Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Annu Rev Cell Dev Biol ; 30: 169-206, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25150009

RESUMO

The trans-Golgi network (TGN) is an important cargo sorting station within the cell where newly synthesized proteins are packaged into distinct transport carriers that are targeted to various destinations. To maintain the fidelity of protein transport, elaborate protein sorting machinery is employed to mediate sorting of specific cargo proteins into distinct transport carriers. Protein sorting requires assembly of the cytosolic sorting machinery onto the TGN membrane and capture of cargo proteins. We review the cytosolic and transmembrane sorting machinery that function at the TGN and describe molecular interactions and regulatory mechanisms that enable accurate protein sorting. In addition, we highlight the importance of TGN sorting in physiology and disease.


Assuntos
Transporte Proteico/fisiologia , Rede trans-Golgi/fisiologia , Fator 1 de Ribosilação do ADP/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Motivos de Aminoácidos , Animais , Proteínas de Transporte/fisiologia , Polaridade Celular , Citosol/fisiologia , Humanos , Lipídeos de Membrana/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Modelos Biológicos , Modelos Moleculares , Fosfolipídeos/fisiologia , Conformação Proteica , Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico/imunologia , Relação Estrutura-Atividade , Vesículas Transportadoras/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Rede trans-Golgi/imunologia
2.
Genes Dev ; 34(19-20): 1287-1303, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004486

RESUMO

There are many large protein complexes involved in transcription in a chromatin context. However, recent studies on the SAGA coactivator complex are generating new paradigms for how the components of these complexes function, both independently and in concert. This review highlights the initial discovery of the canonical SAGA complex 23 years ago, our evolving understanding of its modular structure and the relevance of its modular nature for its coactivator function in gene regulation.


Assuntos
Regulação da Expressão Gênica/fisiologia , Transativadores/química , Transativadores/metabolismo , Animais , Histona Acetiltransferases/metabolismo , Complexos Multiproteicos/metabolismo , Peptídeo Hidrolases/metabolismo , Subunidades Proteicas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Fatores Associados à Proteína de Ligação a TATA/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(6): e2219044120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36730206

RESUMO

Energy-dependent protein degradation by the AAA+ ClpXP protease helps maintain protein homeostasis in bacteria and eukaryotic organelles of bacterial origin. In Escherichia coli and many other proteobacteria, the SspB adaptor assists ClpXP in degrading ssrA-tagged polypeptides produced as a consequence of tmRNA-mediated ribosome rescue. By tethering these incomplete ssrA-tagged proteins to ClpXP, SspB facilitates their efficient degradation at low substrate concentrations. How this process occurs structurally is unknown. Here, we present a cryo-EM structure of the SspB adaptor bound to a GFP-ssrA substrate and to ClpXP. This structure provides evidence for simultaneous contacts of SspB and ClpX with the ssrA tag within the tethering complex, allowing direct substrate handoff concomitant with the initiation of substrate translocation. Furthermore, our structure reveals that binding of the substrate·adaptor complex induces unexpected conformational changes within the spiral structure of the AAA+ ClpX hexamer and its interaction with the ClpP tetradecamer.


Assuntos
Proteínas de Transporte , Proteínas de Escherichia coli , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfatases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Especificidade por Substrato
4.
EMBO J ; 40(8): e106164, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33734450

RESUMO

Dynactin is a 1.1 MDa complex that activates the molecular motor dynein for ultra-processive transport along microtubules. In order to do this, it forms a tripartite complex with dynein and a coiled-coil adaptor. Dynactin consists of an actin-related filament whose length is defined by its flexible shoulder domain. Despite previous cryo-EM structures, the molecular architecture of the shoulder and pointed end of the filament is still poorly understood due to the lack of high-resolution information in these regions. Here we combine multiple cryo-EM datasets and define precise masking strategies for particle signal subtraction and 3D classification. This overcomes domain flexibility and results in high-resolution maps into which we can build the shoulder and pointed end. The unique architecture of the shoulder securely houses the p150 subunit and positions the four identical p50 subunits in different conformations to bind dynactin's filament. The pointed end map allows us to build the first structure of p62 and reveals the molecular basis for cargo adaptor binding to different sites at the pointed end.


Assuntos
Complexo Dinactina/química , Microscopia Crioeletrônica , Complexo Dinactina/metabolismo , Humanos , Simulação de Dinâmica Molecular , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
5.
J Cell Sci ; 136(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861885

RESUMO

Motor proteins are key players in exerting spatiotemporal control over the intracellular location of membrane-bound compartments, including endosomes containing cargo. In this Review, we focus on how motors and their cargo adaptors regulate positioning of cargoes from the earliest stages of endocytosis and through the two main intracellular itineraries: (1) degradation at the lysosome or (2) recycling back to the plasma membrane. In vitro and cellular (in vivo) studies on cargo transport thus far have typically focussed independently on either the motor proteins and adaptors, or membrane trafficking. Here, we will discuss recent studies to highlight what is known about the regulation of endosomal vesicle positioning and transport by motors and cargo adaptors. We also emphasise that in vitro and cellular studies are often performed at different scales, from single molecules to whole organelles, with the aim to provide a perspective on the unified principles of motor-driven cargo trafficking in living cells that can be learned from these differing scales.


Assuntos
Endossomos , Lisossomos , Movimento Celular , Membrana Celular , Endocitose , Dineínas , Cinesinas
6.
J Cell Sci ; 136(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37337792

RESUMO

Accumulating evidence in several model organisms indicates that reduced sphingolipid biosynthesis promotes longevity, although underlying mechanisms remain unclear. In yeast, sphingolipid depletion induces a state resembling amino acid restriction, which we hypothesized might be due to altered stability of amino acid transporters at the plasma membrane. To test this, we measured surface abundance for a diverse panel of membrane proteins in the presence of myriocin, a sphingolipid biosynthesis inhibitor, in Saccharomyces cerevisiae. Unexpectedly, we found that surface levels of most proteins examined were either unaffected or increased during myriocin treatment, consistent with an observed decrease in bulk endocytosis. In contrast, sphingolipid depletion triggered selective endocytosis of the methionine transporter Mup1. Unlike methionine-induced Mup1 endocytosis, myriocin triggered Mup1 endocytosis that required the Rsp5 adaptor Art2, C-terminal lysine residues of Mup1 and the formation of K63-linked ubiquitin polymers. These findings reveal cellular adaptation to sphingolipid depletion by ubiquitin-mediated remodeling of nutrient transporter composition at the cell surface.


Assuntos
Proteínas de Saccharomyces cerevisiae , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Metionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
7.
Trends Biochem Sci ; 45(5): 440-453, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32311337

RESUMO

Cytoplasmic dynein is an AAA+ motor that drives the transport of many intracellular cargoes towards the minus end of microtubules (MTs). Previous in vitro studies characterized isolated dynein as an exceptionally weak motor that moves slowly and diffuses on an MT. Recent studies altered this view by demonstrating that dynein remains in an autoinhibited conformation on its own, and processive motility is activated when it forms a ternary complex with dynactin and a cargo adaptor. This complex assembles more efficiently in the presence of Lis1, providing an explanation for why Lis1 is a required cofactor for most cytoplasmic dynein-driven processes in cells. This review describes how dynein motility is activated and regulated by cargo adaptors and accessory proteins.


Assuntos
Dineínas do Citoplasma/metabolismo , Animais , Microscopia Crioeletrônica , Humanos , Imagem Individual de Molécula
8.
Proteins ; 92(10): 1242-1258, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38814166

RESUMO

Toll-like receptors (TLRs) are major players in the innate immune system-recognizing pathogens and differentiating self/non-self components of immunity. These proteins are present either on the plasma membrane or endosome and recognize pathogens at their extracellular domains. They are characterized by a single transmembrane helix and an intracellular toll-interleukin-1 receptor (TIR) domain. Few TIRs directly invoke downstream signaling, while others require other TIR domains of adaptors like TIR domain-containing adaptor-inducing interferon-ß (TRIF) and TRIF-related adaptor molecule (TRAM). On recognizing pathogenic lipopolysaccharides, TLR4 dimerises and interacts with the intracellular TRAM dimer through the TIR domain to recruit a downstream signaling adaptor (TRIF). We have performed an in-depth study of the structural effect of two mutations (P116H and C117H) at the dimeric interface of the adaptor TRAM, which are known to abrogate downstream signaling. We modeled the structure and performed molecular dynamics studies in order to decipher the structural basis of this effect. We observed that these mutations led to an increased radius of gyration of the complex and resulted in several changes to the interaction energy values when compared against the wild type (WT) and positive control mutants. We identified highly interacting residues as hubs in the WT dimer, and a few such hubs that were lost in the mutant dimers. Changes in the protein residue path, hampering the information flow between the crucial A86/E87/D88/D89 and T155/S156 sites, were observed for the mutants. Overall, we show that such residue changes can have subtle but long-distance effects, impacting the signaling path allosterically.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Simulação de Dinâmica Molecular , Multimerização Proteica , Humanos , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Transdução de Sinais , Ligação Proteica , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Mutação , Domínios e Motivos de Interação entre Proteínas , Expressão Gênica , Conformação Proteica em alfa-Hélice , Sítios de Ligação , Proteínas Adaptadoras de Transdução de Sinal
9.
Mol Microbiol ; 120(6): 805-810, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38012814

RESUMO

Regulation of the first committed step of peptidoglycan precursor synthesis by MurA-enzyme homologs has recently taken center stage in many different bacteria. In different low-GC Gram-positive bacteria, regulation of this step has been shown to be regulated by phosphorylation of homologs of the IreB/ReoM regulatory protein by PASTA-domain Ser/Thr-protein kinases. In this issue, Mascari, Little, and Kristich determine this regulatory pathway and its links to resistance to cephalosporin ß-lactam antibiotics in the major human pathogen, Enterococcus faecalis (Efa). Unbiased genetic selections identified MurAA (MurA-family homolog) as the downstream target of IreB regulation in the absence of the IreK Ser/Thr-protein kinase. Physiological and biochemical approaches, including determination of MICs to ceftriaxone, Western blotting of MurAA cellular amounts, isotope incorporation into peptidoglycan sacculi, and thermal-shift binding assays of purified proteins, demonstrated that unphosphorylated IreB, together with proteins MurAB (MurZ-family homolog), and ReoY(Efa) negatively regulate MurAA stability and cellular amount by the ClpCP protease. Importantly, this paper supports the idea that ceftriaxone stimulates phosphorylation of IreB, which leads to increased cellular MurAA amount and precursor pathway flux required for E. faecalis cephalosporin resistance. Overall, findings in this paper significantly contribute to understanding variations of this central regulatory pathway in other low-GC Gram-positive bacteria.


Assuntos
Ceftriaxona , Enterococcus , Humanos , Fosforilação , Enterococcus/metabolismo , Peptidoglicano/metabolismo , Enterococcus faecalis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
10.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35311906

RESUMO

Endocytosis is indispensable for multiple cellular processes, including signalling, cell adhesion, migration, as well as the turnover of plasma membrane lipids and proteins. The dynamic interplay and regulation of different endocytic entry routes requires multiple cytoskeletal elements, especially motor proteins that bind to membranes and transport vesicles along the actin and microtubule cytoskeletons. Dynein and kinesin motor proteins transport vesicles along microtubules, whereas myosins drive vesicles along actin filaments. Here, we present a brief overview of multiple endocytic pathways and our current understanding of the involvement of these motor proteins in the regulation of the different cellular entry routes. We particularly focus on structural and mechanistic details of the retrograde motor proteins dynein and myosin VI (also known as MYO6), along with their adaptors, which have important roles in the early events of endocytosis. We conclude by highlighting the key challenges in elucidating the involvement of motor proteins in endocytosis and intracellular membrane trafficking.


Assuntos
Dineínas , Cinesinas , Dineínas/metabolismo , Endocitose/fisiologia , Microtúbulos/metabolismo , Cadeias Pesadas de Miosina , Miosinas/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34155137

RESUMO

The most represented components of clathrin-coated vesicles (CCVs) are clathrin triskelia and the adaptors clathrin assembly lymphoid myeloid leukemia protein (CALM) and the heterotetrameric complex AP2. Investigation of the dynamics of AP180-amino-terminal-homology (ANTH) recruitment during CCV formation has been hampered by CALM toxicity upon overexpression. We used knock-in gene editing to express a C-terminal-attached fluorescent version of CALM, while preserving its endogenous expression levels, and cutting-edge live-cell microscopy approaches to study CALM recruitment at forming CCVs. Our results demonstrate that CALM promotes vesicle completion upon membrane tension increase as a function of the amount of this adaptor present. Since the expression of adaptors, including CALM, differs among cells, our data support a model in which the efficiency of clathrin-mediated endocytosis is tissue specific and explain why CALM is essential during embryogenesis and red blood cell development.


Assuntos
Membrana Celular/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Edição de Genes , Proteínas de Fluorescência Verde/metabolismo , Humanos
12.
J Biol Chem ; 298(3): 101609, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065075

RESUMO

The chloroplast chaperone CLPC1 unfolds and delivers substrates to the stromal CLPPRT protease complex for degradation. We previously used an in vivo trapping approach to identify interactors with CLPC1 in Arabidopsis thaliana by expressing a STREPII-tagged copy of CLPC1 mutated in its Walker B domains (CLPC1-TRAP) followed by affinity purification and mass spectrometry. To create a larger pool of candidate substrates, adaptors, or regulators, we carried out a far more sensitive and comprehensive in vivo protein trapping analysis. We identified 59 highly enriched CLPC1 protein interactors, in particular proteins belonging to families of unknown functions (DUF760, DUF179, DUF3143, UVR-DUF151, HugZ/DUF2470), as well as the UVR domain proteins EXE1 and EXE2 implicated in singlet oxygen damage and signaling. Phylogenetic and functional domain analyses identified other members of these families that appear to localize (nearly) exclusively to plastids. In addition, several of these DUF proteins are of very low abundance as determined through the Arabidopsis PeptideAtlas http://www.peptideatlas.org/builds/arabidopsis/ showing that enrichment in the CLPC1-TRAP was extremely selective. Evolutionary rate covariation indicated that the HugZ/DUF2470 family coevolved with the plastid CLP machinery suggesting functional and/or physical interactions. Finally, mRNA-based coexpression networks showed that all 12 CLP protease subunits tightly coexpressed as a single cluster with deep connections to DUF760-3. Coexpression modules for other trapped proteins suggested specific functions in biological processes, e.g., UVR2 and UVR3 were associated with extraplastidic degradation, whereas DUF760-6 is likely involved in senescence. This study provides a strong foundation for discovery of substrate selection by the chloroplast CLP protease system.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Cloroplastos , Proteínas de Choque Térmico , Plastídeos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Endopeptidase Clp/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Filogenia , Plastídeos/genética , Plastídeos/metabolismo , Proteômica
13.
Biol Cell ; 114(1): 3-31, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34562280

RESUMO

BACKGROUND INFORMATION: Phosphatidylinositol (PI) is an essential phospholipid, critical to membrane bilayers. The complete deacylation of PI by B-type phospholipases produces intracellular and extracellular glycerophosphoinositol (GPI). Extracellular GPI is transported into the cell via Git1, a member of the Major Facilitator Superfamily of transporters at the yeast plasma membrane. Internalized GPI is degraded to produce inositol, phosphate and glycerol, thereby contributing to these pools. GIT1 gene expression is controlled by nutrient balance, with phosphate or inositol starvation increasing GIT1 expression to stimulate GPI uptake. However, less is known about control of Git1 protein levels or localization. RESULTS: We find that the α-arrestins, an important class of protein trafficking adaptor, regulate Git1 localization and this is dependent upon their interaction with the ubiquitin ligase Rsp5. Specifically, α-arrestin Aly2 stimulates Git1 trafficking to the vacuole under basal conditions, but in response to GPI-treatment, either Aly1 or Aly2 promote Git1 vacuole trafficking. Cell surface retention of Git1, as occurs in aly1∆ aly2∆ cells, is linked to impaired growth in the presence of exogenous GPI and results in increased uptake of radiolabeled GPI, suggesting that accumulation of GPI somehow causes cellular toxicity. Regulation of α-arrestin Aly1 by the protein phosphatase calcineurin improves steady-state and substrate-induced trafficking of Git1, however, calcineurin plays a larger role in Git1 trafficking beyond regulation of α-arrestins. Interestingly, loss of Aly1 and Aly2 increased phosphatidylinositol-3-phosphate on the limiting membrane of the vacuole, and this was further exacerbated by GPI addition, suggesting that the effect is partially linked to Git1. Loss of Aly1 and Aly2 leads to increased incorporation of inositol label from [3 H]-inositol-labelled GPI into PI, confirming that internalized GPI influences PI balance and indicating a role for the a-arrestins in this regulation. CONCLUSIONS: The α-arrestins Aly1 and Aly2 are novel regulators of Git1 trafficking with previously unanticipated roles in controlling phospholipid distribution and balance. SIGNIFICANCE: To our knowledge, this is the first example of α-arrestin regulation of phosphatidyliniositol-3-phosphate levels. In future studies it will be exciting to determine if other α-arrestins similarly alter PI and PIPs to change the cellular landscape.


Assuntos
Arrestinas , Proteínas de Saccharomyces cerevisiae , Arrestinas/metabolismo , Endocitose , Homeostase , Fosfatos de Inositol , Fosfolipídeos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685911

RESUMO

HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Citoesqueleto , Microtúbulos , Citoesqueleto de Actina , Filamentos Intermediários
15.
J Biol Chem ; 296: 100338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33497624

RESUMO

ATPases Associated with diverse cellular Activities (AAA+) are a superfamily of proteins that typically assemble into hexameric rings. These proteins contain AAA+ domains with two canonical motifs (Walker A and B) that bind and hydrolyze ATP, allowing them to perform a wide variety of different functions. For example, AAA+ proteins play a prominent role in cellular proteostasis by controlling biogenesis, folding, trafficking, and degradation of proteins present within the cell. Several central proteolytic systems (e.g., Clp, Deg, FtsH, Lon, 26S proteasome) use AAA+ domains or AAA+ proteins to unfold protein substrates (using energy from ATP hydrolysis) to make them accessible for degradation. This allows AAA+ protease systems to degrade aggregates and large proteins, as well as smaller proteins, and feed them as linearized molecules into a protease chamber. This review provides an up-to-date and a comparative overview of the essential Clp AAA+ protease systems in Cyanobacteria (e.g., Synechocystis spp), plastids of photosynthetic eukaryotes (e.g., Arabidopsis, Chlamydomonas), and apicoplasts in the nonphotosynthetic apicomplexan pathogen Plasmodium falciparum. Recent progress and breakthroughs in identifying Clp protease structures, substrates, substrate adaptors (e.g., NblA/B, ClpS, ClpF), and degrons are highlighted. We comment on the physiological importance of Clp activity, including plastid biogenesis, proteostasis, the chloroplast Protein Unfolding Response, and metabolism, across these diverse lineages. Outstanding questions as well as research opportunities and priorities to better understand the essential role of Clp systems in cellular proteostasis are discussed.


Assuntos
Apicoplastos/enzimologia , Cianobactérias/enzimologia , Endopeptidase Clp/metabolismo , Plastídeos/enzimologia , Endopeptidase Clp/química , Plasmodium falciparum/enzimologia , Proteômica , Proteostase , Transdução de Sinais , Especificidade por Substrato
16.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563378

RESUMO

α-Arrestins, also called arrestin-related trafficking adaptors (ARTs), constitute a large family of proteins conserved from yeast to humans. Despite their evolutionary precedence over their extensively studied relatives of the ß-arrestin family, α-arrestins have been discovered relatively recently, and thus their properties are mostly unexplored. The predominant function of α-arrestins is the selective identification of membrane proteins for ubiquitination and degradation, which is an important element in maintaining membrane protein homeostasis as well as global cellular metabolisms. Among members of the arrestin clan, only α-arrestins possess PY motifs that allow canonical binding to WW domains of Rsp5/NEDD4 ubiquitin ligases and the subsequent ubiquitination of membrane proteins leading to their vacuolar/lysosomal degradation. The molecular mechanisms of the selective substrate's targeting, function, and regulation of α-arrestins in response to different stimuli remain incompletely understood. Several functions of α-arrestins in animal models have been recently characterized, including redox homeostasis regulation, innate immune response regulation, and tumor suppression. However, the molecular mechanisms of α-arrestin regulation and substrate interactions are mainly based on observations from the yeast Saccharomyces cerevisiae model. Nonetheless, α-arrestins have been implicated in health disorders such as diabetes, cardiovascular diseases, neurodegenerative disorders, and tumor progression, placing them in the group of potential therapeutic targets.


Assuntos
Arrestinas , Animais , Arrestina/metabolismo , Arrestinas/metabolismo , Endocitose/fisiologia , Humanos , Neoplasias/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinação
17.
Traffic ; 20(10): 741-751, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31313456

RESUMO

Heterotetrameric clathrin adaptor protein complexes (APs) orchestrate the formation of coated vesicles for transport among organelles of the cell periphery. AP1 binds membranes enriched for phosphatidylinositol 4-phosphate, such as the trans Golgi network, while AP2 associates with phosphatidylinositol 4,5-bisphosphate of the plasma membrane. At their respective membranes, AP1 and AP2 bind the cytoplasmic tails of transmembrane protein cargo and clathrin triskelions, thereby coupling cargo recruitment to coat polymerization. Structural, biochemical and genetic studies have revealed that APs undergo conformational rearrangements and reversible phosphorylation to cycle between different activity states. While membrane, cargo and clathrin have been demonstrated to promote AP activation, growing evidence supports that membrane-associated proteins such as Arf1 and FCHo also stimulate this transition. APs may be returned to the inactive state via a regulated process involving phosphorylation and a protein called NECAP. Finally, because antiviral mechanisms often rely on appropriate trafficking of membrane proteins, viruses have evolved novel strategies to evade host defenses by influencing the conformation of APs. This review will cover recent advances in our understanding of the molecular inputs that stimulate AP1 and AP2 to adopt structurally and functionally distinct configurations.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Sítio Alostérico , Complexo 1 de Proteínas Adaptadoras/química , Complexo 2 de Proteínas Adaptadoras/química , Regulação Alostérica , Animais , Clatrina/química , Clatrina/metabolismo , Humanos
18.
Am J Physiol Cell Physiol ; 321(2): C308-C316, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34133240

RESUMO

Leukocyte recruitment is a critical step in the pathogenesis of inflammatory and immunological responses. Cell adhesion molecules (CAMs) are involved in controlling cell movements and the recruitment process, and the integrin family of CAMs plays a key role. During cell movement, integrin function is dynamically and precisely regulated. However, this balance might be broken under pathological conditions. Thus, the functional regulation and molecular mechanisms of integrins related to diseases are often a focus of research. Integrin ß2 is one of the most commonly expressed integrins in leukocytes that mediate leukocyte adhesion and migration, and it plays an important role in immune responses and inflammation. In this review, we focus on specific functions of integrin ß2 in leukocyte recruitment, the conformational changes and signal transduction of integrin ß2 activation, the similarities between murine and human factors, and how new insights into these processes can inform future therapies for inflammation and immune diseases.


Assuntos
Movimento Celular/fisiologia , Integrinas/metabolismo , Leucócitos/metabolismo , Transdução de Sinais/fisiologia , Animais , Adesão Celular/fisiologia , Humanos , Inflamação/metabolismo , Leucócitos/imunologia
19.
EMBO J ; 36(13): 1869-1887, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28483816

RESUMO

Bacterial pathogens often subvert the innate immune system to establish a successful infection. The direct inhibition of downstream components of innate immune pathways is particularly well documented but how bacteria interfere with receptor proximal events is far less well understood. Here, we describe a Toll/interleukin 1 receptor (TIR) domain-containing protein (PumA) of the multi-drug resistant Pseudomonas aeruginosa PA7 strain. We found that PumA is essential for virulence and inhibits NF-κB, a property transferable to non-PumA strain PA14, suggesting no additional factors are needed for PumA function. The TIR domain is able to interact with the Toll-like receptor (TLR) adaptors TIRAP and MyD88, as well as the ubiquitin-associated protein 1 (UBAP1), a component of the endosomal-sorting complex required for transport I (ESCRT-I). These interactions are not spatially exclusive as we show UBAP1 can associate with MyD88, enhancing its plasma membrane localization. Combined targeting of UBAP1 and TLR adaptors by PumA impedes both cytokine and TLR receptor signalling, highlighting a novel strategy for innate immune evasion.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Evasão da Resposta Imune , Glicoproteínas de Membrana/antagonistas & inibidores , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Pseudomonas aeruginosa/patogenicidade , Receptores de Interleucina-1/antagonistas & inibidores , Receptores Toll-Like/antagonistas & inibidores , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Humanos , Pseudomonas aeruginosa/imunologia
20.
J Cell Sci ; 133(5)2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889021

RESUMO

Toll-like receptors (TLRs) are danger-sensing receptors that typically propagate self-limiting inflammatory responses, but can unleash uncontrolled inflammation in non-homeostatic or disease settings. Activation of TLRs by pathogen- and/or host-derived stimuli triggers a range of signalling and transcriptional pathways to programme inflammatory and anti-microbial responses, including the production of a suite of inflammatory cytokines and other mediators. Multiple sorting and signalling adaptors are recruited to receptor complexes on the plasma membrane or endosomes where they act as scaffolds for downstream signalling kinases and effectors at these sites. So far, seven proximal TLR adaptors have been identified: MyD88, MAL, TRIF (also known as TICAM1), TRAM (TICAM2), SARM (SARM1), BCAP (PIK3AP1) and SCIMP. Most adaptors tether directly to TLRs through homotypic Toll/interleukin-1 receptor domain (TIR)-TIR interactions, whereas SCIMP binds to TLRs through an atypical TIR-non-TIR interaction. In this Review, we highlight the key roles for these adaptors in TLR signalling, scaffolding and receptor sorting and discuss how the adaptors thereby direct the differential outcomes of TLR-mediated responses. We further summarise TLR adaptor regulation and function, and make note of human diseases that might be associated with mutations in these adaptors.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Citocinas/genética , Citocinas/metabolismo , Humanos , Ligação Proteica , Transporte Proteico , Receptores de Interleucina-1/genética , Receptores Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA