Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Exp Physiol ; 108(12): 1548-1559, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37988249

RESUMO

In some compound muscle action potentials (M waves) recorded using the belly-tendon configuration, the tendon electrode makes a noticeable contribution to the M wave. However, this finding has only been demonstrated in some hand and foot muscles. Here, we assessed the contribution of the tendon potential to the amplitude of the vastus lateralis, biceps brachii and tibialis anterior M waves, and we also examined the role of this tendon potential in the shoulder-like feature appearing in most M waves. M waves were recorded separately at the belly and tendon locations of the vastus lateralis, biceps brachii and tibialis anterior from 38 participants by placing the reference electrode at a distant (contralateral) site. The amplitude of the M waves and the latency of their peaks and shoulders were measured. In the vastus lateralis, the tendon potential was markedly smaller in amplitude (∼75%) compared to the belly M wave (P = 0.001), whereas for the biceps brachii and tibialis anterior, the tendon and belly potentials had comparable amplitudes. In the vastus lateralis, the tendon potential showed a small positive peak coinciding in latency with the shoulder of the belly-tendon M wave, whilst in the biceps brachii and tibialis anterior, the tendon potential showed a clear negative peak which coincided in latency with the shoulder. The tendon potential makes a significant contribution to the belly-tendon M waves of the biceps brachii and tibialis anterior muscles, but little contribution to the vastus lateralis M waves. The shoulder observed in the belly-tendon M wave of the vastus lateralis is caused by the belly potential, the shoulder in the biceps brachii M wave is generated by the tendon potential, whereas the shoulder in the tibialis anterior M wave is caused by both the tendon and belly potentials. NEW FINDINGS: What is the central question of this study? Does a tendon electrode make a noticeable contribution to the belly-tendon M wave in the vastus lateralis, biceps brachii and tibialis anterior muscles? What is the main finding and its importance? Because the patellar tendon potential is small in amplitude, it hardly influences the amplitude and shape of the belly-tendon M wave of the vastus lateralis. However, for the biceps brachii and tibialis anterior muscles, the potentials at the tendon sites show a large amplitude, and thus have a great impact on the corresponding belly-tendon M waves.


Assuntos
Músculo Esquelético , Músculo Quadríceps , Humanos , Eletromiografia , Músculo Esquelético/fisiologia , Tendões/fisiologia , Eletrodos
2.
Sensors (Basel) ; 23(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36904738

RESUMO

An active electrode (AE) and back-end (BE) integrated system for enhanced electrocardiogram (ECG)/electrode-tissue impedance (ETI) measurement is proposed. The AE consists of a balanced current driver and a preamplifier. To increase the output impedance, the current driver uses a matched current source and sink, which operates under negative feedback. To increase the linear input range, a new source degeneration method is proposed. The preamplifier is realized using a capacitively-coupled instrumentation amplifier (CCIA) with a ripple-reduction loop (RRL). Compared to the traditional Miller compensation, active frequency feedback compensation (AFFC) achieves bandwidth extension using the reduced size of the compensation capacitor. The BE performs three types of signal sensing: ECG, band power (BP), and impedance (IMP) data. The BP channel is used to detect the Q-, R-, and S-wave (QRS) complex in the ECG signal. The IMP channel measures the resistance and reactance of the electrode-tissue. The integrated circuits for the ECG/ETI system are realized in the 180 nm CMOS process and occupy a 1.26 mm2 area. The measured results show that the current driver supplies a relatively high current (>600 µApp) and achieves a high output impedance (1 MΩ at 500 kHz). The ETI system can detect resistance and capacitance in the ranges of 10 mΩ-3 kΩ and 100 nF-100 µF, respectively. The ECG/ETI system consumes 3.6 mW using a single 1.8 V supply.

3.
Sensors (Basel) ; 22(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365916

RESUMO

Biopotential imaging (e.g., ECGi, EEGi, EMGi) processes multiple potential signals, each requiring an electrode applied to the body's skin. Conventional approaches based on individual wiring of each electrode are not suitable for wearable systems. Cooperative sensors solve the wiring problem since they consist of active (dry) electrodes connected by a two-wire parallel bus that can be implemented, for example, as a textile spacer with both sides made conductive. As a result, the cumbersome wiring of the classical star arrangement is replaced by a seamless solution. Previous work has shown that potential reference, current return, synchronization, and data transfer functions can all be implemented on a two-wire parallel bus while keeping the noise of the measured biopotentials within the limits specified by medical standards. We present the addition of the power supply function to the two-wire bus. Two approaches are discussed. One of them has been implemented with commercially available components and the other with an ASIC. Initial experimental results show that both approaches are feasible, but the ASIC approach better addresses medical safety concerns and offers other advantages, such as lower power consumption, more sensors on the two-wire bus, and smaller size.


Assuntos
Têxteis , Dispositivos Eletrônicos Vestíveis , Desenho de Equipamento , Eletrodos , Condutividade Elétrica
4.
Sensors (Basel) ; 19(16)2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31426518

RESUMO

For long-term and more convenience electrocardiograph (ECG) monitoring, an active- electrode-based ECG monitoring system, which can measure ECG through clothes, is proposed in this paper. The hardware of the system includes active electrodes, signal processing and data transmission modules and the software mainly includes a denoising algorithm based on empirical mode decomposition (EMD). Then the proposed system was verified using the comparison of the ECG signals measured synchronously by active electrodes and Ag/AgCl electrodes. In addition, three flexible materials, including conductive textile, copper foil tape and a flexible printed circuit (FPC) are developed for the sensing layer with active electrodes. To compare the performance of these three materials for the sensing layer, the ECG signals of 10 subjects were measured by different materials in three postures and several indexes for quality evaluation were calculated. Results show that effective and clear ECG waveforms can be measured by all three kinds of materials and the quality of ECG signals measured by FPC is the best by conducting a significant t-test for signal quality indexes of three materials.


Assuntos
Eletrocardiografia/métodos , Adulto , Algoritmos , Eletrocardiografia/instrumentação , Eletrodos , Feminino , Humanos , Masculino , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído , Prata/química , Dispositivos Eletrônicos Vestíveis , Adulto Jovem
5.
Sensors (Basel) ; 17(10)2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29048396

RESUMO

We present a high electrode density and high channel count CMOS (complementary metal-oxide-semiconductor) active neural probe containing 1344 neuron sized recording pixels (20 µm × 20 µm) and 12 reference pixels (20 µm × 80 µm), densely packed on a 50 µm thick, 100 µm wide, and 8 mm long shank. The active electrodes or pixels consist of dedicated in-situ circuits for signal source amplification, which are directly located under each electrode. The probe supports the simultaneous recording of all 1356 electrodes with sufficient signal to noise ratio for typical neuroscience applications. For enhanced performance, further noise reduction can be achieved while using half of the electrodes (678). Both of these numbers considerably surpass the state-of-the art active neural probes in both electrode count and number of recording channels. The measured input referred noise in the action potential band is 12.4 µVrms, while using 678 electrodes, with just 3 µW power dissipation per pixel and 45 µW per read-out channel (including data transmission).

6.
Bioelectron Med ; 10(1): 16, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970083

RESUMO

BACKGROUND: Implantable vagus nerve stimulation is a promising approach for restoring autonomic cardiovascular functions after heart transplantation. For successful treatment a system should have multiple electrodes to deliver precise stimulation and complex neuromodulation patterns. METHODS: This paper presents an implantable multi-channel stimulation system for vagal-cardiac neuromodulation studies in swine species. The system comprises an active electrode array implant percutaneously connected to an external wearable controller. The active electrode array implant has an integrated stimulator ASIC mounted on a ceramic substrate connected to an intraneural electrode array via micro-rivet bonding. The implant is silicone encapsulated for biocompatibility and implanted lifetime. The stimulation parameters are remotely transmitted via a Bluetooth telemetry link. RESULTS: The size of the encapsulated active electrode array implant is 8 mm × 10 mm × 3 mm. The stimulator ASIC has 10-bit current amplitude resolution and 16 independent output channels, each capable of delivering up to 550 µA stimulus current and a maximum voltage of 20 V. The active electrode array implant was subjected to in vitro accelerated lifetime testing at 70 °C for 7 days with no degradation in performance. After over 2 h continuous stimulation, the surface temperature change of the implant was less than 0.5 °C. In addition, in vivo testing on the sciatic nerve of a male Göttingen minipig demonstrated that the implant could effectively elicit an EMG response that grew progressively stronger on increasing the amplitude of the stimulation. CONCLUSIONS: The multi-channel stimulator is suitable for long term implantation. It shows potential as a useful tool in vagal-cardiac neuromodulation studies in animal models for restoring autonomic cardiovascular functions after heart transplantation.

7.
Bioengineering (Basel) ; 11(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38534550

RESUMO

EEG, which can provide brain alteration information via recording the electrical activity of neurons in the cerebral cortex, has been widely used in neurophysiology. However, conventional wet electrodes in EEG monitoring typically suffer from inherent limitations, including the requirement of skin pretreatment, the risk of superficial skin infections, and signal performance deterioration that may occur over time due to the air drying of the conductive gel. Although the emergence of dry electrodes has overcome these shortcomings, their electrode-skin contact impedance is significantly high and unstable, especially in hair-covered areas. To address the above problems, an active claw-shaped dry electrode is designed, moving from electrode morphological design, slurry preparation, and coating to active electrode circuit design. The active claw-shaped dry electrode, which consists of a claw-shaped electrode and active electrode circuit, is dedicated to offering a flexible solution for elevating electrode fittings on the scalp in hair-covered areas, reducing electrode-skin contact impedance and thus improving the quality of the acquired EEG signal. The performance of the proposed electrodes was verified by impedance, active electrode circuit, eyes open-closed, steady-state visually evoked potential (SSVEP), and anti-interference tests, based on EEG signal acquisition. Experimental results show that the proposed claw-shaped electrodes (without active circuit) can offer a better fit between the scalp and electrodes, with a low electrode-skin contact impedance (18.62 KΩ@1 Hz in the hairless region and 122.15 KΩ@1 Hz in the hair-covered region). In addition, with the active circuit, the signal-to-noise ratio (SNR) of the acquiring EEG signal was improved and power frequency interference was restrained, therefore, the proposed electrodes can yield an EEG signal quality comparable to wet electrodes.

8.
Chemosphere ; 321: 138109, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36787844

RESUMO

The presence of per- and poly-fluoroalkyl substances (PFASs) in water is of global concern due to their high stability and toxicity even at very low concentrations. There are several technologies for the remediation of PFASs, but most of them are inadequate either due to limited effectiveness, high cost, or production of a large amount of sludge. Electrochemical oxidation (EO) technology shows great potential for large-scale application in the degradation of PFASs due to its simple procedure, low loading of chemicals, and least amount of waste. Here, we have reviewed the recent progress in EO methods for PFAS degradation, focusing on the last 10 years, to explore an efficient, cost-effective, and environmentally benign remediation technology. The effects of important parameters (e.g., anode material, current density, solution pH, electrolyte, plate distance, and electrical connector type) are summarized and evaluated. Also, the energy consumption, the consequence of different PFASs functional groups, and water matrices are discussed to provide an insight that is pivotal for developing new EO materials and technologies. The proposed degradation pathways of shorter-chain PFAS by-products during EO of PFAS are also discussed.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Oxirredução , Tecnologia , Água
9.
IEEE Biomed Circuits Syst Conf ; 2022: 477-481, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37431519

RESUMO

Brain computer interfaces (BCIs) provide clinical benefits including partial restoration of lost motor control, vision, speech, and hearing. A fundamental limitation of existing BCIs is their inability to span several areas (> cm2) of the cortex with fine (<100 µm) resolution. One challenge of scaling neural interfaces is output wiring and connector sizes as each channel must be independently routed out of the brain. Time division multiplexing (TDM) overcomes this by enabling several channels to share the same output wire at the cost of added noise. This work leverages a 130-nm CMOS process and transfer printing to design and simulate a 384-channel actively multiplexed array, which minimizes noise by adding front end filtering and amplification to every electrode site (pixel). The pixels are 50 µm × 50 µm and enable recording of all 384 channels at 30 kHz with a gain of 22.3 dB, noise of 9.57 µV rms, bandwidth of 0.1 Hz - 10 kHz, while only consuming 0.63 µW/channel. This work can be applied broadly across neural interfaces to create high channel-count arrays and ultimately improve BCIs.

10.
J Electromyogr Kinesiol ; 66: 102681, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35868091

RESUMO

INTRODUCTION: In the compound muscle action potential (M wave) recorded using the belly-tendon configuration, the contribution of the tendon electrode is assumed to be negligible compared to the belly electrode. We tested this assumption by placing the reference electrode at a distant (contralateral) site, which allowed separate recording of the belly and tendon contributions. METHODS: M waves were recorded at multiple selected sites over the right quadriceps heads and lower leg using two different locations for the reference electrode: the ipsilateral (right) and contralateral (left) patellar tendon. The general parameters of the M wave (amplitude, area, duration, latency, and frequency) were measured. RESULTS: (1) The tendon potential had a small amplitude (<30%) compared to the belly potential; (2) Changing the reference electrode from the ipsilateral to the contralateral patella produced moderate changes in the M wave recorded over the innervation zone, these changes affecting significantly the amplitude of the M-wave second phase (p = 0.006); (3) Using the contralateral reference system allowed recording of short-latency components occurring immediately after the stimulus artefact, which had the same latency and amplitude (p = 0.18 and 0.25, respectively) at all recording sites over the leg. CONCLUSIONS: The potential recorded at the "tendon" site after femoral nerve stimulation is small (compared to the belly potential), but not negligible, and makes a significant contribution to the second phase of belly-tendon M wave. Adopting a distant (contralateral) reference allowed recording of far-field components that may aid in the understanding of the electrical formation of the M wave.


Assuntos
Músculo Esquelético , Tendões , Eletrodos , Humanos , Perna (Membro) , Músculo Esquelético/fisiologia , Músculo Quadríceps , Tendões/fisiologia
11.
Biomed Eng Lett ; 12(3): 239-250, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35692891

RESUMO

As more people desire at-home diagnosis and treatment for their health improvement, healthcare devices have become more wearable, comfortable, and easy to use. In that sense, the miniaturization of electroencephalography (EEG) systems is a major challenge for developing daily-life healthcare devices. Recently, because of the intertwined relationship between EEG recording and processing, co-research of EEG recording hardware and data processing has been emphasized for whole-in-one miniaturized EEG systems. This paper introduces miniaturization techniques in analog-front-end hardware and processing algorithms for such EEG systems. To miniaturize EEG recording hardware, various types of compact electrodes and mm-sized integrated circuits (IC) techniques including artifact rejection are studied to record accurate EEG signals in a much smaller manner. Active electrode and in-ear EEG technologies are also researched to make small-form-factor EEG measurement structures. Furthermore, miniaturization techniques for EEG processing are discussed including channel selection techniques that reduce the number of required electrode channel and hardware implementation of processing algorithms that simplify the EEG processing stage.

12.
Micromachines (Basel) ; 12(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34442594

RESUMO

While microelectrode arrays (MEAs) offer the promise of elucidating functional neural circuitry and serve as the basis for a cortical neuroprosthesis, the challenge of designing and demonstrating chronically reliable technology remains. Numerous studies report "chronic" data but the actual time spans and performance measures corresponding to the experimental work vary. In this study, we reviewed the experimental durations that constitute chronic studies across a range of MEA types and animal species to gain an understanding of the widespread variability in reported study duration. For rodents, which are the most commonly used animal model in chronic studies, we examined active electrode yield (AEY) for different array types as a means to contextualize the study duration variance, as well as investigate and interpret the performance of custom devices in comparison to conventional MEAs. We observed wide-spread variance within species for the chronic implantation period and an AEY that decayed linearly in rodent models that implanted commercially-available devices. These observations provide a benchmark for comparing the performance of new technologies and highlight the need for consistency in chronic MEA studies. Additionally, to fully derive performance under chronic conditions, the duration of abiotic failure modes, biological processes induced by indwelling probes, and intended application of the device are key determinants.

13.
AORN J ; 114(1): 60-72, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34181252

RESUMO

Surgeons routinely use electrosurgical devices to cut and coagulate tissue during surgical procedures. However, hazards associated with electrosurgery (eg, burns, electrical shock, fire) can place patients or personnel at risk. Perioperative nurses should standardize processes, preoperatively assess the risks for electrosurgical injuries, and participate in education activities on electrosurgical safety to help prevent injuries from occurring. The AORN "Guideline for electrosurgical safety" provides guidance to perioperative personnel for safe use of electrosurgical units, electrocautery devices, and argon-enhanced coagulators. This article discusses prevention of electrosurgical unit injuries, including those that can be caused by electrosurgical accessories. A scenario describes how a team investigating two incidents related to use of electrosurgery uses an assessment tool to identify risks for injury and includes a report of these risks in the surgical briefing. Perioperative RNs should review the entire guideline for additional information when creating and updating policies and procedures for electrosurgical safety.


Assuntos
Queimaduras , Diatermia , Incêndios , Eletrocoagulação/efeitos adversos , Eletrocirurgia/efeitos adversos , Incêndios/prevenção & controle , Humanos
14.
J Hazard Mater ; 383: 121244, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31563044

RESUMO

This work assesses the potential of electrochemical technologies for the treatment of groundwaters contaminated with petroleum hydrocarbons. Specific consideration was given to deployment in Antarctic regions where numerous fuel spills have occurred over the last two centuries, and resources and manual labour for remediation efforts are limited. The polycyclic aromatic hydrocarbon, naphthalene, was a used as a model contaminant and was treated with low-cost, active carbon electrodes to promote the active chlorine degradation pathway. Results showed that 20 mg/L naphthalene solutions could be treated to sufficient standards in less than 3 h of treatment, and that the formation of toxic and chlorinated by-products is not an issue of concern if the appropriate timeframes are used (4 h of treatment). The effects of the applied current (0-160 mA) and electrolyte concentration (0.01-0.1 M NaCl) were evaluated and a dynamic kinetic model proposed and found to be in good agreement with the experimental results. The energy consumption is an important limitation in remote environmental regions where resources are scarce. It was found that an energy usage of 104 kW h/kg of naphthalene removed could be achieved.

15.
Comput Methods Programs Biomed ; 178: 41-46, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31416561

RESUMO

BACKGROUND AND OBJECTIVE: Brain machine interface (BMI) is a system which communicates the brain with the external machines. In general, an electroencephalograph (EEG) machine has to be used to monitor multi-channel brain responses to improve the BMI performance. However, the bulky size of the EEG machine and applying conductive gels in EEG electrodes also cause the inconvenience of daily life applications. How to select the relevant EEG channel and remove irrelevant channels is important and useful for the development of BMIs. METHODS: In this research, a smart EEG cap was proposed to improve the above issues. Different from the conventional EEG machine, the proposed smart EEG cap contain a spatial filtering circuit to enhance EEG features in local area, and it could also select the relevant EEG channel automatically. Moreover, the novel dry active electrodes were also designed to acquire EEG without conductive gels in the hairy skin of the head, to improve the convenience in use. RESULTS: Finally, the proposed smart EEG cap was applied in motion imagery-based BMI and several experiments were tested to valid the system performance. The proposed smart EEG cap could effectively enhance EEG features and select relevant EEG channel, and the information transfer rate of BMI was about 6.06 bits/min. CONCLUSIONS: The proposed smart EEG cap has advantages of measuring EEG without conductive gels and wireless transmission to effectively improve the convenience of use, and reduce the limitation of activity in daily life. In the future, it might be widely applied in other BMI applications.


Assuntos
Interfaces Cérebro-Computador , Condutividade Elétrica , Eletrodos , Eletroencefalografia/instrumentação , Desenho de Equipamento , Algoritmos , Encéfalo/fisiologia , Cabeça , Humanos , Movimento (Física) , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Pele/patologia , Tecnologia sem Fio
16.
Front Neuroinform ; 9: 17, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26157385

RESUMO

Most of the software platforms for cellular electrophysiology are limited in terms of flexibility, hardware support, ease of use, or re-configuration and adaptation for non-expert users. Moreover, advanced experimental protocols requiring real-time closed-loop operation to investigate excitability, plasticity, dynamics, are largely inaccessible to users without moderate to substantial computer proficiency. Here we present an approach based on MATLAB/Simulink, exploiting the benefits of LEGO-like visual programming and configuration, combined to a small, but easily extendible library of functional software components. We provide and validate several examples, implementing conventional and more sophisticated experimental protocols such as dynamic-clamp or the combined use of intracellular and extracellular methods, involving closed-loop real-time control. The functionality of each of these examples is demonstrated with relevant experiments. These can be used as a starting point to create and support a larger variety of electrophysiological tools and methods, hopefully extending the range of default techniques and protocols currently employed in experimental labs across the world.

17.
J Neurosci Methods ; 230: 5-19, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24769169

RESUMO

BACKGROUND: Current software tools for electrophysiological experiments are limited in flexibility and rarely offer adequate support for advanced techniques such as dynamic clamp and hybrid experiments, which are therefore limited to laboratories with a significant expertise in neuroinformatics. NEW METHOD: We have developed lcg, a software suite based on a command-line interface (CLI) that allows performing both standard and advanced electrophysiological experiments. Stimulation protocols for classical voltage and current clamp experiments are defined by a concise and flexible meta description that allows representing complex waveforms as a piece-wise parametric decomposition of elementary sub-waveforms, abstracting the stimulation hardware. To perform complex experiments lcg provides a set of elementary building blocks that can be interconnected to yield a large variety of experimental paradigms. RESULTS: We present various cellular electrophysiological experiments in which lcg has been employed, ranging from the automated application of current clamp protocols for characterizing basic electrophysiological properties of neurons, to dynamic clamp, response clamp, and hybrid experiments. We finally show how the scripting capabilities behind a CLI are suited for integrating experimental trials into complex workflows, where actual experiment, online data analysis and computational modeling seamlessly integrate. COMPARISON WITH EXISTING METHODS: We compare lcg with two open source toolboxes, RTXI and RELACS. CONCLUSIONS: We believe that lcg will greatly contribute to the standardization and reproducibility of both simple and complex experiments. Additionally, on the long run the increased efficiency due to a CLI will prove a great benefit for the experimental community.


Assuntos
Eletrofisiologia/métodos , Neurônios/fisiologia , Software , Interface Usuário-Computador , Potenciais de Ação , Algoritmos , Animais , Córtex Cerebelar/fisiologia , Simulação por Computador , Estimulação Elétrica/métodos , Modelos Neurológicos , Técnicas de Patch-Clamp/métodos , Células Piramidais/fisiologia , Ratos Wistar , Processamento de Sinais Assistido por Computador , Córtex Somatossensorial/fisiologia , Fatores de Tempo , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA