application enhanced the biomass of lettuce (Lactuca sativa L.) and decreased the uptake of Cd. However, BCC addition at 10 % decreased the biomass of lettuce and increased the accumulation of Cd. In summary, endogenous Cd in biochar from contaminated soils has a potential environmental risk to plants and human health and the negative effects of endogenous pollutants from the biochars should be further investigated.


Assuntos
Chuva Ácida , Poluentes Ambientais , Poluentes do Solo , Humanos , Cádmio/análise , Lactuca , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Carvão Vegetal , Solo , Água
8.
J Environ Manage ; 345: 118876, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678018

RESUMO

Tailings produced by mining engineering and metal smelting industries have become a major challenge to the ecological environment and human health. Environmental compatibility, mechanical stability, and economic feasibility have restricted the treatment and reuse of tailings. A novel solidification/stabilization technology using hydantoin epoxy resin (HER) and red clay for copper tailing treatment was developed, and the leaching behaviors of solidified/stabilized copper tailings were investigated in this paper. The leaching characteristics were analyzed by toxicity characteristic leaching procedure (TCLP) leaching tests. Besides, the influence of red clay content and acid rain on the permeability characteristics and leaching characteristics were investigated based on flexible-wall column tests and microstructure tests. The results showed that the copper tailings solidification/stabilization technology with HER and red clay had excellent performances in toxicity stabilization. The leaching concentration of Cu in TCLP tests and flexible wall column tests remained within the limit specified by the Chinese national standard, and the concentration of Cu decreased significantly with the increase of the red clay content. Moreover, acid rain leaching changed the mineral composition and microstructure of solidified tailings, and the porosity of the samples increased with the dissolution of soluble minerals. Additionally, the hydraulic conductivities decreased slightly with the increase in the pH value of acid rain, and the solidified sample with 5% red clay had the lowest hydraulic conductivity.


Assuntos
Chuva Ácida , Hidantoínas , Metais Pesados , Humanos , Cobre , Argila , Resinas Epóxi , Minerais , Metais Pesados/química
9.
J Environ Manage ; 325(Pt A): 116493, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265236

RESUMO

It is widely known how acid rain negatively impacts plant physiology. However, the magnitude of these effects may depend on soil types. Although the response of aboveground parts has received much attention, the effects of soil types and acid rain on underground processes are yet to be studied, specifically with respect to the composition and diversity of bacterial communities in the rhizosphere. Based on a high throughput sequencing approach, this study examined how different soil types, acid rain of different pH, and interactions between the two factors influenced the growth and rhizosphere bacterial communities of Jatropha curcas L. The present study pointed out that the soil pH, total nitrogen (TN), total phosphorus (TP), total potassium (TK), and total organic carbon/total nitrogen (C/N) were more related to soil type than to acid rain. The growth of J. curcas aboveground was mainly affected by acid rain, while the underground growth was mainly influenced by soil type. Changes in bacterial abundance indicated that the genera (Burkholderia-Paraburkholde, Bryobacter, Cupriavidus, Mycobacterium, and Leptospirillu) and phyla (Acidobacteria and Actinobacteria) could likely resist acid rain to some extent, with Acidobacteria, Gemmatimonadetes and Proteobacteria being well adapted to the copiotrophic environments. Results of correlational analyses between Firmicutes and soil properties (pH, TN, TK) further indicated that this phylum was also well adapted to a nutrient-deficient habitat of low pH. Finally, while Mycobacterium and Bradyrhizobium could adapt to low pH, high soil TK contents were not conducive to their enrichment. The results also showed that acid rain shifted the bacterial groups from fast-growing copiotrophic populations to slow-growing oligotrophic ones. The RDA analysis, and Pearson's rank correlation coefficients indicated that soil pH and TK were the main factors influencing bacterial richness.


Assuntos
Chuva Ácida , Solo , Solo/química , Rizosfera , Microbiologia do Solo , Bactérias/genética , Acidobacteria/genética , Nitrogênio/análise
10.
Environ Monit Assess ; 195(4): 442, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36869997

RESUMO

The article presents the results of research on the leachability of selected heavy metals (cadmium, nickel, chromium, cobalt, lead, and copper) from solid waste obtained in laboratory processes involved in the industrial treatment of wastewater generated in metal surface treatment plants. The test sludges were precipitated using sodium hydroxide solution, calcium hydroxide suspension, 45% solution sodium trithiocarbonate (Na2CS3), 15% solution trimercapto-s-triazine, sodium salt (TMT), and 40% solution sodium dimethyldithiocarbamate (DMDTC). The precipitates were treated with artificial acid rain and artificial salt water. After 1, 7, 14, and 21 days of leaching, the concentration of Cd, Co, Cr, Cu, Pb, and Ni in the leachate was determined. Artificial acid rain leached Ni and Cd to a maximum concentration of 724 mg/L and 1821 mg/L, respectively, from the sludge obtained after the application of Na2CS3, while artificial salt water leached Ni in the maximum amount of 466 mg/L and Cd-max. 1320 mg/L. When Ca(OH)2/NaOH was used, the leaching of Cr reached a similar level for both leaching agents, i.e., the maximum for artificial acid rain was 72.2 mg/L and the maximum for artificial salt water 71.8 mg/L. The use of Na2CS3 or Ca(OH)2/NaOH poses a risk of some heavy metals entering the environment, which may have a negative impact on living organisms, whereas the sludges obtained with the use of DMDTC and TMT as precipitants were the most stable under the experimental conditions and did not pose a potential environmental hazard.


Assuntos
Chuva Ácida , Metais Pesados , Cádmio , Hidróxido de Sódio , Monitoramento Ambiental , Dimetilditiocarbamato , Esgotos , Água
11.
Ecol Appl ; 32(3): e2512, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34877727

RESUMO

Throughout much of the 20th century, unprecedented industrial emissions have led to widespread acidification of regions in North America and Europe and, as lake water pH dropped, aquatic ecosystems have experienced dramatic declines in biodiversity. International emission-control agreements have led to sweeping increases in lake pH, however acid-structured zooplankton communities still persist in many lakes. Concomitantly, calcium concentrations have been declining as a legacy of acidification and are approaching or have reached concentrations that could represent a barrier to the re-establishment of zooplankton communities similar to those in non-acidified or circumneutral reference lakes. To understand how declining calcium may influence the re-establishment of zooplankton in acid-damaged lakes we manipulated calcium and pH using a factorial in-lake mesocosm experiment and assessed their individual and combined effects on a regionally diverse zooplankton assemblage. We found that the impacts of low calcium on zooplankton species were similar to those of acidification and, consequently, may prevent the recovery of acid-structured communities. Abundance of the larger bodied and acid-sensitive Daphnia pulex/pulicaria increased in high pH treatments, albeit nonsignificantly yet, by the end of our experiment, only two individuals were sampled among our 10 low calcium enclosures. In contrast, small acid-tolerant cladocerans, such as Daphnia catawba, Daphnia ambigua, and eubosminids maintained significantly higher abundances in low calcium treatments relative to all other treatment combinations. Although we did not detect an effect of calcium on mean body size, the disproportionately high abundance of small cladocerans in low calcium treatments resulted in low calcium communities with higher overall abundance and lower cladoceran evenness. Our results, along with a landscape comparison demonstrating parallel changes in zooplankton relative abundance from 34 historically acidified lakes, suggests that declining calcium will be an important, on-going factor that may limit the recovery of zooplankton, despite regional improvements in lake pH.


Assuntos
Cálcio , Zooplâncton , Animais , Cálcio/análise , Ecossistema , Concentração de Íons de Hidrogênio , Lagos
12.
Proc Natl Acad Sci U S A ; 116(16): 7760-7765, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30936298

RESUMO

China has been experiencing fine particle (i.e., aerodynamic diameters ≤ 2.5 µm; PM2.5) pollution and acid rain in recent decades, which exert adverse impacts on human health and the ecosystem. Recently, ammonia (i.e., NH3) emission reduction has been proposed as a strategic option to mitigate haze pollution. However, atmospheric NH3 is also closely bound to nitrogen deposition and acid rain, and comprehensive impacts of NH3 emission control are still poorly understood in China. In this study, by integrating a chemical transport model with a high-resolution NH3 emission inventory, we find that NH3 emission abatement can mitigate PM2.5 pollution and nitrogen deposition but would worsen acid rain in China. Quantitatively, a 50% reduction in NH3 emissions achievable by improving agricultural management, along with a targeted emission reduction (15%) for sulfur dioxide and nitrogen oxides, can alleviate PM2.5 pollution by 11-17% primarily by suppressing ammonium nitrate formation. Meanwhile, nitrogen deposition is estimated to decrease by 34%, with the area exceeding the critical load shrinking from 17% to 9% of China's terrestrial land. Nevertheless, this NH3 reduction would significantly aggravate precipitation acidification, with a decrease of as much as 1.0 unit in rainfall pH and a corresponding substantial increase in areas with heavy acid rain. An economic evaluation demonstrates that the worsened acid rain would partly offset the total economic benefit from improved air quality and less nitrogen deposition. After considering the costs of abatement options, we propose a region-specific strategy for multipollutant controls that will benefit human and ecosystem health.

13.
J Environ Manage ; 322: 116144, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36067661

RESUMO

Acid rain is a global environmental problem that mobilizes heavy metals in soils, while the distribution and geochemical fraction of heavy metals during acid rain infiltration in heterogeneous soils are still unclear. In this study, we performed column experiments to investigate the distribution and geochemical fraction of Cu, Pb, Ni and Cd in heterogeneously layered soils during continuous acid rain infiltration. Chloride ion used as a conservative tracer was found to be uniformly distributed during acid rain infiltration, showing insignificant preferential flow effects in the column. In contrast, however, the distribution of heavy metals was highly non-uniform, especially in the silty soil at the lower part of the column, indicating a heterogeneous distribution of adsorption capacity. In addition, in the control experiments with neutral rain infiltration, uniform distribution of heavy metals was observed, indicating that the heterogeneous distribution of adsorption coefficient during acid rain infiltration was mainly caused by different pH buffering capacities. A numerical model considering water flow and solute transport was developed, where the average water-solid distribution coefficient (Kd) in Layer 2 was only 1.5-12.5% of that in Layer 1 during acid rain infiltration. The model could predict the variation of heavy metal concentrations in soil with the majority of error less than 35%, confirming that different Kd induced the heterogeneous distribution of heavy metals. In addition, the geochemical fraction of heavy metals in the upper coarse sand layer remained stable, while the acid-extractable fractions in the lower loam and silt loam layer gradually increased. Our findings suggest that soil heterogeneity, especially chemical heterogeneity affected by rainfall acidity, has an important influence on the infiltration, migration and geochemical fraction of heavy metals in soils. This study could help guide the risk assessment of heavy metal-contaminated sites that were polluted by acid rain or landfill leachate.


Assuntos
Chuva Ácida , Metais Pesados , Poluentes do Solo , Poluentes Químicos da Água , Cádmio , China , Cloretos , Monitoramento Ambiental , Chumbo , Metais Pesados/análise , Areia , Solo , Poluentes do Solo/análise , Água
14.
Environ Geochem Health ; 44(12): 4253-4268, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34982347

RESUMO

A simulated acid rain (SAR) experiment on leaching of antimony (Sb) and arsenic (As) in three soil types including paddy soils (PS), vegetable soils (VS) and slag based soils (SS) from Xikuangshan (XKS) Sb mine area was conducted. The SAR at pH 2.5, 3.5, 4.5 and 5.6 were sprayed to soil columns with intermittent pattern in a period of 50 days. Through the spraying duration, leaching Sb in PS, VS and SS showed decreasing trends regardless of pH values in SAR and were in the ranges of 0.026-0.064 mg L-1, 0.19-2.18 mg L-1 and 11.8-32.4 mg L-1, respectively. By contrast, leaching As in these three soil types continuously increased at the initial five spraying times and then deeply decreased afterward, with ranges being 0-0.007 mg L-1, 0.001-0.071 mg L-1 and 0.17-1.07 mg L-1, respectively. The leaching Sb in all the three soil types were extremely higher than the reference value in grade IV (0.01 mg L-1) for groundwater quality of China (GB/T 14,848-2017). For leaching As, peck values in VS and all the values in SS were also greater than the corresponding reference value (0.05 mg L-1). This indicated that leaching Sb and As could pollute the groundwater in XKS Sb mine area, especially those in slag based soils. The total leaching losses of Sb and As were affected by pH ambiguously, such as SAR at pH 2.5, 5.6 and 2.5 induced the greatest losses of Sb in PS, VS and SS, and pH 3.5, 5.6 and 2.5 resulted in the greatest leaching losses of As in these soils. After SAR treatment, the specific sorbed and Fe/Mn oxide-associated Sb and As significantly decreased. It demonstrated that these two fractions of both Sb and As were involved in leaching losses. The present study also found that the SAR treatment resulted in soil acidification in all the three soil types. In addition, available N, P and K in all the SAR treatments decreased regardless of pH values, except for available N and P in PS.


Assuntos
Chuva Ácida , Arsênio , Poluentes do Solo , Antimônio/análise , Arsênio/análise , Solo , Poluentes do Solo/análise , Verduras
15.
Planta ; 254(2): 41, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34327596

RESUMO

MAIN CONCLUSION: Exogenous calcium enhances rice tolerance to acid rain stress by regulating isozymes composition and transcriptional expression of ascorbate peroxidase and glutathione reductase. Calcium (Ca) participates in signal transduction in plants under abiotic stress, and addition of Ca2+ is beneficial to alleviate damage of plants caused by acid rain. To clarify the effect of exogenous Ca2+ on tolerance of plants to acid rain stress, we investigated regulation of Ca2+ (5 mM) on activities, isozymes composition and transcriptional expression of ascorbate peroxidase (APX) and glutathione reductase (GR), redox state, and H2O2 concentration and growth in rice leaves and roots under simulated acid rain (SAR) stress. SAR (pH 3.5/2.5) decreased the total activities of APX and GR in rice by decreasing the concentration of APX isoforms (APXII in leaves and APXIII in roots) as well as activation degree of GR isozymes and transcription level of GR1, indicating that SAR (pH 3.5/2.5) destroyed the redox state in rice cells and induced H2O2 excessive accumulation, and inhibited growth of rice. Exogenous Ca2+ alleviated SAR-induced inhibition on activities of APX and GR by regulating the concentration, activation, and transcription of their isozymes, and then maintained the redox level of cells and protected cells from oxidative damage, being beneficial to the growth of rice. Therefore, the promotion of exogenous Ca2+ on activities of APX and GR can be important to enhance rice tolerance to acid rain by maintaining redox state and avoiding oxidative damage.


Assuntos
Chuva Ácida , Oryza , Chuva Ácida/efeitos adversos , Antioxidantes , Ascorbato Peroxidases/metabolismo , Cálcio , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio , Oryza/genética , Oryza/metabolismo , Estresse Oxidativo , Plântula/metabolismo
16.
Mol Biol Rep ; 48(3): 2243-2251, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33689094

RESUMO

Although nitric oxide (NO) is a key regulatory molecule in plants, its function in plants under conditions of simulated acid rain (SAR) has not been fully established yet. In this study, exogenous sodium nitroprusside (SNP) at three different concentrations were applied to mung bean seedlings. Malondialdehyde (MDA), NO, hydrogen peroxide (H2O2), antioxidant enzyme activities, and nitrate reductases (NR) were measured. Real time PCR was used to measure the NR expression. Compared to the control, the NR activity and NO content under the pH 2 SAR decreased by 79% and 85.6% respectively. Meanwhile, the SAR treatment reduced the activities of superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), while increased MDA content. Application of SNP could potentially reverse the adverse impact of SAR, depending on its concentration. For plants under the pH 2 SAR and 0.25 mM SNP condition, the activities of SOD, POD, APX increased by 123%, 291%, and 135.7% respectively, meanwhile, MDA concentration decreased by 43%, NR activities increased by 269%, and NO concentration increased by 123.6% compared with plants undergoing only pH 2 SAR. The relative expression of the NR1 gene was 2.69 times higher than that of pH 2 SAR alone. Overall, the application of 0.25 mM SNP eliminated reactive oxygen species (ROS) by stimulating antioxidant enzyme activities, reducing oxidative stress and mitigating the toxic effects of SAR on mung bean seedlings. This research provides a foundation for further research on the mechanism of NO on plants under SAR conditions.


Assuntos
Chuva Ácida , Óxido Nítrico/farmacologia , Plântula/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Vigna/fisiologia , Antioxidantes/metabolismo , Catalase/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitroprussiato/farmacologia , Folhas de Planta/efeitos dos fármacos , Plântula/efeitos dos fármacos , Estresse Fisiológico/genética , Vigna/efeitos dos fármacos , Vigna/genética
17.
Ecotoxicol Environ Saf ; 208: 111457, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33120255

RESUMO

The chemical composition in the precipitation is constantly changing, thus acid rain type is gradually changing from sulfuric type to mixed type and then nitric type. The influence of the changing acid rain type on the rhizosphere soil of tree species remains unclear. A pot experiment was performed with two-year-old Pinus massoniana, Cunninghamia lanceolate, Cyclobalanpsis glauca and Phyllostachys edulis seedlings with similar growth condition. Simulated acid rain consists of sulfuric(S/N = 5), mixed(S/N = 1) and nitric(S/N = 0.2) acid rain, and each type acid rain diluted to three acid rain intensity: pH = 2.5, 3.5, 4.5. Soil pH, soil organic matter, cation exchange capacity, the exchangeable Na+, K+, Ca2+, Mg2+ and enzyme activity were inhibited by acid rain intensity, while exchangeable Al3+ and H+ were promoted. Mg2+ was most relevant index to the tolerance to acid rain and the correlation degree of soil chemical index was higher than that of enzyme activity. Response of soil chemical properties differed in tree species under different acid rain types. Soil enzyme activity of Pinus massoniana, Cunninghamia lanceolate, and Phyllostachys edulis reached lowest under nitric acid rain, and that of Cyclobalanpsis glauca reached highest. Rhizosphere soil of Cunninghamia lanceolate is tolerant to sulfuric and nitric acid rain, and that of Cyclobalanpsis glauca is tolerant to mixed acid rain.


Assuntos
Monitoramento Ambiental , Microbiologia do Solo , Chuva Ácida , China , Cunninghamia/crescimento & desenvolvimento , Ácido Nítrico , Pinus , Poaceae , Rizosfera , Plântula/crescimento & desenvolvimento , Solo/química , Árvores
18.
Ecotoxicol Environ Saf ; 215: 112152, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33780781

RESUMO

The relationship between soil respiration (SR) and microbial community structure (MCS) is relevant to changes in forest soil ecosystem stability and chemical cycling under acid rain. Simulated acid rain treatments of pH 4.5 (control), 4.0, 3.25 and 2.5 were applied to two forest stands in the Three Gorges Reservoir Area of Jinyun Mountain, Chongqing. We used phospholipid fatty acid (PLFA) analysis to observe the MCS in the 0-10 cm soil layer and measured SR in situ from January 2016 to December 2017. Additionally, we determined the effects of soil properties on the MCS and SR. Acid rain simulation significantly increased the fungal PLFA abundance and decreased the bacterial PLFA abundance in the mixed coniferous and broad-leaved forest (CF). However, in the evergreen broad-leaved forest (BF), the abundance of bacterial and fungal PLFAs did not differ significantly among treatments. Redundancy analysis (RDA) showed that significant changes in the MSC were mainly due to the C/N ratio, hydrolysable N content, content, fine root biomass and sucrase activity. Acid rain simulation in the CF and BF significantly inhibited SR, but the SR sensitivity to simulated acid rain differed among forests. In 2017, the annual mean SR in the CF under the pH 4.0, 3.25 and 2.5 treatments decreased significantly by 6.1%, 19.2% and 28.9%, but in the BF, SR decreased significantly by 25.6% only under pH 2.5. The structural equation model showed that the relationship between the MCS and the variation in SR was closer and more direct than that with soil nutrients. The microbial community structure was an important factor driving the response of soil respiration to acid rain.


Assuntos
Chuva Ácida , Florestas , Microbiologia do Solo , Bactérias , Biomassa , China , Fungos , Microbiota , Respiração , Solo/química
19.
Ecotoxicol Environ Saf ; 208: 111718, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396049

RESUMO

Plastics enter in terrestrial natural system primarily by agricultural purposes, while acid rain is the result of anthropogenic activities. The synergistic effects of microplastics and acid rain on plant growth are not known. In this study, different sizes of polyethylene terephthalate (PET) and acid rain are tested on Lepidium sativum, in two separate experimental sets. In the first one we treated plants only with PET, in the second one we used PET and acid rain together. In both experimentations we analyzed: i) plant biometrical parameters (shoot height, leaf number, percentage inhibition of seed germination, fresh biomass), and ii) oxidative stress responses (hydrogen peroxide; ascorbic acid and glutathione). Results carried out from our experiments highlighted that different sizes of polyethylene terephthalate are able to affect plant growth and physiological responses, with or without acid rain supplied during acute toxicity (6 days). SHORT DESCRIPTION: This study showed that different sizes of PET microplastics affect physiological and biometrical responses of Lepidum sativum seedlings, with or without acid rain; roots and leaves responded differently.


Assuntos
Chuva Ácida/toxicidade , Lepidium sativum/efeitos dos fármacos , Microplásticos/toxicidade , Polietilenotereftalatos/toxicidade , Poluentes Químicos da Água/toxicidade , Lepidium sativum/crescimento & desenvolvimento , Lepidium sativum/metabolismo , Lepidium sativum/fisiologia , Microplásticos/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Polietilenotereftalatos/química , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Poluentes Químicos da Água/química
20.
Molecules ; 26(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562098

RESUMO

Air pollution has been a long-term problem, especially in urban areas, that eventually accelerates the formation of acid rain (AR), but recently it has emerged as a serious environmental issue worldwide owing to industrial and economic growth, and it is also considered a major abiotic stress to agriculture. Evidence showed that AR exerts harmful effects in plants, especially on growth, photosynthetic activities, antioxidant activities and molecular changes. Effectiveness of several bio-regulators has been tested so far to arbitrate various physiological, biochemical and molecular processes in plants under different diverse sorts of environmental stresses. In the current review, we showed that silicon (tetravalent metalloid and semi-conductor), glutathione (free thiol tripeptide) and melatonin (an indoleamine low molecular weight molecule) act as influential growth regulators, bio-stimulators and antioxidants, which improve plant growth potential, photosynthesis spontaneity, redox-balance and the antioxidant defense system through quenching of reactive oxygen species (ROS) directly and/or indirectly under AR stress conditions. However, earlier research findings, together with current progresses, would facilitate the future research advancements as well as the adoption of new approaches in attenuating the consequence of AR stress on crops, and might have prospective repercussions in escalating crop farming where AR is a restraining factor.


Assuntos
Chuva Ácida/efeitos adversos , Glutationa/farmacologia , Melatonina/farmacologia , Plantas/efeitos dos fármacos , Silício/farmacologia , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA