RESUMO
Fat cells, called adipocytes, are designed to regulate energy homeostasis by storing energy in the form of lipids. Adipocyte size distribution is assumed to play a role in the development of obesity-related diseases. These cells that do not have a characteristic size, indeed a bimodal size distribution is observed in adipose tissue. We propose a model based on a partial differential equation to describe adipocyte size distribution. The model includes a description of the lipid fluxes and the cell size fluctuations and using a formulation of a stationary solution fast computation of bimodal distribution is achieved. We investigate the parameter identifiability and estimate parameter values with CMA-ES algorithm. We first validate the procedure on synthetic data, then we estimate parameter values with experimental data of 32 rats. We discuss the estimated parameter values and their variability within the population, as well as the relation between estimated values and their biological significance. Finally, a sensitivity analysis is performed to specify the influence of parameters on cell size distribution and explain the differences between the model and the measurements. The proposed framework enables the characterization of adipocyte size distribution with four parameters and can be easily adapted to measurements of cell size distribution in different health conditions.
Assuntos
Modelos Biológicos , Modelos Teóricos , Ratos , Animais , Adipócitos , Tecido Adiposo , Tamanho CelularRESUMO
The rising prevalence of obesity is a grave public health threat. In response to excessive energy intake, adipocyte hypertrophy impairs cellular function and leads to metabolic dysfunctions while de novo adipogenesis leads to healthy adipose tissue expansion. Through burning fatty acids and glucose, the thermogenic activity of brown/beige adipocytes can effectively reduce the size of adipocytes. Recent studies show that retinoids, especially retinoic acid (RA), promote adipose vascular development which in turn increases the number of adipose progenitors surrounding the vascular vessels. RA also promotes preadipocyte commitment. In addition, RA promotes white adipocyte browning and stimulates the thermogenic activity of brown/beige adipocytes. Thus, vitamin A is a promising anti-obesity micronutrient.
RESUMO
Obesity is considered an epidemic disorder, due to an imbalance between energy consumption and metabolizable energy intake. This balance is increasingly disrupted during normal aging processes due to the progressive impairment of mechanisms that normally control energy homeostasis. Obesity is triggered by an excessive lipid depots but reflects systemic inflammation along with large adipocytes secreting proinflammatory adipokines, an increase of the free fatty acids levels in the bloodstream, and ectopic lipid accumulation. Hepatic fat accumulation is the most common cause of chronic liver disease, characterized by mitochondrial dysfunction with a consequent impaired fat metabolism and increased oxidative stress. Therefore, mitochondrial dysfunction is associated to hepatic lipid accumulation and related complications. In this study, we assessed the crosstalk between adipose tissue and liver, analyzing the time-course of changes in hepatic mitochondrial fatty acid oxidation capacity versus fatty acid storage, focusing on the contribution of adipose tissue inflammation to hepatic lipid accumulation, using a rodent model of high fat diet-induced obesity. Our results demonstrate that both high-fat diet-induced obesity and aging induce dysregulation of adipose tissue function and similar metabolic alterations mediated by mitochondrial function impairment and altered inflammatory profile. The high fat diet-induced obesity anticipates and exacerbates liver mitochondrial dysfunction that occurs with aging processes.
Assuntos
Dieta Hiperlipídica , Fígado , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Tecido Adiposo/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Mitocôndrias/metabolismo , Envelhecimento , Ácidos Graxos/metabolismo , LipídeosRESUMO
Adipose tissue hypertrophy during obesity plays pleiotropic effects on health. Adipose tissue expandability depends on adipocyte size and number. In mature adipocytes, lipid accumulation as triglycerides into droplets is imbalanced by lipid uptake and lipolysis. In previous studies, we showed that adipogenesis induced by oleic acid is signed by size increase and reduction of FAT/CD36 (SR-B2) activity. The present study aims to decipher the mechanisms involved in fat mass regulation by fatty acid/FAT-CD36 signalling. Human adipose stem cells, 3T3-L1, and its 3T3-MBX subclone cell lines were used in 2D cell cultures or co-cultures to monitor in real-time experiments proliferation, differentiation, lipolysis, and/or lipid uptake and activation of FAT/CD36 signalling pathways regulated by oleic acid, during adipogenesis and/or regulation of adipocyte size. Both FABP4 uptake and its induction by fatty acid-mediated FAT/CD36-PPARG gene transcription induce accumulation of intracellular FABP4, which in turn reduces FAT/CD36, and consequently exerts a negative feedback loop on FAT/CD36 signalling in both adipocytes and their progenitors. Both adipocyte size and recruitment of new adipocytes are under the control of FABP4 stores. This study suggests that FABP4 controls fat mass homeostasis.
Assuntos
Adipócitos , Ácido Oleico , Humanos , Camundongos , Animais , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Lipólise , Adipogenia , Diferenciação Celular , Ácidos Graxos/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Células 3T3-L1 , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismoRESUMO
Quinoa is a nutrient-dense food that lowers chronic disease risk. This study evaluated the physicochemical and sensory qualities of fermented camel milk with 1, 2, 3, and 4% quinoa. The results showed that improvement in camel's milk increased the total solids, protein, ash, fiber, phenolic content, and antioxidant activity more effectively. Fermented camel milk with 3% of quinoa flour exhibited the highest sensory characteristics compared to other treatments. Fermented camel milk enriched with 3% red quinoa flour was studied in obese rats. Forty male Wistar rats were separated into five groups: the first group served as a normal control, while groups 2-4 were fed a high-fat, high-cholesterol (HF)-diet and given 2 mL/day of fermented milk and quinoa aqueous extract. Blood glucose, malondialdehyde (MDA), low-density lipoprotein (LDL), cholesterol, triglyceride, aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), creatinine, and urea levels decreased dramatically in comparison to the positive control group, while high-density lipoprotein (HDL), albumin, and total protein concentrations increased significantly. Fortified fermented camel milk decreased the number of giant adipocytes while increasing the number of tiny adipocytes in the body. The results showed that the liver and renal functions of hypercholesterolemic rats were enhanced by consuming fermented milk and quinoa. These results demonstrated the ability of quinoa and camel milk to protect rats from oxidative stress and hyperlipidemia. Further studies are needed to clarify the mechanisms behind the metabolic effects of fermented camel milk and quinoa.
Assuntos
Chenopodium quinoa , Hipercolesterolemia , Masculino , Ratos , Animais , Camelus , Chenopodium quinoa/química , Leite/química , Farinha , Hipercolesterolemia/tratamento farmacológico , Ratos WistarRESUMO
Genome-wide association studies have identified adenylyl cyclase type 5 (ADCY5) as candidate gene for diabetes-related quantitative traits and an increased risk of type 2 diabetes. Mice with a whole-body deletion of Adcy5 (Adcy5-/-) do not develop obesity, glucose intolerance and insulin resistance, have improved cardiac function and increased longevity. Here, we investigated Adcy5 knockout mice (Adcy5-/-) to test the hypothesis that changes in adipose tissue (AT) may contribute to the reported healthier phenotype. In contrast to previous reports, we found that deletion of Adcy5 did not confer any physiological or biochemical benefits. However, this unexpected finding allowed us to investigate the effects of Adcy5 depletion on AT independently of lower body weight and a metabolically healthier phenotype. Adcy5-/- mice exhibited an increased number of smaller adipocytes, lower mean adipocyte size and a distinct AT gene expression pattern with midline 1 (Mid1) as the most significantly downregulated gene compared to control mice. Our Adcy5-/- model challenges previously described beneficial effects of Adcy5 deficiency and suggests that targeting Adcy5 does not improve insulin sensitivity and may therefore limit the relevance of ADCY5 as potential drug target.
Assuntos
Adenilil Ciclases/fisiologia , Tecido Adiposo/patologia , Intolerância à Glucose/patologia , Resistência à Insulina , Insulina/metabolismo , Obesidade/patologia , Tecido Adiposo/metabolismo , Animais , Intolerância à Glucose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismoRESUMO
Transglutaminases TG2 and FXIII-A have recently been linked to adipose tissue biology and obesity, however, human studies for TG family members in adipocytes have not been conducted. In this study, we investigated the association of TGM family members to acquired weight gain in a rare set of monozygotic (MZ) twins discordant for body weight, i.e., heavy-lean twin pairs. We report that F13A1 is the only TGM family member showing significantly altered, higher expression in adipose tissue of the heavier twin. Our previous work linked adipocyte F13A1 to increased weight, body fat mass, adipocyte size, and pro-inflammatory pathways. Here, we explored further the link of F13A1 to adipocyte size in the MZ twins via a previously conducted TWA study that was further mined for genes that specifically associate to hypertrophic adipocytes. We report that differential expression of F13A1 (ΔHeavy-Lean) associated with 47 genes which were linked via gene enrichment analysis to immune response, leucocyte and neutrophil activation, as well as cytokine response and signaling. Our work brings further support to the role of F13A1 in the human adipose tissue pathology, suggesting a role in the cascade that links hypertrophic adipocytes with inflammation.
Assuntos
Adipócitos/patologia , Tecido Adiposo/imunologia , Fator XIIIa/genética , Imunidade/genética , Obesidade/genética , Transglutaminases/fisiologia , Adipócitos/imunologia , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adulto , Composição Corporal/genética , Fator XIIIa/metabolismo , Feminino , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Perfilação da Expressão Gênica , Estudos de Associação Genética , Humanos , Hipertrofia/genética , Masculino , Obesidade/imunologia , Obesidade/metabolismo , Obesidade/patologia , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/genética , Transglutaminases/metabolismo , Gêmeos Monozigóticos/genéticaRESUMO
Lameness and body condition are closely related. Recent studies have shown that cows with low body condition score (BCS) have a greater risk for developing lameness than cows with higher BCS. Among other reasons, this relationship might be related to the reduced thickness of the digital fat cushion in lean cows. The digital cushion is not a homogeneous structure but consists of different fat pads and connective tissue. We hypothesized that either high or low BCS will result in concordant adipocyte sizes in the fat pads of the digital cushion and subcutaneous tailhead fat irrespective of the localization of the latter. Right front claws were collected from 18 Holstein Friesian cows. Cows were selected according to their BCS: 9 cows with BCS <3 (low BCS) and 9 cows with BCS ≥3 (high BCS). After dissecting the horn capsule of the lateral claw, samples of the axial and abaxial fat pads were prepared for histomorphological examinations (adipocyte size measurement) and protein abundance of vascular endothelial growth factor A (VEGF-A) via Western blotting. In addition, fat samples were excised from the tailhead of all cows and used for the same purposes. Adipocyte size in tailhead fat was greater in high-BCS than in low-BCS cows. Similar differences between the BCS groups were apparent for adipocytes from the axial fat pad, although adipocytes in tailhead fat were larger than those in the digital cushion. In contrast to that in the axial fat pad and tailhead fat, adipocyte size in the abaxial fat pad was similar in cows from both BCS groups. A relationship between adipocyte size and VEGF-A protein was only confirmed for the axial fat pad, not for the other fat depots. When comparing BCS groups, differences in VEGF-A protein abundance between high-BCS and low-BCS cows were also limited to the axial fat pad, being absent in tailhead fat and the abaxial fat pad. Taken together, our results show that the fat pads from the digital cushion should not be considered uniform adipose tissue locations but rather discrete units reacting differently to fat mobilization.
Assuntos
Adipócitos/citologia , Tecido Adiposo/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/crescimento & desenvolvimento , Animais , Bovinos/crescimento & desenvolvimento , Bovinos/metabolismo , Tamanho Celular , Feminino , Gordura Subcutânea/crescimento & desenvolvimento , Gordura Subcutânea/metabolismoRESUMO
In mammals, white adipose tissue (WAT) stores and releases lipids, whereas brown adipose tissue (BAT) oxidizes lipids to fuel thermogenesis. In obese individuals, WAT undergoes profound changes; it expands, becomes dysfunctional, and develops a low-grade inflammatory state. Importantly, BAT content and activity decline in obese subjects, mainly as a result of the conversion of brown adipocytes to white-like unilocular cells. Here, we show that BAT "whitening" is induced by multiple factors, including high ambient temperature, leptin receptor deficiency, ß-adrenergic signaling impairment, and lipase deficiency, each of which is capable of inducing macrophage infiltration, brown adipocyte death, and crown-like structure (CLS) formation. Brown-to-white conversion and increased CLS formation were most marked in BAT from adipose triglyceride lipase (Atgl)-deficient mice, where, according to transmission electron microscopy, whitened brown adipocytes contained enlarged endoplasmic reticulum, cholesterol crystals, and some degenerating mitochondria, and were surrounded by an increased number of collagen fibrils. Gene expression analysis showed that BAT whitening in Atgl-deficient mice was associated to a strong inflammatory response and NLRP3 inflammasome activation. Altogether, the present findings suggest that converted enlarged brown adipocytes are highly prone to death, which, by promoting inflammation in whitened BAT, may contribute to the typical inflammatory state seen in obesity.
Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Morte Celular , Inflamação/metabolismo , Inflamação/patologia , Animais , Lipase/deficiência , Lipase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Increased adipocyte size is hypothesized to signal the recruitment of adipose progenitor cells (APCs) to expand tissue storage capacity. To investigate depot and sex differences in adipose growth, male and female C57BL/6J mice (10 wk-old) were challenged with high-fat (HF) or low-fat (LF) diets (D) for 14 wk. The HFD increased gonadal (GON) depot weight by adipocyte hypertrophy and hyperplasia in females but hypertrophy alone in males. In both sexes, inguinal (ING) adipocytes were smaller than GON, and depot expansion was due to hypertrophy. Matrix metalloproteinase 3 (Mmp3), an antiadipogenic factor, and its inhibitor Timps modulate the extracellular matrix remodeling needed for depot expansion. Mmp3 mRNA was depot different (ING > GON), higher in females than males and mainly expressed in APCs. In males, HFD-induced obesity increased tissue and APC Mmp3 mRNA levels and MMP3 protein and enzymatic activity. In females however, HFD significantly decreased MMP3 protein without affecting its mRNA levels. MMP3 activity also decreased (significant in ING). Timp4 mRNA was expressed mainly in adipocytes, and HFD-induced obesity tended to increase the ratio of TIMP4 to MMP3 protein in females, whereas it decreased it in males. Overexpression of Mmp3 in 3T3-L1 preadipocytes or rhMMP3 protein added to primary human preadipocytes inhibited differentiation, whereas rhTIMP4 improved adipogenesis and attenuated the inhibitory effect of rhMMP3. These data suggest that HFD-induced obesity downregulates APC MMP3 expression to trigger adipogenesis, and adipocyte TIMP4 may modulate this process to regulate hyperplastic vs. hypertrophic adipose tissue expansion, fat distribution, and metabolic health in a sex- and depot-dependent manner.
Assuntos
Adipócitos/metabolismo , Tecido Adiposo/crescimento & desenvolvimento , Dieta Hiperlipídica , Metaloproteinase 3 da Matriz/genética , Obesidade/genética , RNA Mensageiro/metabolismo , Inibidores Teciduais de Metaloproteinases/genética , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/patologia , Adipogenia/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Dieta com Restrição de Gorduras , Feminino , Humanos , Hiperplasia , Hipertrofia , Masculino , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Proteínas Recombinantes/farmacologia , Inibidores Teciduais de Metaloproteinases/metabolismo , Inibidores Teciduais de Metaloproteinases/farmacologia , Inibidor Tecidual 4 de MetaloproteinaseRESUMO
Egg-white protein (EWP) is known to reduce lymphatic TAG transport in rats. In this study, we investigated the effects of dietary EWP on body fat mass. Male rats, 4 weeks old, were fed diets containing either 20 % EWP or casein for 28 d. Carcass protein levels and gastrocnemius leg muscle weights in the EWP group were significantly higher than those in the casein group. In addition, carcass TAG levels and abdominal fat weights in the EWP group were significantly lower than those in the casein group; adipocyte size in abdominal fat in the EWP group was smaller than that in the casein group. To identify the involvement of dietary fat levels in the rats, one of two fat levels (5 or 10 %) was added to their diet along with the different protein sources (EWP and casein). Abdominal fat weight and serum and hepatic TAG levels were significantly lower in the EWP group than in the casein group. Moreover, significantly higher values of enzymatic activity related to ß-oxidation in the liver were observed in the EWP group compared with the casein group. Finally, abdominal fat weight reduction in the EWP group with the 10 % fat diet was lower than that in the EWP group with the 5 % fat diet. In conclusion, our results indicate that, in addition to the inhibition of dietary TAG absorption reported previously, dietary EWP reduces body fat mass in rats through an increase of body protein mass and the acceleration of ß-oxidation in the liver.
Assuntos
Adiposidade , Proteínas Dietéticas do Ovo/administração & dosagem , Fígado/metabolismo , Músculo Esquelético/fisiologia , Gordura Abdominal/metabolismo , Adipócitos/metabolismo , Animais , Composição Corporal , Índice de Massa Corporal , Caseínas/administração & dosagem , Dieta , Gorduras na Dieta/administração & dosagem , Clara de Ovo/química , Metabolismo dos Lipídeos , Masculino , Tamanho do Órgão/fisiologia , Ratos , Ratos Sprague-Dawley , Triglicerídeos/sangueRESUMO
In gene expression studies of candidate genes related to fat deposition, accounting for differences in cell number using reference genes could be not sufficient when cell transcriptional levels are related to cell size, or the tissues are constituted by different types of cells where candidate genes could be differentially expressed. In these situations, mixed model can be applied giving the possibility to take into account the effects of adipocyte size and number on gene expression. The inclusion in the models of analysis of adipocyte size and number, previously estimated taking into account the possible bimodality of size distribution, reduces the rate of false positives in the expression of candidate genes, although, as expected, more powerful designs are needed to detect true differences. The analysis of cellularity of adipose tissue is recommended to infer differences in the expression of genes related to fat deposition.
Assuntos
Adipócitos/citologia , Tecido Adiposo/citologia , Tamanho Celular , Simulação por Computador , Perfilação da Expressão Gênica , Gordura Subcutânea/citologia , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Animais Domésticos/genética , Animais Domésticos/fisiologia , Modelos Estatísticos , Gordura Subcutânea/metabolismoRESUMO
Peroxisome proliferator-activated receptor-γ (PPARγ) agonists like pioglitazone (PGZ) are effective antidiabetic drugs, but they induce fluid retention and body weight (BW) gain. Dipeptidyl peptidase IV (DPP IV) inhibitors are antidiabetic drugs that enhance renal Na(+) and fluid excretion. Therefore, we examined whether the DPP IV inhibitor alogliptin (ALG) ameliorates PGZ-induced BW gain. Male Sv129 mice were treated with vehicle (repelleted diet), PGZ (220 mg/kg diet), ALG (300 mg/kg diet), or a combination of PGZ and ALG (PGZ + ALG) for 14 days. PGZ + ALG prevented the increase in BW observed with PGZ but did not attenuate the increase in body fluid content determined by bioimpedance spectroscopy (BIS). BIS revealed that ALG alone had no effect on fat mass (FM) but enhanced the FM-lowering effect of PGZ; MRI analysis confirmed the latter and showed reductions in visceral and inguinal subcutaneous (sc) white adipose tissue (WAT). ALG but not PGZ decreased food intake and plasma free fatty acid concentrations. Conversely, PGZ but not ALG increased mRNA expression of thermogenesis mediator uncoupling protein 1 in epididymal WAT. Adding ALG to PGZ treatment increased the abundance of multilocular cell islets in sc WAT, and PGZ + ALG increased the expression of brown-fat-like "beige" cell marker TMEM26 in sc WAT and interscapular brown adipose tissue and increased rectal temperature vs. vehicle. In summary, DPP IV inhibition did not attenuate PPARγ agonist-induced fluid retention but prevented BW gain by reducing FM. This involved ALG inhibition of food intake and was associated with food intake-independent synergistic effects of PPARγ agonism and DPP-IV inhibition on beige/brown fat cells and thermogenesis.
Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , PPAR gama/agonistas , Piperidinas/farmacologia , Uracila/análogos & derivados , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Adipócitos Marrons/efeitos dos fármacos , Animais , Masculino , Camundongos , Pioglitazona , Tiazolidinedionas/farmacologia , Uracila/farmacologiaRESUMO
Epicardial adipose tissue (EAT) is an active endocrine organ that is closely associated with occurrence of atrial fibrillation (AF). However, the role of EAT in the development of postoperative AF (POAF) remains unclear. We aimed to investigate the association between EAT profile and POAF occurrence in patients who underwent cardiovascular surgery. We obtained EAT samples from 53 patients to evaluate gene expression, histological changes, mitochondrial oxidative phosphorylation (OXPHOS) capacity in the EAT, and protein secretion in EAT-conditioned medium. EAT volume was measured using computed tomography scan. Eighteen patients (34%) experienced POAF within 7 days after surgery. Although no significant difference was observed in EAT profile between patients with and without POAF, logistic regression analysis identified that the mRNA expression levels of tumor necrosis factor-alpha (TNF-α) were positively correlated and adipocyte size in the EAT was inversely correlated with onset of POAF, respectively. Mitochondrial OXPHOS capacity in the EAT was not associated with POAF occurrence; however, it showed an inverse correlation with adipocyte size and a positive correlation with adiponectin secretion. In conclusion, changes in the secretory profile and adipocyte morphology of the EAT, which represent qualitative aspects of the adipose tissue, were present before the onset of AF.
Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/metabolismo , Tecido Adiposo Epicárdico , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Inflamação/metabolismo , Pericárdio/metabolismoRESUMO
OBJECTIVE: Non-obese type 2 diabetes seems to be common in India; hence the current study tried to understand the pathogenesis of diabetes in this group focusing on the role of adipocytes especially abdominal fat compartment. Comparison was made between non-obese subjects with newly detected diabetes and those without diabetes, in relation to levels of adipogenic factor and adipokines in pre-adipocytes and mature adipocytes respectively. RESEARCH DESIGN METHODS: Non-obese subjects (BMI-18-25 Kg/m2) were consecutively selected of whom 15 had newly-detected, treatment naïve type 2 diabetes (HbA1% ≥6.5) while 25 were control (HbA1c% ≤5.6). We examined the expression of adipocyte differentiation factor - SREBP-1c from preadipocytes and adipocyte specific adipokines- HMW isoform and total adiponectin, leptin, FABP-4, TNF-α and IL-6 from adipocytesisolated from abdominal visceral and subcutaneous adipose tissues (VAT and SCAT) by RT-PCR and as well as from serum by ELISA. Size of cultured adipocytes was measured in a fully automated imaging system microscope. RESULT: Both in SCAT and VAT, SREBP-1c and adiponectin had significantly lower expression along with increased mRNA level of inflammatory adipokinesdiabetes.Average adipocyte size and frequency of large(hypertrophied) adipocytes were comparatively higher in T2DM subjects and had significant negative correlation with SREBP-1c. HMW adiponectin level significantly reduced in the secretion from VAT and SCAT of T2DM subjects compared to control. CONCLUSION: Reduced expression of SREBP-1c in preadipocytes may lead to increased number of hypertrophied adipocytes in T2DM. Therefore, these dysfunctional hypertrophied adipocytes could cause imbalanced expression of insulin resistant and insulin sensitive adipokines.
Assuntos
Adiponectina , Diabetes Mellitus Tipo 2 , Humanos , Adipócitos/metabolismo , Adipocinas , Tecido Adiposo/metabolismo , Hipertrofia/metabolismo , Insulina/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Gordura SubcutâneaRESUMO
We hypothesized that the provision of rumen-inert fat (RIF) to growing cattle (9 to 13 mo of age) would affect the expression of genes involved in lipid metabolism and thereby affect the size and number of adipocytes of steers slaughtered at 30 mo of age. Thirty steers with an average initial body weight (BW) of 239â ±â 25 kg were allocated to six pens, balanced for BW and genetic merit for marbling, and assigned to one of two treatment groups: control (only basal diet) or test diet (basal diet with 200 g of RIF per day, on an as-fed basis) for 5 mo. Biopsy samples of longissimus lumborum (LM) muscle were then collected for analysis of fatty acid composition and gene expression. Both groups were then fed the same basal diets during the early and late fattening phases, without RIF, until slaughter (average shrunk BWâ =â 759 kg). Supplementation with RIF increased the longissimus thoracis (LT) intramuscular fatty acid concentration at slaughter (Pâ =â 0.087) and numerically increased the quality grade score (Pâ =â 0.106). The LM intramuscular relative mRNA expression of genes such as PPARα, ZFP423 and SREBP1, FASN, SCD, FABP4, GPAT1, and DGAT2 were downregulated (Pâ <â 0.1) following RIF supplementation. Supplementation of RIF decreased (Pâ <â 0.1) diameter and concomitantly increased intramuscular adipocytes per viewing section at slaughter. This likely was caused by promotion of triacylglycerol hydrolysis during the growing phase. Another possible explanation is that the relative mRNA expression of gene ATGL was upregulated by RIF supplementation during the growing (Pâ <â 0.1) and the fattening phases (Pâ <â 0.05), while the genes associated with fatty acid uptake (FABP4) and esterification (DGAT2) were downregulated during the growing phase and upregulated (Pâ <â 0.1) during the fattening phase. This implies that the lipid turnover rate was higher for steers during the growing than fattening phase. This study demonstrated that RIF supplementation during the growing phase induced a carryover effect on the lipogenic transcriptional regulation involved in adipocyte lipid content of intramuscular adipose tissue; increased triacylglycerol hydrolysis during the growing phase subsequently was followed by increased lipid accumulation during the fattening phases.
Rumen inert fat (RIF) is a type of fat supplement that is used in the diets of beef cattle as early as 6 mo of age in calves and continues through the finishing period to improve the dietary energy density which can be used by the animal to deposit more lipid in the muscle tissue. However, for Hanwoo beef cattle, the precise time of RIF supplementation has not yet been determined. This study hypothesized that supplementing RIF at the growing phase (9 to 13 mo of age) would have a positive influence on the marbling characteristics of meat at slaughter. The growth rate and performance of steers were not improved by RIF supplementation, however, an increase in intramuscular fatty acid content was noted that was accompanied by the increased number of intramuscular adipocytes and decreased intramuscular adipocyte diameter. Supportively, upregulation of the genes associated with fatty acid uptake and esterification during the fattening phase of RIF-fed animals was noted. Overall, supplementing RIF at the growing stage could improve the lipid content of the meat which is supported by the increased lipid hydrolysis during the growing phase and followed by increased lipid accumulation during the fattening phases.
Assuntos
Tecido Adiposo , Rúmen , Bovinos , Animais , Rúmen/metabolismo , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Ácidos Graxos/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Expressão Gênica , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo , Ração Animal/análise , Composição CorporalRESUMO
Dysfunction in adipocyte expansion during the onset of obesity is associated with metabolic abnormalities. Determination of adipocyte size and number is an important measure for a comprehensive evaluation of the metabolic status of adipose tissue. Here, we describe three methods for the determination of adipocyte size that can be applied to tissue samples obtained from humans and rodent models. While the first method presented is more robust, it does require the use of osmium, a toxic heavy metal, which requires special handling and disposal precautions in addition to specialized equipment. Two additional methods are described that can be of use to most researchers.
Assuntos
Adipócitos , Tecido Adiposo , Humanos , ObesidadeRESUMO
We investigated whether excessive retroperitoneal adipose tissue (AT) expansion programmed by maternal obesity (MO) affects adipocyte size distribution and gene expression in relation to adipocyte proliferation and differentiation in male and female offspring (F1) from control (F1C) and obese (F1MO) mothers. Female Wistar rats (F0) ate a control or high-fat diet from weaning through pregnancy and lactation. F1 were weaned onto a control diet and euthanized at 110 postnatal days. Fat depots were weighed to estimate the total AT. Serum glucose, triglyceride, leptin, insulin, and the insulin resistance index (HOMA-IR) were determined. Adipocyte size and adipogenic gene expression were examined in retroperitoneal fat. Body weight, retroperitoneal AT and adipogenesis differed between male and female F1Cs. Retroperitoneal AT, glucose, triglyceride, insulin, HOMA-IR and leptin were higher in male and female F1MO vs. F1C. Small adipocytes were reduced in F1MO females and absent in F1MO males; large adipocytes were increased in F1MO males and females vs. F1C. Wnt, PI3K-Akt, and insulin signaling pathways in F1MO males and Egr2 in F1MO females were downregulated vs. F1C. MO induced metabolic dysfunction in F1 through different sex dimorphism mechanisms, including the decreased expression of pro-adipogenic genes and reduced insulin signaling in males and lipid mobilization-related genes in females.
Assuntos
Leptina , Obesidade Materna , Humanos , Ratos , Feminino , Animais , Masculino , Gravidez , Mães , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Wistar , Obesidade/etiologia , Obesidade/metabolismo , Obesidade Materna/metabolismo , Glucose/metabolismo , Insulina , Dieta Hiperlipídica/efeitos adversos , Triglicerídeos , Tecido Adiposo/metabolismoRESUMO
OBJECTIVE: To investigate the association between visceral adipocyte hypertrophy and the onset and development of non-alcoholic fatty liver disease (NAFLD) in subjects with different degrees of adiposity. METHODS: Omental adipose tissue and liver biopsies were collected from obese subjects. NAFLD was defined according to the NASH Clinical Research Network scoring system. Adipocyte size was measured using pathological section analysis. Adipose tissue insulin resistance (Adipo-IR) was calculated as fasting insulin (pmol/L) × fasting free fatty acid concentration (mmol/L). RESULTS: In total, 275 obese patients were enrolled, including 158 females and 58 males with NAFLD. In females, adipocyte size was significantly larger in NAFLD participants as compared to the controls (99.37 ± 14.18 vs. 84.14 ± 12.65 [Formula: see text]m, p < 0.001). Moreover, adipocyte size was larger in females with non-alcoholic steatohepatitis (NASH) as compared to those with non-alcoholic fatty liver (NAFL) (101.45 ± 12.77 vs. 95.79 ± 15.80 [Formula: see text]m, p = 0.015). Mediation analysis showed that adipocyte size impacted the NAFLD activity score through Adipo-IR (b = 0.007 [95% bootstrap CI 0.002, 0.013]). Furthermore, the females were divided into: Q1 (BMI < 32.5 kg/m2), Q2 (BMI 32.5-35.5 kg/m2), Q3 (BMI 35.5-38.8 kg/m2) and Q4 (BMI ≥ 38.8 kg/m2) according to BMI quartiles. Omental adipocyte size was larger in NAFLD subjects in Q1-Q3, but not in Q4. No similar results were observed in males. CONCLUSION: For the first time, we reported that visceral adipocyte hypertrophy was associated with the onset and progression of NAFLD in mild to moderate adiposity but not in severe obesity, which may be mediated by adipose tissue insulin resistance.
Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Masculino , Feminino , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Adiposidade , Obesidade/complicações , Adipócitos , Hipertrofia/complicaçõesRESUMO
Changes in adipose tissue morphology, depicted by cell morphology alterations such as enlargement of fat cells, always accompany over-weight and obesity. The variables related to cell size have been shown to associate with low-grade inflammation of adipose tissue and common obesity-related comorbidities including metabolic syndrome and type 2 diabetes. Quantifying fat cell morphology from images of histological specimens can be tedious. Here, we present a straightforward method for the task using the free open-source software QuPath with its inbuilt tools only. Measurements of human adipose tissue samples with the described protocol showed an excellent correlation with those obtained with ImageJ software with Adipocyte Tools plugin combined with manual correction of misdetections. Intraclass correlation between the two methods was at good to excellent level. The method described here can be applied to considerably large tissue areas, even whole-slide analysis.