Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Q Rev Biophys ; 57: e2, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477116

RESUMO

Zoonoses are infectious agents that are transmissible between animals and humans. Up to 60% of known infectious diseases and 75% of emergent diseases are zoonotic. Genomic variation between homeostatic populations provides a novel window into the effect of environmental pathogens on allelic distributions within the populations. Genodynamics is a biophysical approach utilizing developed metrics on biallelic single-nucleotide polymorphisms (SNPs) that can be used to quantify the adaptive influences due to pathogens. A genomic free energy that is minimized when overall population health is optimized describes the influence of environmental agents upon genomic variation. A double-blind exploration of over 100 thousand SNPs searching for smooth functional dependencies upon four zoonotic pathogens carried by four possible hosts amidst populations that live in their ancestral environments has been conducted. Exemplars that infectious agents can have significant adaptive influence on human populations are presented. One discussed SNP is likely associated with both adaptive and innate immune regulation. The adaptive response of another SNP suggests an intriguing connection between zoonoses and human cancers. The adaptive forces of the presented pathogens upon the human genome have been quantified.


Assuntos
Genômica , Zoonoses , Animais , Humanos , Zoonoses/epidemiologia , Polimorfismo de Nucleotídeo Único , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
BMC Musculoskelet Disord ; 25(1): 34, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38178020

RESUMO

BACKGROUND: Quadriceps strength deficits are known for patients with knee osteoarthritis (OA), whereas findings on hamstrings are less clear. The Adaptive Force (AF) as a special neuromuscular function has never been investigated in OA before. The maximal adaptive holding capacity (max. isometric AF; AFisomax) has been considered to be especially vulnerable to disruptive stimuli (e.g., nociception). It was hypothesized that affected limbs of OA patients would show clear deficits in AFisomax. METHODS: AF parameters and the maximal voluntary isometric contraction (MVIC) of hamstrings were assessed bilaterally comparing 20 patients with knee OA (ART) vs. controls (CON). AF was measured by a pneumatically driven device. Participants were instructed to maintain a static position despite an increasing load of the device. After reaching AFisomax, the hamstrings merged into eccentric action whereby the force increased further to the maximum (AFmax). MVIC was recorded before and after AF trials. Mixed ANOVA was used to identify differences between and within ART and CON (comparing 1st and 2nd measured sides). RESULTS: AFisomax and the torque development per degree of yielding were significantly lower only for the more affected side of ART vs. CON (p ≤ 0.001). The percentage difference of AFisomax amounted to - 40%. For the less affected side it was - 24% (p = 0.219). MVIC and AFmax were significantly lower for ART vs. CON for both sides (p ≤ 0.001). Differences of MVIC between ART vs. CON amounted to - 27% for the more, and - 30% for the less affected side; for AFmax it was - 34% and - 32%, respectively. CONCLUSION: The results suggest that strength deficits of hamstrings are present in patients with knee OA possibly attributable to nociception, generally lower physical activity/relief of lower extremities or fear-avoidance. However, the more affected side of OA patients seems to show further specific impairments regarding neuromuscular control reflected by the significantly reduced adaptive holding capacity and torque development during adaptive eccentric action. It is assumed that those parameters could reflect possible inhibitory nociceptive effects more sensitive than maximal strengths as MVIC and AFmax. Their role should be further investigated to get more specific insights into these aspects of neuromuscular control in OA patients. The approach is relevant for diagnostics also in terms of severity and prevention.


Assuntos
Músculos Isquiossurais , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/diagnóstico , Articulação do Joelho , Músculos Isquiossurais/fisiologia , Contração Isométrica/fisiologia , Extremidade Inferior , Torque , Músculo Esquelético
3.
J Biol Phys ; 48(2): 227-236, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35426605

RESUMO

Widespread genotyping of human populations in environmental homeostasis has created opportunities to quantify how environmental parameters affect the genomic distribution of variants in healthy populations. This represents an ongoing natural experiment upon the human species that can only be understood through developing models of adaptation. By examining the information dynamics of optimal SNP distributions within such populations, "adaptive forces" on genomic variants can be quantified through comparisons between different populations. To this end, we are performing double-blind scans of SNPs in order to ascertain any potential smooth functional relationships between the frequencies of the variants and changes in quantified environmental parameters. At present, we have sequentially examined more than twenty thousand SNPs (on chromosome 3) of nine homeostatic native populations for potential adaptive flagging of the variants as functions of 15 environmental parameters. Our first significant flag has related rs1010211 to viral pathogens in mammalian hosts. Such pathogens present a significant risk for the emergence of new infectious diseases in humans. This genomic variant is within the gene TNIK, which is a germinal center kinase (GCK). GCKs are participants in both adaptive and innate immune regulation. However, the function of TNIK is not fully understood. We quantify the adaptive force on the C allele due to the pathogens as 0.04 GEU's/viral species.


Assuntos
Genômica , Polimorfismo de Nucleotídeo Único , Animais , Humanos , Mamíferos , Polimorfismo de Nucleotídeo Único/genética
4.
Int J Comput Assist Radiol Surg ; 19(7): 1273-1280, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38816649

RESUMO

PURPOSE: Skullbase surgery demands exceptional precision when removing bone in the lateral skull base. Robotic assistance can alleviate the effect of human sensory-motor limitations. However, the stiffness and inertia of the robot can significantly impact the surgeon's perception and control of the tool-to-tissue interaction forces. METHODS: We present a situational-aware, force control technique aimed at regulating interaction forces during robot-assisted skullbase drilling. The contextual interaction information derived from the digital twin environment is used to enhance sensory perception and suppress undesired high forces. RESULTS: To validate our approach, we conducted initial feasibility experiments involving a medical and two engineering students. The experiment focused on further drilling around critical structures following cortical mastoidectomy. The experiment results demonstrate that robotic assistance coupled with our proposed control scheme effectively limited undesired interaction forces when compared to robotic assistance without the proposed force control. CONCLUSIONS: The proposed force control techniques show promise in significantly reducing undesired interaction forces during robot-assisted skullbase surgery. These findings contribute to the ongoing efforts to enhance surgical precision and safety in complex procedures involving the lateral skull base.


Assuntos
Procedimentos Cirúrgicos Robóticos , Base do Crânio , Humanos , Base do Crânio/cirurgia , Procedimentos Cirúrgicos Robóticos/métodos , Estudos de Viabilidade , Mastoidectomia/métodos
5.
ISA Trans ; 148: 477-489, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548504

RESUMO

This paper aims to tackle the issue of carrying variable loads and disturbances in an impedance-based dual-arm robot. When robots are engaged in transportation tasks, deviations in trajectory due to changing loads and the risk of objects falling under external disturbances or unstable gripping can lead to mission failure. To address these issues, a novel Dual-Arm Adaptive Cooperative Control Framework (ACCF) is proposed. The ACCF is designed to ensure adherence to trajectory constraints in the presence of load variations and to actively respond to sliding or overturning caused by disturbances. The framework is user-friendly and robust, featuring a two-loop arrangement. The inner-loop incorporates an adaptive force control law to robustly control internal forces for dual-arm gripping. The outer-loop utilizes centralized impedance control, incorporating a fast gravity estimation scheme to compensate for trajectory deviations and an active anti-overturning scheme to resist sliding or overturning of objects during disturbances. Experimental evaluations and comparisons are conducted. The results successfully demonstrate the ACCF's adaptability under variable loads and external disturbances, providing a solution for practical dual-arm applications, such as transportation, in future scenarios.

6.
Diagnostics (Basel) ; 13(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36900026

RESUMO

Long COVID patients show symptoms, such as fatigue, muscle weakness and pain. Adequate diagnostics are still lacking. Investigating muscle function might be a beneficial approach. The holding capacity (maximal isometric Adaptive Force; AFisomax) was previously suggested to be especially sensitive for impairments. This longitudinal, non-clinical study aimed to investigate the AF in long COVID patients and their recovery process. AF parameters of elbow and hip flexors were assessed in 17 patients at three time points (pre: long COVID state, post: immediately after first treatment, end: recovery) by an objectified manual muscle test. The tester applied an increasing force on the limb of the patient, who had to resist isometrically for as long as possible. The intensity of 13 common symptoms were queried. At pre, patients started to lengthen their muscles at ~50% of the maximal AF (AFmax), which was then reached during eccentric motion, indicating unstable adaptation. At post and end, AFisomax increased significantly to ~99% and 100% of AFmax, respectively, reflecting stable adaptation. AFmax was statistically similar for all three time points. Symptom intensity decreased significantly from pre to end. The findings revealed a substantially impaired maximal holding capacity in long COVID patients, which returned to normal function with substantial health improvement. AFisomax might be a suitable sensitive functional parameter to assess long COVID patients and to support therapy process.

7.
Front Physiol ; 14: 1020954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909246

RESUMO

The Adaptive Force (AF) reflects the neuromuscular capacity to adapt to external loads during holding muscle actions and is similar to motions in real life and sports. The maximal isometric AF (AFisomax) was considered to be the most relevant parameter and was assumed to have major importance regarding injury mechanisms and the development of musculoskeletal pain. The aim of this study was to investigate the behavior of different torque parameters over the course of 30 repeated maximal AF trials. In addition, maximal holding vs. maximal pushing isometric muscle actions were compared. A side consideration was the behavior of torques in the course of repeated AF actions when comparing strength and endurance athletes. The elbow flexors of n = 12 males (six strength/six endurance athletes, non-professionals) were measured 30 times (120 s rest) using a pneumatic device. Maximal voluntary isometric contraction (MVIC) was measured pre and post. MVIC, AFisomax, and AFmax (maximal torque of one AF measurement) were evaluated regarding different considerations and statistical tests. AFmax and AFisomax declined in the course of 30 trials [slope regression (mean ± standard deviation): AFmax = -0.323 ± 0.263; AFisomax = -0.45 ± 0.45]. The decline from start to end amounted to -12.8% ± 8.3% (p < 0.001) for AFmax and -25.41% ± 26.40% (p < 0.001) for AFisomax. AF parameters declined more in strength vs. endurance athletes. Thereby, strength athletes showed a rather stable decline for AFmax and a plateau formation for AFisomax after 15 trials. In contrast, endurance athletes reduced their AFmax, especially after the first five trials, and remained on a rather similar level for AFisomax. The maximum of AFisomax of all 30 trials amounted 67.67% ± 13.60% of MVIC (p < 0.001, n = 12), supporting the hypothesis of two types of isometric muscle action (holding vs. pushing). The findings provided the first data on the behavior of torque parameters after repeated isometric-eccentric actions and revealed further insights into neuromuscular control strategies. Additionally, they highlight the importance of investigating AF parameters in athletes based on the different behaviors compared to MVIC. This is assumed to be especially relevant regarding injury mechanisms.

8.
Life (Basel) ; 13(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37109439

RESUMO

Adaptation to external forces relies on a well-functioning proprioceptive system including muscle spindle afferents. Muscle length and tension control in reaction to external forces is most important regarding the Adaptive Force (AF). This study investigated the effect of different procedures, which are assumed to influence the function of muscle spindles, on the AF. Elbow flexors of 12 healthy participants (n = 19 limbs) were assessed by an objectified manual muscle test (MMT) with different procedures: regular MMT, MMT after precontraction (self-estimated 20% MVIC) in lengthened position with passive return to test position (CL), and MMT after CL with a second precontraction in test position (CL-CT). During regular MMTs, muscles maintained their length up to 99.7% ± 1.0% of the maximal AF (AFmax). After CL, muscles started to lengthen at 53.0% ± 22.5% of AFmax. For CL-CT, muscles were again able to maintain the static position up to 98.3% ± 5.5% of AFmax. AFisomax differed highly significantly between CL vs. CL-CT and regular MMT. CL was assumed to generate a slack of muscle spindles, which led to a substantial reduction of the holding capacity. This was immediately erased by a precontraction in the test position. The results substantiate that muscle spindle sensitivity seems to play an important role for neuromuscular functioning and musculoskeletal stability.

9.
Brain Sci ; 13(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37509036

RESUMO

Sensorimotor control can be impaired by slacked muscle spindles. This was shown for reflex responses and, recently, also for muscular stability in the sense of Adaptive Force (AF). The slack in muscle spindles was generated by contracting the lengthened muscle followed by passive shortening. AF was suggested to specifically reflect sensorimotor control since it requires tension-length control in adaptation to an increasing load. This study investigated AF parameters in reaction to another, manually performed slack procedure in a preselected sample (n = 13). The AF of 11 elbow and 12 hip flexors was assessed by an objectified manual muscle test (MMT) using a handheld device. Maximal isometric AF was significantly reduced after manual spindle technique vs. regular MMT. Muscle lengthening started at 64.93 ± 12.46% of maximal voluntary isometric contraction (MVIC). During regular MMT, muscle length could be maintained stable until 92.53 ± 10.12% of MVIC. Hence, muscular stability measured by AF was impaired after spindle manipulation. Force oscillations arose at a significantly lower level for regular vs. spindle. This supports the assumption that they are a prerequisite for stable adaptation. Reduced muscular stability in reaction to slack procedures is considered physiological since sensory information is misled. It is proposed to use slack procedures to test the functionality of the neuromuscular system, which is relevant for clinical practice.

10.
Brain Sci ; 12(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36291257

RESUMO

The link between emotions and motor function has been known for decades but is still not clarified. The Adaptive Force (AF) describes the neuromuscular capability to adapt to increasing forces and was suggested to be especially vulnerable to interfering inputs. This study investigated the influence of pleasant and unpleasant food imagery on the manually assessed AF of elbow and hip flexors objectified by a handheld device in 12 healthy women. The maximal isometric AF was significantly reduced during unpleasant vs. pleasant imagery and baseline (p < 0.001, dz = 0.98−1.61). During unpleasant imagery, muscle lengthening started at 59.00 ± 22.50% of maximal AF, in contrast to baseline and pleasant imagery, during which the isometric position could be maintained mostly during the entire force increase up to ~97.90 ± 5.00% of maximal AF. Healthy participants showed an immediately impaired holding function triggered by unpleasant imagery, presumably related to negative emotions. Hence, AF seems to be suitable to test instantaneously the effect of emotions on motor function. Since musculoskeletal complaints can result from muscular instability, the findings provide insights into the understanding of the causal chain of linked musculoskeletal pain and mental stress. A case example (current stress vs. positive imagery) suggests that the approach presented in this study might have future implications for psychomotor diagnostics and therapeutics.

11.
Front Med (Lausanne) ; 9: 879971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714125

RESUMO

The increasing prevalence of Long COVID is an imminent public health disaster, and established approaches have not provided adequate diagnostics or treatments. Recently, anesthetic blockade of the stellate ganglion was reported to improve Long COVID symptoms in a small case series, purportedly by "rebooting" the autonomic nervous system. Here, we present a novel diagnostic approach based on the Adaptive Force (AF), and report sustained positive outcome for one severely affected Long COVID patient using individualized pulsed electromagnetic field (PEMF) at the area C7/T1. AF reflects the capacity of the neuromuscular system to adapt adequately to external forces in an isometric holding manner. In case, maximal isometric AF (AFisomax) is exceeded, the muscle merges into eccentric muscle action. Thereby, the force usually increases further until maximal AF (AFmax) is reached. In case adaptation is optimal, AFisomax is ~99-100% of AFmax. This holding capacity (AFisomax) was found to be vulnerable to disruption by unpleasant stimulus and, hence, was regarded as functional parameter. AF was assessed by an objectified manual muscle test using a handheld device. Prior to treatment, AFisomax was considerably lower than AFmax for hip flexors (62 N = ~28% AFmax) and elbow flexors (71 N = ~44% AFmax); i.e., maximal holding capacity was significantly reduced, indicating dysfunctional motor control. We tested PEMF at C7/T1, identified a frequency that improved neuromuscular function, and applied it for ~15 min. Immediately post-treatment, AFisomax increased to ~210 N (~100% AFmax) at hip and 184 N (~100% AFmax) at elbow. Subjective Long COVID symptoms resolved the following day. At 4 weeks post-treatment, maximal holding capacity was still on a similarly high level as for immediately post-treatment (~100% AFmax) and patient was symptom-free. At 6 months the patient's Long COVID symptoms have not returned. This case report suggests (1) AF could be a promising diagnostic for post-infectious illness, (2) AF can be used to test effective treatments for post-infectious illness, and (3) individualized PEMF may resolve post-infectious symptoms.

12.
Heliyon ; 7(8): e07827, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34485726

RESUMO

The link between emotions and motor control has been discussed for years. The measurement of the Adaptive Force (AF) provides the possibility to get insights into the adaptive control of the neuromuscular system in reaction to external forces. It was hypothesized that the holding isometric AF is especially vulnerable to disturbing inputs. Here, the behavior of the AF under the influence of positive (tasty) vs. negative (disgusting) food imaginations was investigated. The AF was examined in n = 12 cases using an objectified manual muscle test of the hip flexors, elbow flexors or pectoralis major muscle, performed by one of two experienced testers while the participants imagined their most tasty or most disgusting food. The reaction force and the limb position were measured by a handheld device. While the slope of force rises and the maximal AF did not differ significantly between tasty and disgusting imaginations (p > 0.05), the maximal isometric AF was significantly lower and the AF at the onset of oscillations was significantly higher under disgusting vs. tasty imaginations (both p = 0.001). A proper length tension control of muscles seems to be a crucial functional parameter of the neuromuscular system which can be impaired instantaneously by emotionally related negative imaginations. This might be a potential approach to evaluate somatic reactions to emotions.

13.
Diagnostics (Basel) ; 11(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063869

RESUMO

Adaptive Force (AF) reflects the capability of the neuromuscular system to adapt adequately to external forces with the intention of maintaining a position or motion. One specific approach to assessing AF is to measure force and limb position during a pneumatically applied increasing external force. Through this method, the highest (AFmax), the maximal isometric (AFisomax) and the maximal eccentric Adaptive Force (AFeccmax) can be determined. The main question of the study was whether the AFisomax is a specific and independent parameter of muscle function compared to other maximal forces. In 13 healthy subjects (9 male and 4 female), the maximal voluntary isometric contraction (pre- and post-MVIC), the three AF parameters and the MVIC with a prior concentric contraction (MVICpri-con) of the elbow extensors were measured 4 times on two days. Arithmetic mean (M) and maximal (Max) torques of all force types were analyzed. Regarding the reliability of the AF parameters between days, the mean changes were 0.31-1.98 Nm (0.61%-5.47%, p = 0.175-0.552), the standard errors of measurements (SEM) were 1.29-5.68 Nm (2.53%-15.70%) and the ICCs(3,1) = 0.896-0.996. M and Max of AFisomax, AFmax and pre-MVIC correlated highly (r = 0.85-0.98). The M and Max of AFisomax were significantly lower (6.12-14.93 Nm; p ≤ 0.001-0.009) and more variable between trials (coefficient of variation (CVs) ≥ 21.95%) compared to those of pre-MVIC and AFmax (CVs ≤ 5.4%). The results suggest the novel measuring procedure is suitable to reliably quantify the AF, whereby the presented measurement errors should be taken into consideration. The AFisomax seems to reflect its own strength capacity and should be detected separately. It is suggested its normalization to the MVIC or AFmax could serve as an indicator of a neuromuscular function.

14.
Diagnostics (Basel) ; 10(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255648

RESUMO

The manual muscle test (MMT) is a flexible diagnostic tool, which is used in many disciplines, applied in several ways. The main problem is the subjectivity of the test. The MMT in the version of a "break test" depends on the tester's force rise and the patient's ability to resist the applied force. As a first step, the investigation of the reproducibility of the testers' force profile is required for valid application. The study examined the force profiles of n = 29 testers (n = 9 experiences (Exp), n = 8 little experienced (LitExp), n = 12 beginners (Beg)). The testers performed 10 MMTs according to the test of hip flexors, but against a fixed leg to exclude the patient's reaction. A handheld device recorded the temporal course of the applied force. The results show significant differences between Exp and Beg concerning the starting force (padj = 0.029), the ratio of starting to maximum force (padj = 0.005) and the normalized mean Euclidean distances between the 10 trials (padj = 0.015). The slope is significantly higher in Exp vs. LitExp (p = 0.006) and Beg (p = 0.005). The results also indicate that experienced testers show inter-tester differences and partly even a low intra-tester reproducibility. This highlights the necessity of an objective MMT-assessment. Furthermore, an agreement on a standardized force profile is required. A suggestion for this is given.

15.
Behav Brain Res ; 376: 111859, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-30898680

RESUMO

Attention plays an important role in perception and cognition, and developing an effective method to train and improve attention is an essential and challenging task. In this study, fingertip-based adaptive force control tasks (AFCT) were explored for attention training, and the visual-channel task called an attention network test (ANT) was used to measure the level of attention before and after AFCT. The purposes of this study were to investigate whether AFCT can enhance the attention level on the ANT task and to elucidate the underlying electrophysiological mechanisms. The results showed that the efficiency of the executive control network during ANT was significantly improved by the AFCT training, indicating that the AFCT training may enhance the executive attention level during visual-channel tasks. To measure the behavioural performance during the AFCT training, we used tolerance, variance and duration of the forces to design a comprehensive score of behavioural performance (CSBP), and the electrophysiological mechanisms were also explored using electroencephalography (EEG) recordings. The AFCT and ANT results showed consistency in medial frontal theta activity and in connectivity strength at frontal-parietal regions in the alpha band. These results indicated that the observed attention improvement across tasks executed using different sensory channels may be due to the training of overlapping components of the relevant attention networks. Thus, this study provides further insight into the design of training tasks that stimulate multi-sensory channels, which can be used to improve attention and treat various attention deficit disorders.


Assuntos
Atenção/fisiologia , Função Executiva/fisiologia , Tempo de Reação/fisiologia , Adulto , Encéfalo/fisiologia , Cognição/fisiologia , Eletroencefalografia , Feminino , Lobo Frontal/fisiologia , Humanos , Masculino , Vias Neurais/fisiologia , Testes Neuropsicológicos , Lobo Parietal/fisiologia , Percepção , Desempenho Psicomotor/fisiologia , Ensino , Adulto Jovem
16.
Front Physiol ; 10: 910, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396096

RESUMO

The improvement of power is an objective in training of athletes. In order to detect effective methods of exercise, basic research is required regarding the mechanisms of muscular activity. The purpose of this study is to investigate whether or not a muscular pre-activation prior to an external impulse-like force impact has an effect on the maximal explosive eccentric Adaptive Force (xpAFeccmax). This power capability combines different probable power enhancing mechanisms. To measure the xpAFeccmax an innovative pneumatic device was used. During measuring, the subject tries to hold an isometric position as long as possible. In the moment in which the subjects' maximal isometric holding strength is exceeded, it merges into eccentric muscle action. This process is very close to motions in sports, where an adaptation of the neuromuscular system is required, e.g., force impacts caused by uneven surfaces during skiing. For investigating the effect of pre-activation on the xpAFeccmax of the quadriceps femoris muscle, n = 20 subjects had to pass three different pre-activation levels in a randomized order (level 1: 0.4 bar, level 2: 0.8 bar, level 3: 1.2 bar). After adjusting the standardized pre-pressure by pushing against the interface, an impulse-like load impacted on the distal tibia of the subject. During this, the xpAFeccmax was detected. The maximal voluntary isometric contraction (MVIC) was also measured. The torque values of the xpAFeccmax were compared with regard to the pre-activation levels. The results show a significant positive relation between the pre-activation of the quadriceps femoris muscle and the xpAFeccmax (male: p = 0.000, η2= 0.683; female: p = 0.000, η2= 0.907). The average percentage increase of torque amounted +28.15 ± 25.4% between MVIC and xpAFeccmax with pre-pressure level 1, +12.09 ± 7.9% for the xpAFeccmax comparing pre-pressure levels 1 vs. 2 and +2.98 ± 4.2% comparing levels 2 and 3. A higher but not maximal muscular activation prior to a fast impacting eccentric load seems to produce an immediate increase of force outcome. Different possible physiological explanatory approaches and the use as a potential training method are discussed.

17.
Eur J Transl Myol ; 27(3): 6479, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29118954

RESUMO

The term Adaptive Force (AF) describes the capability of adaptation of the nerve-muscle-system to externally applied forces during isometric and eccentric muscle action. This ability plays an important role in real life motions as well as in sports. The focus of this paper is on the specific measurement method of this neuromuscular action, which can be seen as innovative. A measuring system based on the use of compressed air was constructed and evaluated for this neuromuscular function. It depends on the physical conditions of the subject, at which force level it deviates from the quasi isometric position and merges into eccentric muscle action. The device enables - in contrast to the isokinetic systems - a measure of strength without forced motion. Evaluation of the scientific quality criteria of the devices was done by measurements regarding the intra- and interrater-, the test-retest-reliability and fatiguing measurements. Comparisons of the pneumatic device with a dynamometer were also done. Looking at the mechanical evaluation, the results show a high level of consistency (r²=0.94 to 0.96). The parallel test reliability delivers a very high and significant correlation (ρ=0.976; p=0.000). Including the biological system, the concordance of three different raters is very high (p=0.001, Cronbachs alpha α=0.987). The test retest with 4 subjects over five weeks speaks for the reliability of the device in showing no statistically significant differences. These evaluations indicate that the scientific evaluation criteria are fulfilled. The specific feature of this system is that an isometric position can be maintained while the externally impacting force rises. Moreover, the device can capture concentric, static and eccentric strength values. Fields of application are performance diagnostics in sports and medicine.

18.
Eur J Transl Myol ; 25(3): 5183, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26913155

RESUMO

In real life motions, as well as in sports, the adaptation of the neuromuscular systems to externally applied forces plays an important role. The term Adaptive Force (AF) shall characterize the ability of the nerve-muscle-system to adapt to impacting external forces during isometric and eccentric muscle action. The focus in this paper is on the concept of this neuromuscular action, which is not yet described in this way. A measuring system was constructed and evaluated for this specific neuromuscular function, but only the main information of the evaluation of the measuring system and the preliminary reference values are mentioned here, while an article with detailed description will be published separately. This paper concentrates on the three following points: 1) What is the peculiarity of this neuromuscular function, introduced as AF? 2) Is the measuring system able to capture its specific characteristics and which phases of measurement occur? 3) It seems reasonable to discuss if AF can be distinguished and classified among the known force concepts. The article describes the measuring system and how it is able to capture special features of real life motions like submaximal intensities and the subjects' option to react adequately on external varying forces. Furthermore, within one measurement the system records three different force qualities: the isometric submaximal Adaptive Force (AFiso), the maximal isometric Adaptive Force (AFisomax) and the maximal eccentric Adaptive Force (AFeccmax). Each of these phases provide different and unique information on the nerve-muscle-system that are discussed in detail. Important, in terms of the Adaptive Force, seems to be the combination of conditional and coordinative abilities. This project was funded by the Federal Ministry of Economy and Technology (Project ZIM KF2262301FO9).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA