Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 529
Filtrar
1.
Physiol Rev ; 100(4): 1527-1594, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32216549

RESUMO

Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.


Assuntos
Antivirais/farmacologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano , Vacinas Virais/imunologia , Humanos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/imunologia
2.
J Cell Sci ; 136(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37505110

RESUMO

Multiciliated cells contain hundreds of cilia whose directional movement powers the mucociliary clearance of the airways, a vital host defense mechanism. Multiciliated cell specification requires canonical Wnt signaling, which then must be turned off. Next, ciliogenesis and polarized ciliary orientation are regulated by noncanonical Wnt/planar cell polarity (Wnt/PCP) signaling. The mechanistic relationship between the Wnt pathways is unknown. We show that DKK3, a secreted canonical Wnt regulator and WNT4, a noncanonical Wnt ligand act together to facilitate a canonical to noncanonical Wnt signaling switch during multiciliated cell formation. In primary human airway epithelial cells, DKK3 and WNT4 CRISPR knockout blocks, whereas ectopic expression promotes, multiciliated cell formation by inhibiting canonical Wnt signaling. Wnt4 and Dkk3 single-knockout mice also display defective ciliated cells. DKK3 and WNT4 are co-secreted from basal stem cells and act directly on multiciliated cells via KREMEN1 and FZD6, respectively. We provide a novel mechanism that links specification to cilium biogenesis and polarization for proper multiciliated cell formation.


Assuntos
Células Epiteliais , Via de Sinalização Wnt , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cílios/metabolismo , Células Epiteliais/metabolismo , Camundongos Knockout , Proteína Wnt4/metabolismo
3.
Am J Respir Crit Care Med ; 209(12): 1453-1462, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38324627

RESUMO

Rationale: Pseudomonas aeruginosa is the major bacterial pathogen colonizing the airways of adult patients with cystic fibrosis (CF) and causes chronic infections that persist despite antibiotic therapy. Intracellular bacteria may represent an unrecognized reservoir of bacteria that evade the immune system and antibiotic therapy. Although the ability of P. aeruginosa to invade and survive within epithelial cells has been described in vitro in different epithelial cell models, evidence of this intracellular lifestyle in human lung tissues is currently lacking. Objectives: To detect and characterize intracellular P. aeruginosa in CF airway epithelium from human lung explant tissues. Methods: We sampled lung explant tissues from patients with CF undergoing lung transplantation and non-CF lung donor control tissue. We analyzed lung tissue sections for the presence of intracellular P. aeruginosa using quantitative culture and microscopy, in parallel to histopathology and airway morphometry. Measurements and Main Results: P. aeruginosa was isolated from the lungs of seven patients with CF undergoing lung transplantation. Microscopic assessment revealed the presence of intracellular P. aeruginosa within airway epithelial cells in three of the seven patients analyzed at a varying but low frequency. We observed those events occurring in lung regions with high bacterial burden. Conclusions: This is the first study describing the presence of intracellular P. aeruginosa in CF lung tissues. Although intracellular P. aeruginosa in airway epithelial cells is likely relatively rare, our findings highlight the plausible occurrence of this intracellular bacterial reservoir in chronic CF infections.


Assuntos
Fibrose Cística , Transplante de Pulmão , Pulmão , Infecções por Pseudomonas , Pseudomonas aeruginosa , Mucosa Respiratória , Humanos , Fibrose Cística/microbiologia , Fibrose Cística/complicações , Feminino , Masculino , Adulto , Mucosa Respiratória/microbiologia , Mucosa Respiratória/patologia , Infecções por Pseudomonas/microbiologia , Pulmão/microbiologia , Pulmão/patologia , Adulto Jovem , Células Epiteliais/microbiologia
4.
Immunol Rev ; 304(1): 141-153, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34549450

RESUMO

The airway epithelium is essential to protect the host from inhaled pathogens and particles. It maintains immune homeostasis and mediates tissue repair after injury. Inflammatory diseases of the airways are associated with failure of epithelial functions, including loss of barrier integrity that results in increased tissue permeability and immune activation; excessive mucus secretion and impaired mucociliary clearance that leads to airflow obstruction and microbial overgrowth; and dysregulation of cellular signals that promotes inflammation and alters tissue structure and airway reactivity. MicroRNAs play crucial roles in mounting appropriate cellular responses to environmental stimuli and preventing disease, using a common machinery and mechanism to regulate gene expression in epithelial cells, immune cells of hematopoietic origin, and other cellular components of the airways. Respiratory diseases are accompanied by dramatic changes in epithelial miRNA expression that drive persistent immune dysregulation. In this review, we discuss responses of the epithelium that promote airway immunopathology, with a focus on miRNAs that contribute to the breakdown of essential epithelial functions. We emphasize the emerging role of miRNAs in regulation of epithelial responses in respiratory health and their value as diagnostic and therapeutic targets.


Assuntos
MicroRNAs , Mucosa Respiratória , Células Epiteliais , Epitélio , Pulmão , MicroRNAs/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-38843491

RESUMO

The human airway mucociliary epithelium can be recapitulated in vitro using primary cells cultured in an Air-Liquid Interface (ALI), a reliable surrogate to perform pathophysiological studies. As tremendous variations exist between media used for ALI-cultured human airway epithelial cells, our study aimed to evaluate the impact of several media (BEGMTM, PneumaCultTM, "Half&Half" and "Clancy") on cell type distribution using single-cell RNA sequencing and imaging. Our work revealed the impact of these media on cell composition, gene expression profile, cell signaling and epithelial morphology. We found higher proportions of multiciliated cells in PneumaCultTM-ALI and Half&Half, stronger EGF signaling from basal cells in BEGMTM-ALI, differential expression of the SARS-CoV-2 entry factor ACE2, and distinct secretome transcripts depending on media used. We also established that proliferation in PneumaCultTM-Ex Plus favored secretory cell fate, showing the key influence of proliferation media on late differentiation epithelial characteristics. Altogether, our data offer a comprehensive repertoire for evaluating the effects of culture conditions on airway epithelial differentiation and will help to choose the most relevant medium according to the processes to be investigated such as cilia, mucus biology or viral infection. We detail useful parameters that should be explored to document airway epithelial cell fate and morphology. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

6.
Immunology ; 172(3): 329-342, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38354831

RESUMO

Alterations in airway epithelial homeostasis increase viral respiratory infections risk. Viral infections frequently are associated with chronic obstructive pulmonary disease (COPD) exacerbations, events that dramatically promote disease progression. Mechanism promoting the main respiratory viruses entry and virus-evocated innate and adaptive immune responses have now been elucidated, and an oxidative stress central role in these pathogenic processes has been recognized. Presence of reactive oxygen species in macrophages and other cells allows them to eliminate virus, but its excess alters the balance between innate and adaptive immune responses and proteases/anti-proteases and leads to uncontrolled inflammation, tissue damage, and hypercoagulability. Different upper and lower airway cell types also play a role in viral entry and infection. Carbocysteine is a muco-active drug with anti-oxidant and anti-inflammatory properties used for the management of several chronic respiratory diseases. Although the use of anti-oxidants has been proposed as an effective strategy in COPD exacerbations management, the molecular mechanisms that explain carbocysteine efficacy have not yet been fully clarified. The present review describes the most relevant features of the common respiratory virus pathophysiology with a focus on epithelial cells and oxidative stress role and reports data supporting a putative role of carbocysteine in viral respiratory infections.


Assuntos
Carbocisteína , Estresse Oxidativo , Mucosa Respiratória , Infecções Respiratórias , Viroses , Humanos , Carbocisteína/uso terapêutico , Carbocisteína/farmacologia , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Estresse Oxidativo/efeitos dos fármacos , Mucosa Respiratória/virologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/efeitos dos fármacos , Viroses/imunologia , Viroses/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
7.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L71-L82, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37988602

RESUMO

Obesity is a risk factor for asthma. Individuals with asthma and obesity often have poor asthma control and do not respond as well to therapies such as inhaled corticosteroids and long-acting bronchodilators. Weight loss improves asthma control, with a 5%-10% loss in body mass necessary and sufficient to lead to clinically relevant improvements. Preclinical studies have demonstrated the pathogenic contribution of adipocytes from obese mice to the augmented production of proinflammatory cytokines from airway epithelial cells and the salutary effects of diet-induced weight loss to decrease these consequences. However, the effects of adipocyte-derived products on airway epithelial function in human obesity remain incompletely understood. We utilized samples collected from a 12-mo longitudinal study of subjects with obesity undergoing weight loss (bariatric) surgery including controls without asthma and subjects with allergic and nonallergic obese asthma. Visceral adipose tissue (VAT) samples were collected during bariatric surgery and from recruited normal weight controls without asthma undergoing elective abdominal surgery. Human bronchial epithelial (HBEC3-KT) cells were exposed to plasma or conditioned media from cultured VAT adipocytes with or without agonists. Human bronchial smooth muscle (HBSM) cells were similarly exposed to adipocyte-conditioned media. Proinflammatory cytokines were augmented in supernatants from HBEC3-KT cells exposed to plasma as compared with subsequent visits. Whereas exposure to obese adipocyte-conditioned media induced proinflammatory responses, there were no differences between groups in both HBEC3-KT and HBSM cells. These data show that bariatric surgery and subsequent weight loss beneficially change the circulating factors that augment human airway epithelial and bronchial smooth muscle cell proinflammatory responses.NEW & NOTEWORTHY This longitudinal study following subjects with asthma and obesity reveals that weight loss following bariatric surgery decreases the capacity for plasma to augment proinflammatory cytokine secretion by human bronchial epithelial cells, implicating that circulating but not adipocyte-derived factors are important modulators in obese asthma.


Assuntos
Asma , Cirurgia Bariátrica , Animais , Camundongos , Humanos , Estudos Longitudinais , Meios de Cultivo Condicionados , Obesidade/cirurgia , Obesidade/complicações , Cirurgia Bariátrica/efeitos adversos , Brônquios/patologia , Citocinas , Células Epiteliais/patologia , Redução de Peso/fisiologia
8.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L135-L148, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084407

RESUMO

Bronchiolitis obliterans (BO) is a fibrotic lung disease characterized by progressive luminal narrowing and obliteration of the small airways. In the nontransplant population, inhalation exposure to certain chemicals is associated with BO; however, the mechanisms contributing to disease induction remain poorly understood. This study's objective was to use single-cell RNA sequencing for the identification of transcriptomic signatures common to primary human airway epithelial cells after chemical exposure to BO-associated chemicals-diacetyl or nitrogen mustard-to help explain BO induction. Primary airway epithelial cells were cultured at air-liquid interface and exposed to diacetyl, nitrogen mustard, or control vapors. Cultures were dissociated and sequenced for single-cell RNA. Differential gene expression and functional pathway analyses were compared across exposures. In total, 75,663 single cells were captured and sequenced from all exposure conditions. Unbiased clustering identified 11 discrete phenotypes, including 5 basal, 2 ciliated, and 2 secretory cell clusters. With chemical exposure, the proportion of cells assigned to keratin 5+ basal cells decreased, whereas the proportion of cells aligned to secretory cell clusters increased compared with control exposures. Functional pathway analysis identified interferon signaling and antigen processing/presentation as pathways commonly upregulated after diacetyl or nitrogen mustard exposure in a ciliated cell cluster. Conversely, the response of airway basal cells differed significantly with upregulation of the unfolded protein response in diacetyl-exposed basal cells, not seen in nitrogen mustard-exposed cultures. These new insights provide early identification of airway epithelial signatures common to BO-associated chemical exposures.NEW & NOTEWORTHY Bronchiolitis obliterans (BO) is a devastating fibrotic lung disease of the small airways, or bronchioles. This original manuscript uses single-cell RNA sequencing for identifying common signatures of chemically exposed airway epithelial cells in BO induction. Chemical exposure reduced the proportion of keratin 5+ basal cells while increasing the proportion of keratin 4+ suprabasal cells. Functional pathways contributory to these shifts differed significantly across exposures. These new results highlight similarities and differences in BO induction across exposures.


Assuntos
Bronquiolite Obliterante , Diacetil , Humanos , Queratina-5/metabolismo , Diacetil/metabolismo , Mecloretamina/metabolismo , Mucosa Respiratória/metabolismo , Bronquiolite Obliterante/induzido quimicamente , Bronquiolite Obliterante/metabolismo , Células Epiteliais/metabolismo
9.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L377-L392, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290992

RESUMO

Sphingosine kinase 1 (SPHK1) has been shown to play a key role in the pathogenesis of asthma where SPHK1-generated sphingosine-1-phosphate (S1P) is known to mediate innate and adaptive immunity while promoting mast cell degranulation. Goblet cell metaplasia (GCM) contributes to airway obstruction in asthma and has been demonstrated in animal models. We investigated the role of PF543, a SPHK1-specific inhibitor, in preventing the pathogenesis of GCM using a murine (C57BL/6) model of allergen-induced acute asthma. Treatment with PF543 before triple allergen exposure (DRA: House dust mite, Ragweed pollen, and Aspergillus) reduced inflammation, eosinophilic response, and GCM followed by reduced airway hyperreactivity to intravenous methacholine. Furthermore, DRA exposure was associated with increased expression of SPHK1 in the airway epithelium which was reduced by PF543. DRA-induced reduction of acetylated α-tubulin in airway epithelium was associated with an increased expression of NOTCH2 and SPDEF which was prevented by PF543. In vitro studies using human primary airway epithelial cells showed that inhibition of SPHK1 using PF543 prevented an allergen-induced increase of both NOTCH2 and SPDEF. siRNA silencing of SPHK1 prevented the allergen-induced increase of both NOTCH2 and SPDEF. NOTCH2 silencing was associated with a reduction of SPDEF but not that of SPHK1 upon allergen exposure. Our studies demonstrate that inhibition of SPHK1 protected allergen-challenged airways by preventing GCM and airway hyperreactivity, associated with downregulation of the NOTCH2-SPDEF signaling pathway. This suggests a potential novel link between SPHK1, GCM, and airway remodeling in asthma.NEW & NOTEWORTHY The role of SPHK1-specific inhibitor, PF543, in preventing goblet cell metaplasia (GCM) and airway hyperreactivity (AHR) is established in an allergen-induced mouse model. This protection was associated with the downregulation of NOTCH2-SPDEF signaling pathway, suggesting a novel link between SPHK1, GCM, and AHR.


Assuntos
Asma , Células Caliciformes , Lisofosfolipídeos , Fosfotransferases (Aceptor do Grupo Álcool) , Pirrolidinas , Esfingosina/análogos & derivados , Sulfonas , Animais , Humanos , Camundongos , Células Caliciformes/metabolismo , Camundongos Endogâmicos C57BL , Asma/patologia , Epitélio/metabolismo , Fatores de Transcrição/metabolismo , Metaplasia/metabolismo , Metaplasia/patologia , Alérgenos , Metanol
10.
Thorax ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373824

RESUMO

BACKGROUND: In patients with asthma, respiratory syncytial virus (RSV) infections can cause disease exacerbation by infecting the epithelial layer of the airways, inducing subsequent immune response. The type I interferon antiviral response of epithelial cells upon RSV infection is found to be reduced in asthma in most-but not all-studies. Moreover, the molecular mechanisms causing the differences in the asthmatic bronchial epithelium in response to viral infection are poorly understood. METHODS: Here, we investigated the transcriptional response to RSV infection of primary bronchial epithelial cells (pBECs) from patients with asthma (n=8) and healthy donors (n=8). The pBECs obtained from bronchial brushes were differentiated in air-liquid interface conditions and infected with RSV. After 3 days, cells were processed for single-cell RNA sequencing. RESULTS: A strong antiviral response to RSV was observed for all cell types, for all samples (p<1e-48). Most (1045) differentially regulated genes following RSV infection were found in cells transitioning to secretory cells. Goblet cells from patients with asthma showed lower expression of genes involved in the interferon response (false discovery rate <0.05), including OASL, ICAM1 and TNFAIP3. In multiciliated cells, an impairment of the signalling pathways involved in the response to RSV in asthma was observed. CONCLUSION: Our results highlight that the response to RSV infection of the bronchial epithelium in asthma and healthy airways was largely similar. However, in asthma, the response of goblet and multiciliated cells is impaired, highlighting the need for studying airway epithelial cells at high resolution in the context of asthma exacerbation.

11.
Thorax ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38050163

RESUMO

INTRODUCTION: Respiratory syncytial virus (RSV) causes a severe respiratory condition, bronchiolitis, in infants but not in adults. Bronchiolitis is characterised by neutrophilic infiltration in the airways, but whether neutrophils enhance recovery from infection or contribute to its pathology remains unknown. METHODS: We used a novel in-vitro model to compare term umbilical cord blood (infant) (n=17 donors) and adult neutrophils (n=15 donors) during migration across RSV-infected differentiated human nasal airway epithelial cells (AECs) in a basolateral to apical direction. RESULTS: Greater numbers of infant neutrophils (mean (95% CI)) (336 684 (242 352 to 431 015)) migrated across RSV-infected AECs to the apical compartment (equivalent to the airway lumen) compared with adult neutrophils (56 586 (24 954 to 88 218)) (p<0.0001). Having reached the apical compartment of infected AECs, much greater numbers of infant neutrophils (140 787 (103 117 to 178 456)) became apoptotic compared with adult (5853 (444 to 11 261)) (p=0.002). Infant neutrophils displayed much greater expression of CD11b, CD64, neutrophil elastase (NE) and myeloperoxidase (MPO) than adult neutrophils at baseline and at all points of migration. However, as adult neutrophils migrated, expression of CD11b, CD64, NE and MPO became greater than at baseline. DISCUSSION: The high proportion of infant neutrophils migrating across RSV-infected AECs correlates with the neutrophilic infiltrate seen in infants with severe RSV bronchiolitis, with large numbers undergoing apoptosis, which may represent a protective mechanism during infection. Compared with adult neutrophils, infant neutrophils already have high expression of surface markers before contact with AECs or migration, with less capacity to increase further in response to RSV infection or migration.

12.
Thorax ; 79(7): 680-691, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38631896

RESUMO

BACKGROUND: Individual exposure to environmental pollutants, as one of the most influential drivers of respiratory disorders, has received considerable attention due to its preventability and controllability. Considering that the extracellular vesicle (EV) was an emerging intercellular communication medium, recent studies have highlighted the crucial role of environmental pollutants derived EVs (EPE-EVs) in respiratory disorders. METHODS: PubMed and Web of Science were searched from January 2018 to December 2023 for publications with key words of environmental pollutants, respiratory disorders and EVs. RESULTS: Environmental pollutants could disrupt airway intercellular communication by indirectly stimulating airway barrier cells to secrete endogenous EVs, or directly transmitting exogenous EVs, mainly by biological pollutants. Mechanistically, EPE-EVs transferred specific contents to modulate biological functions of recipient cells, to induce respiratory inflammation and impair tissue and immune function, which consequently contributed to the development of respiratory diseases, such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, pulmonary hypertension, lung cancer and infectious lung diseases. Clinically, EVs could emerged as promising biomarkers and biological agents for respiratory diseases attributed by their specificity, convenience, sensibility and stability. CONCLUSIONS: Further studies of EPE-EVs are helpful to understand the aetiology and pathology of respiratory diseases, and facilitate the precision respiratory medicine in risk screening, early diagnosis, clinical management and biotherapy.


Assuntos
Exposição Ambiental , Poluentes Ambientais , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Poluentes Ambientais/toxicidade , Exposição Ambiental/efeitos adversos , Doenças Respiratórias/induzido quimicamente , Doenças Respiratórias/metabolismo , Biomarcadores/metabolismo , Transtornos Respiratórios
13.
Thorax ; 79(7): 607-614, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38378235

RESUMO

BACKGROUND: Mucociliary clearance (MCC) is critical to lung health and is impaired in many diseases. The path of MCC may have an important impact on clearance but has never been rigorously studied. The objective of this study is to assess the three-dimensional path of human tracheal MCC in disease and health. METHODS: Tracheal MCC was imaged in 12 ex-smokers, 3 non-smokers (1 opportunistically imaged during acute influenza and repeated after recovery) and 5 individuals with primary ciliary dyskinesia (PCD). Radiolabelled macroaggregated albumin droplets were injected into the trachea via the cricothyroid membrane. Droplet movement was tracked via scintigraphy, the path of movement mapped and helical and axial models of tracheal MCC were compared. MEASUREMENTS AND MAIN RESULTS: In 5/5 participants with PCD and 1 healthy participant with acute influenza, radiolabelled albumin coated the trachea and did not move. In all others (15/15), mucus coalesced into globules. Globule movement was negligible in 3 ex-smokers, but in all others (12/15) ascended the trachea in a helical path. Median cephalad tracheal MCC was 2.7 mm/min ex-smokers vs 8.4 mm/min non-smokers (p=0.02) and correlated strongly to helical angle (r=0.92 (p=0.00002); median 18o ex-smokers, 47o non-smokers (p=0.036)), but not to actual speed on helical path (r=0.26 (p=0.46); median 13.6 mm/min ex-smokers vs 13.9 mm/min non-smokers (p=1.0)). CONCLUSION: For the first time, we show that human tracheal MCC is helical, and impairment in ex-smokers is often caused by flattened helical transit, not slower movement. Our methodology provides a simple method to map tracheal MCC and speed in vivo.


Assuntos
Depuração Mucociliar , Traqueia , Humanos , Depuração Mucociliar/fisiologia , Traqueia/diagnóstico por imagem , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Muco/metabolismo , Transtornos da Motilidade Ciliar/diagnóstico por imagem , Fumar/efeitos adversos , Idoso , Adulto Jovem
14.
Thorax ; 79(6): 524-537, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38286613

RESUMO

INTRODUCTION: Environmental pollutants injure the mucociliary elevator, thereby provoking disease progression in chronic obstructive pulmonary disease (COPD). Epithelial resilience mechanisms to environmental nanoparticles in health and disease are poorly characterised. METHODS: We delineated the impact of prevalent pollutants such as carbon and zinc oxide nanoparticles, on cellular function and progeny in primary human bronchial epithelial cells (pHBECs) from end-stage COPD (COPD-IV, n=4), early disease (COPD-II, n=3) and pulmonary healthy individuals (n=4). After nanoparticle exposure of pHBECs at air-liquid interface, cell cultures were characterised by functional assays, transcriptome and protein analysis, complemented by single-cell analysis in serial samples of pHBEC cultures focusing on basal cell differentiation. RESULTS: COPD-IV was characterised by a prosecretory phenotype (twofold increase in MUC5AC+) at the expense of the multiciliated epithelium (threefold reduction in Ac-Tub+), resulting in an increased resilience towards particle-induced cell damage (fivefold reduction in transepithelial electrical resistance), as exemplified by environmentally abundant doses of zinc oxide nanoparticles. Exposure of COPD-II cultures to cigarette smoke extract provoked the COPD-IV characteristic, prosecretory phenotype. Time-resolved single-cell transcriptomics revealed an underlying COPD-IV unique basal cell state characterised by a twofold increase in KRT5+ (P=0.018) and LAMB3+ (P=0.050) expression, as well as a significant activation of Wnt-specific (P=0.014) and Notch-specific (P=0.021) genes, especially in precursors of suprabasal and secretory cells. CONCLUSION: We identified COPD stage-specific gene alterations in basal cells that affect the cellular composition of the bronchial elevator and may control disease-specific epithelial resilience mechanisms in response to environmental nanoparticles. The identified phenomena likely inform treatment and prevention strategies.


Assuntos
Células Epiteliais , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/etiologia , Células Epiteliais/metabolismo , Masculino , Pessoa de Meia-Idade , Células Cultivadas , Brônquios/patologia , Feminino , Idoso , Óxido de Zinco , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Cílios , Nanopartículas , Diferenciação Celular
15.
J Virol ; 97(12): e0133023, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37966249

RESUMO

IMPORTANCE: The essential steps of successful gene delivery by recombinant adeno-associated viruses (rAAVs) include vector internalization, intracellular trafficking, nuclear import, uncoating, double-stranded (ds)DNA conversion, and transgene expression. rAAV2.5T has a chimeric capsid of AAV2 VP1u and AAV5 VP2 and VP3 with the mutation A581T. Our investigation revealed that KIAA0319L, the multiple AAV serotype receptor, is not essential for vector internalization but remains critical for efficient vector transduction to human airway epithelia. Additionally, we identified that a novel gene WDR63, whose cellular function is not well understood, plays an important role in vector transduction of human airway epithelia but not vector internalization and nuclear entry. Our study also discovered the substantial transduction potential of rAAV2.5T in basal stem cells of human airway epithelia, underscoring its utility in gene editing of human airways. Thus, the knowledge derived from this study holds promise for the advancement of gene therapy in the treatment of pulmonary genetic diseases.


Assuntos
Brônquios , Dependovirus , Epitélio , Técnicas de Transferência de Genes , Vetores Genéticos , Transdução Genética , Humanos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , DNA , Epitélio/metabolismo , Epitélio/virologia , Técnicas de Transferência de Genes/tendências , Terapia Genética/métodos , Vetores Genéticos/genética , Brônquios/metabolismo , Brônquios/virologia , Transporte Ativo do Núcleo Celular , Edição de Genes/tendências
16.
Stem Cells ; 41(1): 1-10, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36190736

RESUMO

Induced pluripotent stem cells (iPSCs) generated from somatic cell sources are pluripotent and capable of indefinite expansion in vitro. They provide an unlimited source of cells that can be differentiated into lung progenitor cells for potential clinical use in pulmonary regenerative medicine. This review gives a comprehensive overview of recent progress toward the use of iPSCs to generate proximal and distal airway epithelial cells and mix lung organoids. Furthermore, their potential applications and future challenges for the field are discussed, with a focus on the technological hurdles that must be cleared before stem cell therapeutics can be used for clinical treatment.


Assuntos
Células-Tronco Pluripotentes Induzidas , Pulmão , Células Epiteliais , Organoides , Diferenciação Celular
17.
Respir Res ; 25(1): 180, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664797

RESUMO

BACKGROUND: Pulmonary ionocytes have been identified in the airway epithelium as a small population of ion transporting cells expressing high levels of CFTR (cystic fibrosis transmembrane conductance regulator), the gene mutated in cystic fibrosis. By providing an infinite source of airway epithelial cells (AECs), the use of human induced pluripotent stem cells (hiPSCs) could overcome some challenges of studying ionocytes. However, the production of AEC epithelia containing ionocytes from hiPSCs has proven difficult. Here, we present a platform to produce hiPSC-derived AECs (hiPSC-AECs) including ionocytes and investigate their role in the airway epithelium. METHODS: hiPSCs were differentiated into lung progenitors, which were expanded as 3D organoids and matured by air-liquid interface culture as polarised hiPSC-AEC epithelia. Using CRISPR/Cas9 technology, we generated a hiPSCs knockout (KO) for FOXI1, a transcription factor that is essential for ionocyte specification. Differences between FOXI1 KO hiPSC-AECs and their wild-type (WT) isogenic controls were investigated by assessing gene and protein expression, epithelial composition, cilia coverage and motility, pH and transepithelial barrier properties. RESULTS: Mature hiPSC-AEC epithelia contained basal cells, secretory cells, ciliated cells with motile cilia, pulmonary neuroendocrine cells (PNECs) and ionocytes. There was no difference between FOXI1 WT and KO hiPSCs in terms of their capacity to differentiate into airway progenitors. However, FOXI1 KO led to mature hiPSC-AEC epithelia without ionocytes with reduced capacity to produce ciliated cells. CONCLUSION: Our results suggest that ionocytes could have role beyond transepithelial ion transport by regulating epithelial properties and homeostasis in the airway epithelium.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mucosa Respiratória , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Organoides/metabolismo
18.
Allergy ; 79(3): 656-666, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37846599

RESUMO

BACKGROUND: Respiratory virus infections are main triggers of asthma exacerbations. Tezepelumab, an anti-TSLP mAb, reduces exacerbations in patients with asthma, but the effect of blocking TSLP on host epithelial resistance and tolerance to virus infection is not known. AIM: To examine effects of blocking TSLP in patients with asthma on host resistance (IFNß, IFNλ, and viral load) and on the airway epithelial inflammatory response to viral challenge. METHODS: Bronchoalveolar lavage fluid (BALF, n = 39) and bronchial epithelial cells (BECs) were obtained from patients with uncontrolled asthma before and after 12 weeks of tezepelumab treatment (n = 13) or placebo (n = 13). BECs were cultured in vitro and exposed to the viral infection mimic poly(I:C) or infected by rhinovirus (RV). Alarmins, T2- and pro-inflammatory cytokines, IFNß IFNλ, and viral load were analyzed by RT-qPCR and multiplex ELISA before and after stimulation. RESULTS: IL-33 expression in unstimulated BECs and IL-33 protein levels in BALF were reduced after 12 weeks of tezepelumab. Further, IL-33 gene and protein levels decreased in BECs challenged with poly(I:C) after tezepelumab whereas TSLP gene expression remained unaffected. Poly(I:C)-induced IL-4, IL-13, and IL-17A release from BECs was also reduced with tezepelumab whereas IFNß and IFNλ expression and viral load were unchanged. CONCLUSION: Blocking TSLP with tezepelumab in vivo in asthma reduced the airway epithelial inflammatory response including IL-33 and T2 cytokines to viral challenge without affecting anti-viral host resistance. Our results suggest that blocking TSLP stabilizes the bronchial epithelial immune response to respiratory viruses.


Assuntos
Anticorpos Monoclonais Humanizados , Asma , Viroses , Humanos , Brônquios , Citocinas/metabolismo , Inflamação , Interleucina-33 , Ensaios Clínicos Controlados como Assunto
19.
Virol J ; 21(1): 78, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566231

RESUMO

Chronic obstructive pulmonary disease (COPD) affects over 250 million individuals globally and stands as the third leading cause of mortality. Respiratory viral infections serve as the primary drivers of acute exacerbations, hastening the decline in lung function and worsening the prognosis. Notably, Human Parainfluenza Virus type 3 (HPIV-3) is responsible for COPD exacerbations with a frequency comparable to that of Respiratory Syncytial Virus and Influenza viruses. However, the impact of HPIV-3 on respiratory epithelium within the context of COPD remains uncharacterized.In this study, we employed in vitro reconstitution of lower airway epithelia from lung tissues sourced from healthy donors (n = 4) and COPD patients (n = 5), maintained under air-liquid interface conditions. Through a next-generation sequencing-based transcriptome analysis, we compared the cellular response to HPIV-3 infection.Prior to infection, COPD respiratory epithelia exhibited a pro-inflammatory profile, notably enriched in canonical pathways linked to antiviral response, B cell signaling, IL-17 signaling, and epithelial-mesenchymal transition, in contrast to non-COPD epithelia. Intriguingly, post HPIV-3 infection, only non-COPD epithelia exhibited significant enrichment in interferon signaling, pattern recognition receptors of viruses and bacteria, and other pathways involved in antiviral responses. This deficiency could potentially hinder immune cell recruitment essential for controlling viral infections, thus fostering prolonged viral presence and persistent inflammation.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Vírus Sincicial Respiratório Humano , Viroses , Vírus , Humanos , Vírus da Parainfluenza 3 Humana , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Epitélio , Antivirais/uso terapêutico
20.
Pulm Pharmacol Ther ; 84: 102284, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154519

RESUMO

BACKGROUND: Loss of E-cadherin in the airway epithelial cells is a critical contributor to the development of ALI/ARDS. Yet the underlying mechanisms are largely unknown. Increasing evidences have revealed the significance of ferroptosis in the pathophysiological process of ALI/ARDS. The aim of this study was to investigate the role of ferroptosis in dysregulation of airway epithelial E-cadherin in ALI/ARDS. METHODS: BALB/c mice were subjected to intratracheal instillation of lipopolysaccharide (LPS) to establish an ALI model. Two inhibitors of ferroptosis, liproxstatin-1 (Lip-1, at the dose of 10 mg/kg and 30 mg/kg) and ferrostatin-1 (Fer-1, at the dose of 1 mg/kg and 5 mg/kg), were respectively given to the mice through intraperitoneal injection after LPS challenge. The expression of ferroptotic markers, full-length E-cadherin and soluble E-cadherin (sE-cadherin) were both detected. RESULTS: LPS exposure dramatically down-regulated pulmonary expression of E-cadherin in mice, with profound loss of membrane E-cadherin in the airway epithelial cells and increased secretion of sE-cadherin in the airway lumen. At the same time, we found that the mitochondrial of airway epithelial cells in LPS-exposed mice exhibited significant morphological alterations that are hallmark features of ferroptosis, with smaller volume and increased membrane density. Other makers of ferroptosis were also detected, including increased cytoplasmic levels of iron and lipid peroxidates (MDA), as well as decreased GPX4 expression. 30 mg/kg of Lip-1 not only showed potent protective effects against the LPS-induced injury, inflammation, edema of the lung in those mice, but also rescued airway epithelial E-cadherin expression and decreased the release of sE-cadherin through inhibiting ferroptosis. While no noticeable changes induced by LPS were observed in mice treated with Lip-1 at 10 mg/kg nor Fer-1 at 1 mg/kg or 5 mg/kg. CONCLUSIONS: Taken together, these data demonstrated that ferroptosis mediates airway epithelial E-cadherin dysfunction in LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Síndrome do Desconforto Respiratório , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Caderinas , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA