Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(19): 4074-4084.e11, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37669665

RESUMO

H3N8 avian influenza viruses (AIVs) in China caused two confirmed human infections in 2022, followed by a fatal case reported in 2023. H3N8 viruses are widespread in chicken flocks; however, the zoonotic features of H3N8 viruses are poorly understood. Here, we demonstrate that H3N8 viruses were able to infect and replicate efficiently in organotypic normal human bronchial epithelial (NHBE) cells and lung epithelial (Calu-3) cells. Human isolates of H3N8 virus were more virulent and caused severe pathology in mice and ferrets, relative to chicken isolates. Importantly, H3N8 virus isolated from a patient with severe pneumonia was transmissible between ferrets through respiratory droplets; it had acquired human-receptor-binding preference and amino acid substitution PB2-E627K necessary for airborne transmission. Human populations, even when vaccinated against human H3N2 virus, appear immunologically naive to emerging mammalian-adapted H3N8 AIVs and could be vulnerable to infection at epidemic or pandemic proportion.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Influenza Humana , Animais , Humanos , Camundongos , Galinhas , Furões , Vírus da Influenza A Subtipo H3N2 , Aerossóis e Gotículas Respiratórios
2.
Proc Natl Acad Sci U S A ; 121(13): e2317194121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502700

RESUMO

Aerosols play a major role in the transmission of the SARS-CoV-2 virus. The behavior of the virus within aerosols is therefore of fundamental importance. On the surface of a SARS-CoV-2 virus, there are about 40 spike proteins, which each have a length of about 20 nm. They are glycosylated trimers, which are highly flexible, due to their structure. These spike proteins play a central role in the intrusion of the virus into human host cells and are, therefore, a focus of vaccine development. In this work, we have studied the behavior of spike proteins of the SARS-CoV-2 virus in the presence of a vapor-liquid interface by molecular dynamics (MD) simulations. Systematically, the behavior of the spike protein at different distances to a vapor-liquid interface were studied. The results reveal that the spike protein of the SARS-CoV-2 virus is repelled from the vapor-liquid interface and has a strong affinity to stay inside the bulk liquid phase. Therefore, the spike protein bends when a vapor-liquid interface approaches the top of the protein. This has important consequences for understanding the behavior of the virus during the dry-out of aerosol droplets.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulação de Dinâmica Molecular , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Proteica , Aerossóis e Gotículas Respiratórios
3.
Proc Natl Acad Sci U S A ; 119(22): e2116165119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35609196

RESUMO

We study the airborne transmission risk associated with holding in-person classes on university campuses for the original strain and a more contagious variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We adopt a model for airborne transmission risk in an enclosed room that considers room properties, mask efficiency, and initial infection probability of the occupants. Additionally, we study the effect of vaccination on the spread of the virus. The presented model has been evaluated in simulations using fall 2019 (prepandemic) and fall 2020 (hybrid instruction) course registration data of a large US university, allowing for assessing the difference in transmission risk between in-person and hybrid programs and the impact of occupancy reduction, mask-wearing, and vaccination. The simulations indicate that without vaccination, moving 90% of the classes online leads to a 17 to 18× reduction in new cases, and universal mask usage results in an ∼2.7 to 3.6× reduction in new infections through classroom interactions. Furthermore, the results indicate that for the original variant and using vaccines with efficacy greater than 90%, at least 23% (64%) of students need to be vaccinated with (without) mask usage in order to operate the university at full occupancy while preventing an increase in cases due to classroom interactions. For the more contagious variant, even with universal mask usage, at least 93% of the students need to be vaccinated to ensure the same conditions. We show that the model is able to predict trends observed in weekly infection rates for fall 2021.


Assuntos
COVID-19 , Modelos Teóricos , Política Pública , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Teste para COVID-19 , Vacinas contra COVID-19 , Educação a Distância , Humanos , Máscaras , SARS-CoV-2 , Estudantes , Universidades
4.
Proc Natl Acad Sci U S A ; 119(27): e2200109119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35763573

RESUMO

Understanding the factors that influence the airborne survival of viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in aerosols is important for identifying routes of transmission and the value of various mitigation strategies for preventing transmission. We present measurements of the stability of SARS-CoV-2 in aerosol droplets (∼5 to 10 µm equilibrated radius) over timescales spanning 5 s to 20 min using an instrument to probe survival in a small population of droplets (typically 5 to 10) containing ∼1 virus/droplet. Measurements of airborne infectivity change are coupled with a detailed physicochemical analysis of the airborne droplets containing the virus. A decrease in infectivity to ∼10% of the starting value was observable for SARS-CoV-2 over 20 min, with a large proportion of the loss occurring within the first 5 min after aerosolization. The initial rate of infectivity loss was found to correlate with physical transformation of the equilibrating droplet; salts within the droplets crystallize at relative humidities (RHs) below 50%, leading to a near-instant loss of infectivity in 50 to 60% of the virus. However, at 90% RH, the droplet remains homogenous and aqueous, and the viral stability is sustained for the first 2 min, beyond which it decays to only 10% remaining infectious after 10 min. The loss of infectivity at high RH is consistent with an elevation in the pH of the droplets, caused by volatilization of CO2 from bicarbonate buffer within the droplet. Four different variants of SARS-CoV-2 were compared and found to have a similar degree of airborne stability at both high and low RH.


Assuntos
Partículas e Gotas Aerossolizadas , COVID-19 , SARS-CoV-2 , Partículas e Gotas Aerossolizadas/química , Partículas e Gotas Aerossolizadas/isolamento & purificação , COVID-19/transmissão , Humanos , Umidade , Concentração de Íons de Hidrogênio , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade
5.
Environ Sci Technol ; 58(16): 6846-6867, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38568611

RESUMO

The emergence of coronavirus disease 2019 (COVID-19) has catalyzed great interest in the spread of airborne pathogens. Airborne infectious diseases are classified into viral, bacterial, and fungal infections. Environmental factors can elevate their transmission and lethality. Air pollution has been reported as the leading environmental cause of disease and premature death worldwide. Notably, ambient particulates of various components and sizes are harmful pollutants. There are two prominent health effects of particles in the atmosphere: (1) particulate matter (PM) penetrates the respiratory tract and adversely affects health, such as heart and respiratory diseases; and (2) bioaerosols of particles act as a medium for the spread of pathogens in the air. Particulates contribute to the occurrence of infectious diseases by increasing vulnerability to infection through inhalation and spreading disease through interactions with airborne pathogens. Here, we focus on the synergistic effects of airborne particulates on infectious disease. We outline the concepts and characteristics of bioaerosols, from their generation to transformation and circulation on Earth. Considering that microorganisms coexist with other particulates as bioaerosols, we investigate studies examining respiratory infections associated with airborne PM. Furthermore, we discuss four factors (meteorological, biological, physical, and chemical) that may impact the influence of PM on the survival of contagious pathogens in the atmosphere. Our review highlights the significant role of particulates in supporting the transmission of infectious aerosols and emphasizes the need for further research in this area.

6.
Environ Sci Technol ; 58(8): 3595-3608, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38355395

RESUMO

Understanding the airborne survival of viruses is important for public health and epidemiological modeling and potentially to develop mitigation strategies to minimize the transmission of airborne pathogens. Laboratory experiments typically involve investigating the effects of environmental parameters on the viability or infectivity of a target airborne virus. However, conflicting results among studies are common. Herein, the results of 34 aerovirology studies were compared to identify links between environmental and compositional effects on the viability of airborne viruses. While the specific experimental apparatus was not a factor in variability between reported results, it was determined that the experimental procedure was a major factor that contributed to discrepancies in results. The most significant contributor to variability between studies was poorly defined initial viable virus concentration in the aerosol phase, causing many studies to not measure the rapid inactivation, which occurs quickly after particle generation, leading to conflicting results. Consistently, studies that measured their reference airborne viability minutes after aerosolization reported higher viability at subsequent times, which indicates that there is an initial loss of viability which is not captured in these studies. The composition of the particles which carry the viruses was also found to be important in the viability of airborne viruses; however, the mechanisms for this effect are unknown. Temperature was found to be important for aerosol-phase viability, but there is a lack of experiments that directly compare the effects of temperature in the aerosol phase and the bulk phase. There is a need for repeated measurements between different research groups under identical conditions both to assess the degree of variability between studies and also to attempt to better understand already published data. Lack of experimental standardization has hindered the ability to quantify the differences between studies, for which we provide recommendations for future studies. These recommendations are as follows: measuring the reference airborne viability using the "direct method"; use equipment which maximizes time resolution; quantify all losses appropriately; perform, at least, a 5- and 10-min sample, if possible; report clearly the composition of the virus suspension; measure the composition of the gas throughout the experiment. Implementing these recommendations will address the most significant oversights in the existing literature and produce data which can more easily be quantitatively compared.


Assuntos
Vírus , Aerossóis
7.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38520159

RESUMO

AIMS: Airborne transmission of diseases presents a serious threat to human health, so effective air disinfection technology to eliminate microorganisms in indoor air is very important. This study evaluated the effectiveness of a non-thermal plasma (NTP) air disinfector in both laboratory experiments and real environments. METHODS AND RESULTS: An experimental chamber was artificially polluted with a bioaerosol containing bacteria or viruses. Additionally, classroom environments with and without people present were used in field tests. Airborne microbial and particle concentrations were quantified. A 3.0 log10 reduction in the initial load was achieved when a virus-containing aerosol was disinfected for 60 min and a bacteria-containing aerosol was disinfected for 90 min. In the field test, when no people were present in the room, NTP disinfection decreased the airborne microbial and particle concentrations (P < 0.05). When people were present in the room, their constant activity continuously contaminated the indoor air, but all airborne indicators decreased (P < 0.05) except for planktonic bacteria (P = 0.094). CONCLUSIONS: NTP effectively inactivated microorganisms and particles in indoor air.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Bactérias , Desinfecção , Gases em Plasma , Desinfecção/métodos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Humanos , Gases em Plasma/farmacologia , Aerossóis , Desinfetantes/farmacologia , Vírus/efeitos dos fármacos , Vírus/isolamento & purificação
8.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33858987

RESUMO

The current revival of the American economy is being predicated on social distancing, specifically the Six-Foot Rule, a guideline that offers little protection from pathogen-bearing aerosol droplets sufficiently small to be continuously mixed through an indoor space. The importance of airborne transmission of COVID-19 is now widely recognized. While tools for risk assessment have recently been developed, no safety guideline has been proposed to protect against it. We here build on models of airborne disease transmission in order to derive an indoor safety guideline that would impose an upper bound on the "cumulative exposure time," the product of the number of occupants and their time in an enclosed space. We demonstrate how this bound depends on the rates of ventilation and air filtration, dimensions of the room, breathing rate, respiratory activity and face mask use of its occupants, and infectiousness of the respiratory aerosols. By synthesizing available data from the best-characterized indoor spreading events with respiratory drop size distributions, we estimate an infectious dose on the order of 10 aerosol-borne virions. The new virus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) is thus inferred to be an order of magnitude more infectious than its forerunner (SARS-CoV), consistent with the pandemic status achieved by COVID-19. Case studies are presented for classrooms and nursing homes, and a spreadsheet and online app are provided to facilitate use of our guideline. Implications for contact tracing and quarantining are considered, and appropriate caveats enumerated. Particular consideration is given to respiratory jets, which may substantially elevate risk when face masks are not worn.


Assuntos
Microbiologia do Ar , COVID-19/prevenção & controle , Guias como Assunto , SARS-CoV-2 , Aerossóis , Poluição do Ar em Ambientes Fechados , COVID-19/transmissão , Humanos , Modelos Teóricos , Segurança
9.
Risk Anal ; 44(3): 631-640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37317640

RESUMO

The risk assessments during the COVID-19 pandemic were primarily based on dose-response models derived from the pooled datasets for infection of animals susceptible to SARS-CoV. Despite similarities, differences in susceptibility between animals and humans exist for respiratory viruses. The two most commonly used dose-response models for calculating the infection risk of respiratory viruses are the exponential and the Stirling approximated ß-Poisson (BP) models. The modified version of the one-parameter exponential model or the Wells-Riley model was almost solely used for infection risk assessments during the pandemic. Still, the two-parameter (α and ß) Stirling approximated BP model is often recommended compared to the exponential dose-response model due to its flexibility. However, the Stirling approximation restricts this model to the general rules of ߠ≫ 1 and α â‰ª ß, and these conditions are very often violated. To refrain from these requirements, we tested a novel BP model by using the Laplace approximation of the Kummer hypergeometric function instead of the conservative Stirling approximation. The datasets of human respiratory airborne viruses available in the literature for human coronavirus (HCoV-229E) and human rhinovirus (HRV-16 and HRV-39) are used to compare the four dose-response models. Based on goodness-of-fit criteria, the exponential model was the best fitting model for the HCoV-229E (k = 0.054) and for HRV-39 datasets (k = 1.0), whereas the Laplace approximated BP model followed by the exact and Stirling approximated BP models are preferred for both the HRV-16 (α = 0.152 and ß = 0.021 for Laplace BP) and the HRV-16 and HRV-39 pooled datasets (α = 0.2247 and ß = 0.0215 for Laplace BP).


Assuntos
COVID-19 , Coronavirus Humano 229E , Animais , Humanos , Rhinovirus , Pandemias , Medição de Risco
10.
Risk Anal ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501447

RESUMO

The Wells-Riley model has been widely used to estimate airborne infection risk, typically from a deterministic point of view (i.e., focusing on the average number of infections) or in terms of a per capita probability of infection. Some of its main limitations relate to considering well-mixed air, steady-state concentration of pathogen in the air, a particular amount of time for the indoor interaction, and that all individuals are homogeneous and behave equally. Here, we revisit the Wells-Riley model, providing a mathematical formalism for its stochastic version, where the number of infected individuals follows a Binomial distribution. Then, we extend the Wells-Riley methodology to consider transient behaviours, randomness, and population heterogeneity. In particular, we provide analytical solutions for the number of infections and the per capita probability of infection when: (i) susceptible individuals remain in the room after the infector leaves, (ii) the duration of the indoor interaction is random/unknown, and (iii) infectors have heterogeneous quanta production rates (or the quanta production rate of the infector is random/unknown). We illustrate the applicability of our new formulations through two case studies: infection risk due to an infectious healthcare worker (HCW) visiting a patient, and exposure during lunch for uncertain meal times in different dining settings. Our results highlight that infection risk to a susceptible who remains in the space after the infector leaves can be nonnegligible, and highlight the importance of incorporating uncertainty in the duration of the indoor interaction and the infectivity of the infector when estimating risk.

11.
Clin Infect Dis ; 76(10): 1854-1859, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36763042

RESUMO

This is an account that should be heard of an important struggle: the struggle of a large group of experts who came together at the beginning of the COVID-19 pandemic to warn the world about the risk of airborne transmission and the consequences of ignoring it. We alerted the World Health Organization about the potential significance of the airborne transmission of SARS-CoV-2 and the urgent need to control it, but our concerns were dismissed. Here we describe how this happened and the consequences. We hope that by reporting this story we can raise awareness of the importance of interdisciplinary collaboration and the need to be open to new evidence, and to prevent it from happening again. Acknowledgement of an issue, and the emergence of new evidence related to it, is the first necessary step towards finding effective mitigation solutions.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Pandemias/prevenção & controle , Organização Mundial da Saúde , Sociedades
12.
Clin Infect Dis ; 76(5): 786-794, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36285523

RESUMO

BACKGROUND: Aerosol inhalation is recognized as the dominant mode of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Three highly transmissible lineages evolved during the pandemic. One hypothesis to explain increased transmissibility is that natural selection favors variants with higher rates of viral aerosol shedding. However, the extent of aerosol shedding of successive SARS-CoV-2 variants is unknown. We aimed to measure the infectivity and rate of SARS-CoV-2 shedding into exhaled breath aerosol (EBA) by individuals during the Delta and Omicron waves and compared those rates with those of prior SARS-CoV-2 variants from our previously published work. METHODS: Individuals with coronavirus disease 2019 (COVID-19) (n = 93; 32 vaccinated and 20 boosted) were recruited to give samples, including 30-minute breath samples into a Gesundheit-II EBA sampler. Samples were quantified for viral RNA using reverse-transcription polymerase chain reaction and cultured for virus. RESULTS: Alpha (n = 4), Delta (n = 3), and Omicron (n = 29) cases shed significantly more viral RNA copies into EBAs than cases infected with ancestral strains and variants not associated with increased transmissibility (n = 57). All Delta and Omicron cases were fully vaccinated and most Omicron cases were boosted. We cultured virus from the EBA of 1 boosted and 3 fully vaccinated cases. CONCLUSIONS: Alpha, Delta, and Omicron independently evolved high viral aerosol shedding phenotypes, demonstrating convergent evolution. Vaccinated and boosted cases can shed infectious SARS-CoV-2 via EBA. These findings support a dominant role of infectious aerosols in transmission of SARS-CoV-2. Monitoring aerosol shedding from new variants and emerging pathogens can be an important component of future threat assessments and guide interventions to prevent transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Aerossóis e Gotículas Respiratórios , RNA Viral
13.
Virol J ; 20(1): 275, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001529

RESUMO

This study investigates the presence of SARS-CoV-2 in indoor and outdoor environments in two cities in Norway between April and May 2022. With the lifting of COVID-19 restrictions in the country and a focus on vaccination, this research aims to shed light on the potential for virus transmission in various settings. Air sampling was conducted in healthcare and non-healthcare facilities, covering locations frequented by individuals across different age groups. The study found that out of 31 air samples, only four showed the presence of SARS-CoV-2 RNA by RT-qPCR, with no viable virus detected after RNAse pre-treatment. These positive samples were primarily associated with environments involving children and the elderly. Notably, sequencing revealed mutations associated with increased infectivity in one of the samples. The results highlight the importance of considering children as potential sources of virus transmission, especially in settings with prolonged indoor exposure. As vaccination coverage increases globally, and with children still representing a substantial unvaccinated population, the study emphasizes the need to re-implement mask-wearing mandates indoors and in public transport to reduce virus transmission. The findings have implications for public health strategies to control COVID-19, particularly in the face of new variants and the potential for increased transmission during the autumn and winter seasons.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Humanos , Criança , SARS-CoV-2/genética , COVID-19/epidemiologia , RNA Viral/genética , Cidades , Noruega/epidemiologia
14.
Environ Sci Technol ; 57(1): 486-497, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36537693

RESUMO

Respiratory viruses, including influenza virus and SARS-CoV-2, are transmitted by the airborne route. Air filtration and ventilation mechanically reduce the concentration of airborne viruses and are necessary tools for disease mitigation. However, they ignore the potential impact of the chemical environment surrounding aerosolized viruses, which determines the aerosol pH. Atmospheric aerosol gravitates toward acidic pH, and enveloped viruses are prone to inactivation at strong acidity levels. Yet, the acidity of expiratory aerosol particles and its effect on airborne virus persistence have not been examined. Here, we combine pH-dependent inactivation rates of influenza A virus (IAV) and SARS-CoV-2 with microphysical properties of respiratory fluids using a biophysical aerosol model. We find that particles exhaled into indoor air (with relative humidity ≥ 50%) become mildly acidic (pH ∼ 4), rapidly inactivating IAV within minutes, whereas SARS-CoV-2 requires days. If indoor air is enriched with nonhazardous levels of nitric acid, aerosol pH drops by up to 2 units, decreasing 99%-inactivation times for both viruses in small aerosol particles to below 30 s. Conversely, unintentional removal of volatile acids from indoor air may elevate pH and prolong airborne virus persistence. The overlooked role of aerosol acidity has profound implications for virus transmission and mitigation strategies.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Aerossóis e Gotículas Respiratórios , Humanos , Concentração de Íons de Hidrogênio , SARS-CoV-2 , Inativação de Vírus , Transmissão de Doença Infecciosa
15.
Rev Med Virol ; 32(3): e2297, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34595799

RESUMO

Covid-19 has triggered an unprecedented global health crisis. The highly contagious nature and airborne transmission route of SARS-CoV-2 virus requires extraordinary measures for its containment. It is necessary to know the behaviour of aerosols carrying the virus to avoid this contagion. This paper describes the behaviour of aerosols and their role in the transmission of SARS-CoV-2 according to published models using a scoping review based on the PubMed, Scopus, and WOS databases. From an initial 530 references, 9 papers were selected after applying defined inclusion criteria. The results reinforce the airborne transmission route as a means of contagion of the virus and recommend the use of face masks, extending social distance to more than 2 metres, and natural ventilation of enclosed spaces as preventive measures. These results contribute to a better understanding of SARS-CoV-2 and help design effective strategies to prevent its spread.


Assuntos
COVID-19 , SARS-CoV-2 , Aerossóis , COVID-19/prevenção & controle , Humanos
16.
Environ Sci Technol ; 57(41): 15392-15400, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37796739

RESUMO

Humans emit large salivary particles when talking, singing, and playing musical instruments, which have implications for respiratory disease transmission. Yet little work has been done to characterize the emission rates and size distributions of such particles. This work characterized large particle (dp > 35 µm in aerodynamic diameter) emissions from 70 volunteers of varying age and sex while vocalizing and playing wind instruments. Mitigation efficacies for face masks (while singing) and bell covers (while playing instruments) were also examined. Geometric mean particle count emission rates varied from 3.8 min-1 (geometric standard deviation [GSD] = 3.1) for brass instruments playing to 95.1 min-1 (GSD = 3.8) for talking. On average, talking produced the highest emission rates for large particles, in terms of both number and mass, followed by singing and then instrument playing. Neither age, sex, CO2 emissions, nor loudness (average dBA) were significant predictors of large particle emissions, contrary to previous findings for smaller particle sizes (i.e., for dp < 35 µm). Size distributions were similar between talking and singing (count median diameter = 53.0 µm, GSD = 1.69). Bell covers did not affect large particle emissions from most wind instruments, but face masks reduced large particle count emissions for singing by 92.5% (95% CI: 97.9%, 73.7%).


Assuntos
Música , Tamanho da Partícula , Aerossóis e Gotículas Respiratórios , Humanos
17.
Environ Sci Technol ; 57(10): 4231-4240, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36853925

RESUMO

Grignard Pure (GP) is a unique and proprietary blend of triethylene glycol (TEG) and inert ingredients designed for continuous antimicrobial treatment of air. TEG has been designated as a ″Safer Chemical" by the US EPA. GP has already received approval from the US EPA under its Section 18 Public Health Emergency Exemption program for use in seven states. This study characterizes the efficacy of GP for inactivating MS2 bacteriophage─a nonenveloped virus widely used as a surrogate for SARS-CoV-2. Experiments measured the decrease in airborne viable MS2 concentration in the presence of different concentrations of GP from 60 to 90 min, accounting for both natural die-off and settling of MS2. Experiments were conducted both by introducing GP aerosol into air containing MS2 and by introducing airborne MS2 into air containing GP aerosol. GP is consistently able to rapidly reduce viable MS2 bacteriophage concentration by 2-3 logs at GP concentrations of 0.04-0.5 mg/m3 (corresponding to TEG concentrations of 0.025 to 0.287 mg/m3). Related GP efficacy experiments by the US EPA, as well as GP (TEG) safety and toxicology, are also discussed.


Assuntos
Anti-Infecciosos , COVID-19 , Humanos , SARS-CoV-2 , Levivirus , Aerossóis e Gotículas Respiratórios
18.
Environ Res ; 237(Pt 2): 116953, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37648186

RESUMO

The globally supported social distancing rules to prevent airborne transmission of COVID-19 assume small saliva droplets evaporate fast and large ones, which contain most viral copies, fall fast to the ground. However, during evaporation, solutes distribute non-uniformly within the droplets. We developed a numerical model to predict saliva droplet drying in different environments. We represent saliva droplets as a solution of NaCl mixed with water. In a hot and dry ambiance, the solutes form a shell on the droplets' surface, producing light, hollow particles. These hollow particles have a larger cross-sectional area compared to their solid counterparts and can float longer and travel farther in the air. We introduced the "hollowness factor," which serves as a measure of the ratio of the volume of a hollow particle and the volume of a solid residue formed during droplet drying. Through our investigations, we determined that under specific conditions, namely an ambient humidity level of 10% and a temperature of 40°C, the highest hollowness factor observed was 1.610. This finding indicates that in the case of hollow particle formation, the droplet nucleus expands by a factor of 1.610 compared to its original size.

19.
BMC Public Health ; 23(1): 1394, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474924

RESUMO

Indoor event locations are particularly affected by the SARS-CoV-2 pandemic. At large venues, only incomplete risk assessments exist, whereby no suitable measures can be derived. In this study, a physical and data-driven statistical model for a comprehensive infection risk assessment has been developed. At venues displacement ventilation concepts are often implemented. Here simplified theoretical assumptions fail for the prediction of relevant airflows for airborne transmission processes. Thus, with locally resolving trace gas measurements infection risks are computed more detailed. Coupled with epidemiological data such as incidences, vaccination rates, test sensitivities, and audience characteristics such as masks and age distribution, predictions of new infections (mean), situational R-values (mean), and individual risks on- and off-seat can be achieved for the first time. Using the Stuttgart State Opera as an example, the functioning of the model and its plausibility are tested and a sensitivity analysis is performed with regard to masks and tests. Besides a reference scenario on 2022-11-29, a maximum safety scenario with an obligation of FFP2 masks and rapid antigen tests as well as a minimum safety scenario without masks and tests are investigated. For these scenarios the new infections (mean) are 10.6, 0.25 and 13.0, respectively. The situational R-values (mean) - number of new infections caused by a single infectious person in a certain situation - are 2.75, 0.32 and 3.39, respectively. Besides these results a clustered consideration divided by age, masks and whether infections occur on-seat or off-seat are presented. In conclusion this provides an instrument that can enable policymakers and operators to take appropriate measures to control pandemics despite ongoing mass gathering events.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pulmão , Máscaras , Medição de Risco
20.
Enferm Infecc Microbiol Clin ; 41(4): 235-237, 2023 Apr.
Artigo em Espanhol | MEDLINE | ID: mdl-35153355

RESUMO

Objective: To study the presence of SARS-CoV-2 on surfaces (high, medium and low contacts) and airs in non-sanitary spaces with high public influx to evaluate the risk of environmental contagion. Method: Surfaces and airs were analysed by RT-qPCR to detect the presence of SARS-CoV-2. Results: A total of 394 surfaces and air samples were obtained from spaces with high public influx such as offices, shopping centres and nursing homes. The virus was not detected in any of the samples analysed. Conclusion: Although we cannot emphatically conclude that there is no risk of environmental infection by SARS-CoV-2 in non-sanitary spaces, we can affirm that the risk is almost non- existent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA