Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 881
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 300(7): 107479, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38879006

RESUMO

Glucoselysine (GL) is an unique advanced glycation end-product derived from fructose. The main source of fructose in vivo is the polyol pathway, and an increase in its activity leads to diabetic complications. Here, we aimed to demonstrate that GL can serve as an indicator of the polyol pathway activity. Additionally, we propose a novel approach for detecting GL in peripheral blood samples using liquid chromatography-tandem mass spectrometry and evaluate its clinical usefulness. We successfully circumvent interference from fructoselysine, which shares the same molecular weight as GL, by performing ultrafiltration and hydrolysis without reduction, successfully generating adequate peaks for quantification in serum. Furthermore, using immortalized aldose reductase KO mouse Schwann cells, we demonstrate that GL reflects the downstream activity of the polyol pathway and that GL produced intracellularly is released into the extracellular space. Clinical studies reveal that GL levels in patients with type 2 diabetes are significantly higher than those in healthy participants, while Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1) levels are significantly lower. Both GL and MG-H1 show higher values among patients with vascular complications; however, GL varies more markedly than MG-H1 as well as hemoglobin A1c, fasting plasma glucose, and estimated glomerular filtration rate. Furthermore, GL remains consistently stable under various existing drug treatments for type 2 diabetes, whereas MG-H1 is impacted. To the best of our knowledge, we provide important insights in predicting diabetic complications caused by enhanced polyol pathway activity via assessment of GL levels in peripheral blood samples from patients.


Assuntos
Diabetes Mellitus Tipo 2 , Produtos Finais de Glicação Avançada , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Humanos , Animais , Produtos Finais de Glicação Avançada/metabolismo , Camundongos , Masculino , Pessoa de Meia-Idade , Feminino , Lisina/metabolismo , Ornitina/metabolismo , Ornitina/sangue , Ornitina/análogos & derivados , Aldeído Redutase/metabolismo , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/sangue , Polímeros/química , Idoso , Camundongos Knockout , Imidazóis
2.
FASEB J ; 38(15): e23871, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39109498

RESUMO

Type 2 diabetes mellitus (T2DM) can lead to multiple complications. T2DM-related bone damage has been linked to abnormal bone turnover, but it cannot fully explain the mechanisms of T2DM bone disease. This study attempts to elucidate the underlying mechanisms of poor bone quality in T2DM. Hence, T2DM model was induced by a high-fat diet combined with a single streptozotocin injection in 7-week-old male SD rats. Osteoblasts derived from SD rats were cultured in high glucose to mimic hyperglycemia. Low bone turnover was observed in T2DM bone with elevated levels of advanced glycation end-products (AGEs) and receptor for AGEs (RAGE). Additionally, higher levels of oxidative stress and inflammatory factors were found in T2DM bone. AGEs content in bone was pairwise correlated with RAGE, hydrogen peroxide, and inflammatory factors. Serum levels of RAGE, oxidative stress, and inflammatory factors were higher in T2DM, while AGEs content tended to be lower. Besides, 35 differentially expressed metabolites were screened in T2DM serum. Osteoblasts exposed to high glucose displayed analogous abnormal changes in these biomarkers. Thus, low bone turnover in T2DM might be partially due to excess oxidative stress and inflammation induced by AGE-RAGE signaling. Furthermore, these biomarker levels in serum were mostly consistent with bone, demonstrating their possibility for predicting bone quality in T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Produtos Finais de Glicação Avançada , Inflamação , Estresse Oxidativo , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada , Animais , Produtos Finais de Glicação Avançada/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Ratos , Inflamação/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Diabetes Mellitus Experimental/metabolismo , Osteoblastos/metabolismo , Remodelação Óssea
3.
Brain ; 147(3): 1025-1042, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37787114

RESUMO

Progress in the development of effective chemotherapy is producing a growing population of patients with acute and chronic painful chemotherapy-induced peripheral neuropathy (CIPN), a serious treatment-limiting side effect for which there is currently no US Food and Drug Administration-approved treatment. CIPNs induced by diverse classes of chemotherapy drugs have remarkably similar clinical presentations, leading to the suggestion they share underlying mechanisms. Sensory neurons share with immune cells the ability to detect damage associated molecular patterns (DAMPs), molecules produced by diverse cell types in response to cellular stress and injury, including by chemotherapy drugs. DAMPs, in turn, are ligands for pattern recognition receptors (PRRs), several of which are found on sensory neurons, as well as satellite cells, and cells of the immune system. In the present experiments, we evaluated the role of two PRRs, TLR4 and RAGE, present in dorsal root ganglion (DRG), in CIPN. Antisense (AS)-oligodeoxynucleotides (ODN) against TLR4 and RAGE mRNA were administered intrathecally before ('prevention protocol') or 3 days after ('reversal protocol') the last administration of each of three chemotherapy drugs that treat cancer by different mechanisms (oxaliplatin, paclitaxel and bortezomib). TLR4 and RAGE AS-ODN prevented the development of CIPN induced by all three chemotherapy drugs. In the reversal protocol, however, while TLR4 AS-ODN completely reversed oxaliplatin- and paclitaxel-induced CIPN, in rats with bortezomib-induced CIPN it only produced a temporary attenuation. RAGE AS-ODN, in contrast, reversed CIPN induced by all three chemotherapy drugs. When a TLR4 antagonist was administered intradermally to the peripheral nociceptor terminal, it did not affect CIPN induced by any of the chemotherapy drugs. However, when administered intrathecally, to the central terminal, it attenuated hyperalgesia induced by all three chemotherapy drugs, compatible with a role of TLR4 in neurotransmission at the central terminal but not sensory transduction at the peripheral terminal. Finally, since it has been established that cultured DRG neurons can be used to study direct effects of chemotherapy on nociceptors, we also evaluated the role of TLR4 in CIPN at the cellular level, using patch-clamp electrophysiology in DRG neurons cultured from control and chemotherapy-treated rats. We found that increased excitability of small-diameter DRG neurons induced by in vivo and in vitro exposure to oxaliplatin is TLR4-dependent. Our findings suggest that in addition to the established contribution of PRR-dependent neuroimmune mechanisms, PRRs in DRG cells also have an important role in CIPN.


Assuntos
Antineoplásicos , Neuralgia , Humanos , Estados Unidos , Animais , Ratos , Bortezomib , Oxaliplatina/toxicidade , Receptor 4 Toll-Like , Neuralgia/induzido quimicamente , Células Receptoras Sensoriais , Oligodesoxirribonucleotídeos , Paclitaxel , Antineoplásicos/toxicidade
4.
Am J Physiol Cell Physiol ; 326(4): C1080-C1093, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314727

RESUMO

Advanced glycation end-products (AGEs) stochastically accrue in skeletal muscle and on collagen over an individual's lifespan, stiffening the muscle and modifying the stem cell (MuSC) microenvironment while promoting proinflammatory, antiregenerative signaling via the receptor for advanced glycation end-products (RAGEs). In the present study, a novel in vitro model was developed of this phenomenon by cross linking a 3-D collagen scaffold with AGEs and investigating how myoblasts responded to such an environment. Briefly, collagen scaffolds were incubated with d-ribose (0, 25, 40, 100, or 250 mM) for 5 days at 37°C. C2C12 immortalized mouse myoblasts were grown on the scaffolds for 6 days in growth conditions for proliferation, and 12 days for differentiation and fusion. Human primary myoblasts were also used to confirm the C2C12 data. AGEs aberrantly extended the DNA production stage of C2C12s (but not in human primary myoblasts) which is known to delay differentiation in myogenesis, and this effect was prevented by RAGE inhibition. Furthermore, the differentiation and fusion of myoblasts were disrupted by AGEs, which were associated with reductions in integrins and suppression of RAGE. The addition of S100b (RAGE agonist) recovered the differentiation and fusion of myoblasts, and the addition of RAGE inhibitors (FPS-ZM1 and Azeliragon) inhibited the differentiation and fusion of myoblasts. Our results provide novel insights into the role of the AGE-RAGE axis in skeletal muscle aging, and future work is warranted on the potential application of S100b as a proregenerative factor in aged skeletal muscle.NEW & NOTEWORTHY Collagen cross-linked by advanced glycation end-products (AGEs) induced myoblast proliferation but prevented differentiation, myotube formation, and RAGE upregulation. RAGE inhibition occluded AGE-induced myoblast proliferation, while the delivery of S100b, a RAGE ligand, recovered fusion deficits.


Assuntos
Reação de Maillard , Músculo Esquelético , Camundongos , Humanos , Animais , Idoso , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Diferenciação Celular/fisiologia , Colágeno , Desenvolvimento Muscular , Produtos Finais de Glicação Avançada , Subunidade beta da Proteína Ligante de Cálcio S100
5.
J Struct Biol ; : 108145, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39447940

RESUMO

Glycan-protein interactions play a crucial role in biology, providing additional functions capable of inducing biochemical and cellular responses. In the extracellular matrix of bone, this type of interactions is ubiquitous. During the synthesis of the collagen molecule, glycans are post-translationally added to specific lysine residues through an enzymatically catalysed hydroxylation and subsequent glycosylation. During and after fibril assembly, proteoglycans are essential for maintaining tissue structure, porosity, and integrity. Glycosaminoglycans (GAGs), the carbohydrate chains attached to interstitial proteoglycans, are known to be involved in mineralization. They can attract and retain water, which is critical for the mechanical properties of bone. In addition, like other long-lived proteins, collagen is susceptible to glycation. Prolonged exposure of the amine group to glucose eventually leads to the formation of advanced glycation end-products (AGEs). Changes in the degree of glycosylation and glycation have been identified in bone pathologies such as osteogenesis imperfecta and diabetes and appear to be associated with a reduction in bone quality. However, how these changes affect mineralisation is not well understood. Based on the literature review, we hypothesize that the covalently attached carbohydrates may have a water-attracting function similar to that of GAGs, but at different lengths and timescales in the bone formation process. Glycosylation potentially increases the hydration around the collagen triple helix, leading to increased mineralization (hypermineralization) after water has been replaced by mineral. Meanwhile, glycation leads to the formation of crosslinking AGEs, which are associated with a decrease in hydration levels, reducing the mechanical properties of bone.

6.
J Physiol ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316027

RESUMO

Diabetes is associated with cognitive impairment, but the underlying mechanism remains unclear. Methylglyoxal (MGO), a precursor to advanced glycation endproducts (AGEs), is elevated in diabetes and linked to microvascular dysfunction. In this study, overexpression of the MGO-detoxifying enzyme glyoxalase 1 (Glo1) was used in a mouse model of diabetes to explore whether MGO accumulation in diabetes causes cognitive impairment. Diabetes was induced with streptozotocin. Fasting blood glucose, cognitive function, cerebral blood flow, neurovascular coupling (NVC), Glo1 activity, MGO and AGEs were assessed. In diabetes, MGO-derived hydroimidazolone-1 increased in the cortex, and was decreased in Glo1-overexpressing mice compared to controls. Visuospatial memory was decreased in diabetes, but not in Glo1/diabetes. NVC response time was slightly increased in diabetes, and normalised in the Glo1-overexpressing group. No impact of diabetes or Glo1 overexpression on blood-brain barrier integrity or vascular density was observed. Diabetes induced a mild visuospatial memory impairment and slightly reduced NVC response speed and these effects were mitigated by Glo1. This study shows a link between MGO-related AGE accumulation and cerebrovascular/cognitive functions in diabetes. Modulation of the MGO-Glo1 pathway may be a novel intervention strategy in patients with diabetes who have cerebrovascular complications. KEY POINTS: Diabetes is associated with an increased risk of stroke, cognitive decline, depression and Alzheimer's disease, but the underlying mechanism remains unclear. Methylglyoxal (MGO), a highly reactive by-product of glycolysis, plays an important role in the development of diabetes-associated microvascular dysfunction in the periphery and is detoxified by the enzyme glyoxalase 1. Diabetes reduced visuospatial memory in mice and slowed the neurovascular coupling response speed, which was improved by overexpression of glyoxalase 1. MGO formation and MGO-derived advanced glycation endproduct (AGE) accumulation in the brain of diabetic mice are associated with a slight reduction in neurovascular coupling and mild cognitive impairment. The endogenous formation of MGO, and the accumulation of MGO-derived AGEs, might be a potential target in reducing the risk of vascular cognitive impairment in people with diabetes.

7.
Int J Cancer ; 155(11): 1982-1995, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39057841

RESUMO

Advanced glycation end-products (AGEs), formed endogenously or obtained exogenously from diet, may contribute to chronic inflammation, intracellular signaling alterations, and pathogenesis of several chronic diseases including colorectal cancer (CRC). However, the role of AGEs in CRC survival is less known. The associations of pre-diagnostic circulating AGEs and their soluble receptor (sRAGE) with CRC-specific and overall mortality were estimated using multivariable-adjusted Cox proportional hazards regression among 1369 CRC cases in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Concentrations of major plasma AGEs, Nε-[carboxy-methyl]lysine (CML), Nε-[carboxy-ethyl]lysine (CEL) and Nδ-[5-hydro-5-methyl-4-imidazolon-2-yl]-ornithine (MG-H1), were measured using ultra-performance liquid chromatography mass-spectrometry. sRAGE was assessed by enzyme-linked immunosorbent assay. Over a mean follow-up period of 96 months, 693 deaths occurred of which 541 were due to CRC. Individual and combined AGEs were not statistically significantly associated with CRC-specific or overall mortality. However, there was a possible interaction by sex for CEL (Pinteraction = .05). Participants with higher sRAGE had a higher risk of dying from CRC (HRQ5vs.Q1 = 1.67, 95% CI: 1.21-2.30, Ptrend = .02) or any cause (HRQ5vs.Q1 = 1.38, 95% CI: 1.05-1.83, Ptrend = .09). These associations tended to be stronger among cases with diabetes (Pinteraction = .03) and pre-diabetes (Pinteraction <.01) before CRC diagnosis. Pre-diagnostic AGEs were not associated with CRC-specific and overall mortality in individuals with CRC. However, a positive association was observed for sRAGE. Our findings may stimulate further research on the role of AGEs and sRAGE in survival among cancer patients with special emphasis on potential effect modifications by sex and diabetes.


Assuntos
Neoplasias Colorretais , Produtos Finais de Glicação Avançada , Receptor para Produtos Finais de Glicação Avançada , Humanos , Neoplasias Colorretais/sangue , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/diagnóstico , Masculino , Feminino , Produtos Finais de Glicação Avançada/sangue , Pessoa de Meia-Idade , Receptor para Produtos Finais de Glicação Avançada/sangue , Idoso , Estudos Prospectivos , Lisina/sangue , Lisina/análogos & derivados , Ornitina/sangue , Ornitina/análogos & derivados , Modelos de Riscos Proporcionais , Biomarcadores Tumorais/sangue , Imidazóis
8.
Cardiovasc Diabetol ; 23(1): 32, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218857

RESUMO

Chen et al. recently related the skin autofluorescence (SAF) of Advanced Glycation End-products to subclinical cardiovascular disease in the 3001 participants from the general population (Rotterdam study), with a particularly close relationship for the 413 subjects with diabetes. Because conventional vascular risk factors do not capture the risk in diabetes very well, this relationship may help to select high-risk individuals for the screening of silent myocardial ischemia, which has yet to prove its benefit in randomized controlled trials. Among 477 patients with uncontrolled and/or complicated Type 2 Diabetes, we measured the SAF ten years ago, and we registered new revascularizations during a 54-months follow-up. The patients with SAF > 2.6 Arbitrary units (AUs), the median population value, experienced more revascularizations of the coronary (17/24) and lower-limb arteries (13/17) than patients with a lower SAF, adjusted for age, sex, diabetes duration, vascular complications, and smoking habits: HR 2.17 (95% CI: 1.05-4.48), p = 0.035. The SAF has already been reported to predict cardiovascular events in three cohorts of people with diabetes. We suggest that its measurement may help to improve the performance of the screening before vascular explorations and revascularizations.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Pele , Fatores de Risco , Produtos Finais de Glicação Avançada , Fumar
9.
Respir Res ; 25(1): 129, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500106

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure in critically ill patients, and diffuse alveolar damage (DAD) is considered its histological hallmark. Sepsis is one of the most common aetiology of ARDS with the highest case-fatality rate. Identifying ARDS patients and differentiate them from other causes of acute respiratory failure remains a challenge. To address this, many studies have focused on identifying biomarkers that can help assess lung epithelial injury. However, there is scarce information available regarding the tissue expression of these markers. Evaluating the expression of elafin, RAGE, and SP-D in lung tissue offers a potential bridge between serological markers and the underlying histopathological changes. Therefore, we hypothesize that the expression of epithelial injury markers varies between sepsis and ARDS as well as according to its severity. METHODS: We compared the post-mortem lung tissue expression of the epithelial injury markers RAGE, SP-D, and elafin of patients that died of sepsis, ARDS, and controls that died from non-pulmonary causes. Lung tissue was collected during routine autopsy and protein expression was assessed by immunohistochemistry. We also assessed the lung injury by a semi-quantitative analysis. RESULTS: We observed that all features of DAD were milder in septic group compared to ARDS group. Elafin tissue expression was increased and SP-D was decreased in the sepsis and ARDS groups. Severe ARDS expressed higher levels of elafin and RAGE, and they were negatively correlated with PaO2/FiO2 ratio, and positively correlated with bronchopneumonia percentage and hyaline membrane score. RAGE tissue expression was negatively correlated with mechanical ventilation duration in both ARDS and septic groups. In septic patients, elafin was positively correlated with ICU admission length, SP-D was positively correlated with serum lactate and RAGE was correlated with C-reactive protein. CONCLUSIONS: Lung tissue expression of elafin and RAGE, but not SP-D, is associated with ARDS severity, but does not discriminate sepsis patients from ARDS patients.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Sepse , Humanos , Elafina , Proteína D Associada a Surfactante Pulmonar , Pulmão , Síndrome do Desconforto Respiratório/diagnóstico , Sepse/diagnóstico , Sepse/complicações
10.
Exp Dermatol ; 33(4): e15065, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563644

RESUMO

The advanced glycation end-products (AGEs) are produced through non-enzymatic glycation between reducing sugars and free amino groups, such as proteins, lipids or nucleic acids. AGEs can enter the body through daily dietary intake and can also be generated internally via normal metabolism and external stimuli. AGEs bind to cell surface receptors for AGEs, triggering oxidative stress and inflammation responses that lead to skin ageing and various diseases. Evidence shows that AGEs contribute to skin dysfunction and ageing. This review introduces the basic information, the sources, the metabolism and absorption of AGEs. We also summarise the detrimental mechanisms of AGEs to skin ageing and other chronic diseases. For the potential strategies for counteracting AGEs to skin and other organs, we summarised the pathways that could be utilised to resist glycation. Chemical and natural-derived anti-glycation approaches are overviewed. This work offers an understanding of AGEs to skin ageing and other chronic diseases and may provide perspectives for the development of anti-glycation strategies.


Assuntos
Reação de Maillard , Pele , Humanos , Estresse Oxidativo , Doença Crônica
11.
Diabetes Metab Res Rev ; 40(2): e3735, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817474

RESUMO

AIMS: Population-based evidence regarding circulating advanced glycation end-products (AGEs) and the risk of type 2 diabetes (T2D) is conflicting and insufficient. We aimed to examine the association of plasma AGEs and plasma soluble receptors for AGEs (sRAGE) with T2D. MATERIALS AND METHODS: We conducted a hospital-based case-control study including 1072 pairs (53.9 ± 9.7 years, 56.0% male) of newly diagnosed T2D and age- and sex-matched controls. We further performed a nested case-control study within an ongoing prospective cohort consisting of 127 incident T2D cases and 381 well-matched controls (62.2 ± 5.1 years, 71.7% male). Plasma AGEs were detected using liquid chromatography-tandem mass spectrometry, and plasma sRAGE was measured by enzyme-linked immunosorbent assay. Conditional logistic regression was used to evaluate the association of plasma AGEs and sRAGE concentrations with T2D. RESULTS: Higher plasma AGEs and lower sRAGE concentrations were associated with higher odds of T2D. The multivariable-adjusted odds ratios of T2D comparing the highest with the lowest quartile levels were 3.28 (95% CI: 2.14, 5.02) for plasma AGEs and 0.25 (95% CI: 0.16, 0.39) for plasma sRAGE. Participants in the highest quartile of plasma AGEs and the lowest quartile of sRAGE concentrations had the greatest odds of T2D. The positive association of AGEs and inverse association of sRAGE with T2D risk was confirmed in the replication-nested case-control study. CONCLUSIONS: Increased circulating AGEs and decreased sRAGE concentrations were associated with elevated T2D risk. Our findings may have implications for the strategies of T2D prevention and management.


Assuntos
Diabetes Mellitus Tipo 2 , Adulto , Humanos , Masculino , Feminino , Diabetes Mellitus Tipo 2/epidemiologia , Receptor para Produtos Finais de Glicação Avançada , Produtos Finais de Glicação Avançada , Estudos de Casos e Controles , Estudos Prospectivos , Reação de Maillard , China/epidemiologia , Biomarcadores
12.
Calcif Tissue Int ; 115(3): 298-314, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39012489

RESUMO

Obesity and type 2 diabetes (T2D) are risk factors for fragility fractures. It is unknown whether this elevated risk is due to a diet favoring obesity or the diabetes that often occurs with obesity. Therefore, we hypothesized that the fracture resistance of bone is lower in mice fed with a high fat diet (45% kcal; HFD) than in mice that fed on a similar, control diet (10% kcal; LFD), regardless of whether the mice developed overt T2D. Sixteen-week-old, male NON/ShiLtJ mice (resistant to T2D) and age-matched, male NONcNZO10/LtJ (prone to T2D) received a control LFD or HFD for 21 weeks. HFD increased the bodyweight to a greater extent in the ShiLtJ mice compared to the NZO10 mice, while blood glucose levels were significantly higher in NZO10 than in ShiLtJ mice. As such, the glycated hemoglobin A1c (HbA1c) levels exceeded 10% in NZO10 mice, but it remained below 6% in ShiLtJ mice. Diet did not affect HbA1c. HFD lowered trabecular number and bone volume fraction of the distal femur metaphysis (micro-computed tomography or µCT) in both strains. For the femur mid-diaphysis, HFD significantly reduced the yield moment (mechanical testing by three-point bending) in both strains but did not affect cross-sectional bone area, cortical thickness, nor cortical tissue mineral density (µCT). Furthermore, the effect of diet on yield moment was independent of the structural resistance of the femur mid-diaphysis suggesting a negative effect of HFD on characteristics of the bone matrix. However, neither Raman spectroscopy nor assays of advanced glycation end-products identified how HFD affected the matrix. HFD also lowered the resistance of cortical bone to crack growth in only the diabetic NZO10 mice (fracture toughness testing of other femur), while HFD reduced the ultimate force of the L6 vertebra in both strains (compression testing). In conclusion, the HFD-related decrease in bone strength can occur in mice resistant and prone to diabetes indicating that a diet high in fat deleteriously affects bone without necessarily causing hyperglycemia.


Assuntos
Densidade Óssea , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Obesidade , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Masculino , Camundongos , Densidade Óssea/fisiologia , Fraturas Ósseas/etiologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia
13.
Malar J ; 23(1): 320, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39448997

RESUMO

BACKGROUND: Pulmonary oedema is a feared and difficult to predict complication of severe malaria that can emerge after start of antimalarial treatment. Proinflammatory mediators are thought to play a central role in its pathogenesis. METHODS: An exploratory study was conducted to evaluate the predictive capacity of biomarkers for development of clinical pulmonary oedema in patients with severe falciparum malaria at two hospitals in Bangladesh. Plasma concentrations of interleukin-6 (IL-6), IL-8, tumour necrosis factor (TNF), soluble Receptor of Advanced Glycation End-products (sRAGE), surfactant protein-D (SP-D), club cell secretory protein (CC16), and Krebs von den Lungen-6 (KL-6) on admission were compared with healthy controls. Correlations between these biomarker and plasma lactate and Plasmodium falciparum histidine-rich protein 2 (PfHRP2) levels were evaluated. Receiver Operating Characteristic (ROC) curves were constructed to assess the predictive capacity for clinical pulmonary oedema of the biomarkers of interest. RESULTS: Of 106 screened patients with falciparum malaria, 56 were classified as having severe malaria with a mortality rate of 29%. Nine (16%) patients developed clinical pulmonary oedema after admission. Plasma levels of the biomarkers of interest were higher in patients compared to healthy controls. IL-6, IL-8, TNF, sRAGE, and CC16 levels correlated well with plasma PfHRP2 levels (rs = 0.39; P = 0.004, rs = 0.43; P = 0.001, rs = 0.54; P < 0.001, rs = 0.44; P < 0.001, rs = 0.43; P = 0.001, respectively). Furthermore, IL-6 and IL-8 levels correlated well with plasma lactate levels (rs = 0.37; P = 0.005, rs = 0.47; P < 0.001, respectively). None of the biomarkers of interest had predictive capacity for development of clinical pulmonary oedema. CONCLUSIONS: IL-6, IL-8, TNF, sRAGE, SP-D, CC16 and KL-6 cannot be used in predicting clinical pulmonary oedema in severe malaria patients.


Assuntos
Biomarcadores , Malária Falciparum , Edema Pulmonar , Humanos , Edema Pulmonar/sangue , Edema Pulmonar/etiologia , Biomarcadores/sangue , Estudos Prospectivos , Masculino , Malária Falciparum/complicações , Malária Falciparum/sangue , Feminino , Adulto , Bangladesh , Adulto Jovem , Pessoa de Meia-Idade , Adolescente , Citocinas/sangue , Antígenos de Protozoários/sangue , Curva ROC , Proteínas de Protozoários/sangue
14.
J Pharmacol Sci ; 156(1): 1-8, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39068030

RESUMO

Accumulation of advanced glycation end-products (AGEs) in the brain contributes significantly to cognitive impairment in patients with diabetes by disrupting the post-mitotic state of neuronal cells, thereby triggering ectopic cell cycle re-entry (CCR) and subsequent neuronal apoptosis. Cinnamaldehyde (CINA), a potential mitigator of cognitive impairment due to its blood glucose-lowering properties, warrants exploration for its role in counteracting diabetes-related neurological damage. In this study, we examined the neuroprotective effect of CINA on AGE-damaged SH-SY5Y human neuroblastoma cells differentiated in vitro. We investigated the impact of CINA on AGE-induced neuronal CCR and apoptosis, finding that it substantially suppressed aberrant DNA replication, precluded cells from entering the mitotic preparatory phase, and diminished apoptosis. Additionally, CINA inhibited the expression of eIF4E without altering S6K1 phosphorylation. These findings indicate that CINA safeguards neuronal cells from AGE-related damage by preventing abnormal CCR, preserving the post-mitotic state of neuronal cells, and reducing AGE-induced apoptosis, potentially through the inhibition of eIF4E-controlled cell proliferation. Our results highlight the prospective utility of CINA in managing diabetic neuropathy.


Assuntos
Acroleína , Apoptose , Ciclo Celular , Produtos Finais de Glicação Avançada , Neurônios , Fármacos Neuroprotetores , Acroleína/análogos & derivados , Acroleína/farmacologia , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ciclo Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Linhagem Celular Tumoral , Neuropatias Diabéticas/prevenção & controle , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Replicação do DNA/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
15.
Artigo em Inglês | MEDLINE | ID: mdl-39358105

RESUMO

AIMS: This review aims to provide a straightforward conceptual framework for the knowledge and understanding of Metabolic dysfunction-associated steatotic liver disease (MASLD) in the broad spectrum of steatotic liver disease and to point out the need to consider metabolic dysfunction and comorbidities as interrelated factors for a holistic approach to fatty liver disease. DATA SYNTHESIS: MASLD is the new proposed term for steatotic liver disease that replaces the old terminology of non-alcoholic fatty liver disease. This term focused on the relationship between metabolic alteration and hepatic steatosis, reflecting a growing comprehension of the association between metabolic dysfunction and hepatic steatosis. Numerous factors and conditions contribute to the underlying mechanisms, including central obesity, insulin resistance, adiponectin, lipid metabolism, liver function, dietary influences, the composition of intestinal microbiota, and genetic factors. The development of the condition, however, involves a more intricate network of components, such as neurotensin and Advanced Glycation End Products, highlighting the complexity of its pathogenesis. CONCLUSIONS: MASLD must be regarded as a complex clinical problem in which only a holistic approach can win through the coordination of multi-professional and multi-speciality interventions.

16.
Oral Dis ; 30(2): 593-603, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36843542

RESUMO

OBJECTIVES: Intrapulpal calcifications can occur in the dental pulp of patients with diabetes. We focused on the association between ectopic calcifications in the dental pulp and advanced glycation end products (AGEs) in Spontaneously Diabetic Torii (SDT)-fatty rats, an obese type 2 diabetic rat model, to determine the mechanism of calcification with pulp stone in the dental pulp. MATERIALS AND METHODS: Pathologic calcification in the dental pulp of SDT-fatty rats was observed using electron microscopy and immunohistochemical analysis. Moreover, mechanical analysis of periapical region of molar tooth against occlusal force was performed. RESULTS: In SDT-fatty rats, pathogenic pulpal calcifications occurred during blood glucose elevation after 6 weeks, and granular calcification was observed in the dental pulp after 11 weeks. Pentosidine, a major AGE, and the receptor for AGEs were strongly expressed in the dental pulp of SDT-fatty rats. S100A8, TNF-α, and IL-6 also showed positive response in the dental pulp of the SDT-fatty rat, which indicated pulpal inflammation. Blood flow disorder and hypoxic dental pulp cells were also observed. In silico simulation, strain from occlusal force concentrates on the root apex. CONCLUSIONS: Glycation makes blood vessels fragile, and occlusal forces damage the vessels mechanically. These are factors for intrapulpal calcification of diabetes.


Assuntos
Calcificações da Polpa Dentária , Diabetes Mellitus Tipo 2 , Ratos , Humanos , Animais , Diabetes Mellitus Tipo 2/complicações , Reação de Maillard , Glicemia , Obesidade
17.
J Shoulder Elbow Surg ; 33(9): 1990-1998, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38423252

RESUMO

HYPOTHESIS: This study aimed to investigate the correlation between rotator cuff stump classification and postoperative outcomes after superior capsular reconstruction (SCR). METHODS: A total of 75 patients who underwent SCR between June 2013 and May 2021 were included in this study. Based on stump classification using the signal intensity ratio of the tendon rupture site to the deltoid muscle in the coronal view of preoperative T2-weighted, fat-suppressed magnetic resonance imaging scans, the patients were classified into types 1, 2, and 3 with ratios of <0.8, 0.8-1.3, and >1.3 (44, 17, and 14 patients, respectively). The American Shoulder and Elbow Surgeons (ASES), Constant, and visual analog scale (VAS) scores for pain and range of motion were evaluated at a minimum of 1 year of follow-up postoperatively. The acromiohumeral distance and rotator cuff arthropathy according to the Hamada classification were assessed on plain radiography. The graft integrity was evaluated by magnetic resonance imaging at 3 and 12 months postoperatively and annually thereafter. RESULTS: Clinical and radiological outcomes were significantly improved after SCR. In comparison with type 2 and 3 patients, type 1 patients had significantly higher ASES scores (type 1, 2, and 3 = 84 ± 10, 75 ± 15, and 76 ± 14; all P = .014), Constant scores (type 1, 2, and 3 = 65 ± 5, 61 ± 9, and 56 ± 13; all P = .005), and forward flexion (type 1, 2, and 3 = 155 ± 10, 154 ± 15, and 145 ± 13; all P = .013). However, these statistical differences between groups were below the established minimum clinically important difference values for the ASES and Constant scores after rotator cuff repair. The graft failure rate after surgery was lower in the type 1 group than that in the other 2 groups; however, the difference was not statistically significant (P = .749). CONCLUSION: Patients with stump classification type 1 showed significantly better functional scores (ASES and VAS scores) and forward flexion; however, the clinical importance of these differences may be limited. Stump classification may be useful for predicting postoperative clinical outcomes.


Assuntos
Imageamento por Ressonância Magnética , Lesões do Manguito Rotador , Manguito Rotador , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Lesões do Manguito Rotador/cirurgia , Lesões do Manguito Rotador/diagnóstico por imagem , Idoso , Manguito Rotador/cirurgia , Manguito Rotador/diagnóstico por imagem , Estudos Retrospectivos , Amplitude de Movimento Articular , Resultado do Tratamento , Adulto , Procedimentos de Cirurgia Plástica/métodos , Cápsula Articular/cirurgia , Cápsula Articular/diagnóstico por imagem , Articulação do Ombro/cirurgia , Articulação do Ombro/diagnóstico por imagem
18.
Sensors (Basel) ; 24(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38894145

RESUMO

Advanced glycation end-products (AGEs) are complex compounds closely associated with several chronic diseases, especially diabetes mellitus (DM). Current methods for detecting AGEs are not suitable for screening large populations, or for long-term monitoring. This paper introduces a portable autofluorescence detection system that measures the concentration of AGEs in the skin based on the fluorescence characteristics of AGEs in biological tissues. The system employs a 395 nm laser LED to excite the fluorescence of AGEs, and uses a photodetector to capture the fluorescence intensity. A model correlating fluorescence intensity with AGEs concentration facilitates the detection of AGEs levels. To account for the variation in optical properties of different individuals' skin, the system includes a 520 nm light source for calibration. The system features a compact design, measuring only 60 mm × 50 mm × 20 mm, and is equipped with a miniature STM32 module for control and a battery for extended operation, making it easy for subjects to wear. To validate the system's effectiveness, it was tested on 14 volunteers to examine the correlation between AGEs and glycated hemoglobin, revealing a correlation coefficient of 0.49. Additionally, long-term monitoring of AGEs' fluorescence and blood sugar levels showed a correlation trend exceeding 0.95, indicating that AGEs reflect changes in blood sugar levels to some extent. Further, by constructing a multivariate predictive model, the study also found that AGEs levels are correlated with age, BMI, gender, and a physical activity index, providing new insights for predicting AGEs content and blood sugar levels. This research supports the early diagnosis and treatment of chronic diseases such as diabetes, and offers a potentially useful tool for future clinical applications.


Assuntos
Produtos Finais de Glicação Avançada , Humanos , Produtos Finais de Glicação Avançada/análise , Feminino , Masculino , Adulto , Hemoglobinas Glicadas/análise , Pessoa de Meia-Idade , Glicemia/análise , Pele/química , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/sangue , Fluorescência , Imagem Óptica/métodos , Imagem Óptica/instrumentação , Espectrometria de Fluorescência/métodos
19.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000515

RESUMO

Advanced glycation end-products (AGEs) form through non-enzymatic glycation of various proteins. Optic nerve degeneration is a frequent complication of diabetes, and retinal AGE accumulation is strongly linked to the development of diabetic retinopathy. Type 2 diabetes mellitus is a major risk factor for Alzheimer's disease (AD), with patients often exhibiting optic axon degeneration in the nerve fiber layer. Notably, a gap exists in our understanding of how AGEs contribute to neuronal degeneration in the optic nerve within the context of both diabetes and AD. Our previous work demonstrated that glyceraldehyde (GA)-derived toxic advanced glycation end-products (TAGE) disrupt neurite outgrowth through TAGE-ß-tubulin aggregation and tau phosphorylation in neural cultures. In this study, we further illustrated GA-induced suppression of optic nerve axonal elongation via abnormal ß-tubulin aggregation in mouse retinas. Elucidating this optic nerve degeneration mechanism holds promise for bridging the knowledge gap regarding vision loss associated with diabetes mellitus and AD.


Assuntos
Axônios , Produtos Finais de Glicação Avançada , Nervo Óptico , Tubulina (Proteína) , Animais , Tubulina (Proteína)/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Camundongos , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Nervo Óptico/efeitos dos fármacos , Axônios/metabolismo , Axônios/efeitos dos fármacos , Axônios/patologia , Camundongos Endogâmicos C57BL , Agregados Proteicos/efeitos dos fármacos
20.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39201355

RESUMO

To investigate the impact of extrusion parameters on the formation of Nε-(carboxymethyl)lysine (CML), Nε-(carboxyethyl)lysine (CEL) and acrylamide in plant-based meat analogues (PBMAs), the content changes and the correlations of compounds related to their formation were studied. The extrusion promoted CML, CEL and acrylamide formation, with more CEL being formed than CML. Variations in the moisture level and barrel temperature exerted a greater influence on the CML, CEL, acrylamide and α-dicarbonyl compounds than the screw speed and the feed rate. An increase in the moisture content led to a decrease in the CEL content, whereas it enhanced CML formation. The impact of moisture on acrylamide formation varied depending on whether low- or high-moisture extrusion was applied. Elevated temperatures promoted the accumulation of CEL, methylglyoxal and 2,3-butanedione while diminishing the accumulation of CML, acrylamide, glyoxal and 3-deoxyglucosone. CML and CEL were positively correlated with glyoxal and methylglyoxal, respectively. CEL and methylglyoxal were negatively correlated with protein and water content, whereas CML, glyoxal and 3-deoxyglucosone displayed positive correlations. In summary, higher moisture levels and feed rates and lower screw speeds and barrel temperatures are advantageous for producing PBMAs with lower CEL and total advanced glycation end-products contents, while lower or higher moisture contents, a lower feed rate and a higher barrel temperature are beneficial to reducing the acrylamide content.


Assuntos
Acrilamida , Lisina , Acrilamida/química , Acrilamida/análise , Lisina/análogos & derivados , Lisina/análise , Lisina/química , Carne/análise , Temperatura , Manipulação de Alimentos/métodos , Aldeído Pirúvico/análise , Aldeído Pirúvico/química , Substitutos da Carne
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA