Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
1.
BMC Biol ; 22(1): 118, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769528

RESUMO

BACKGROUND: The animal sperm shows high diversity in morphology, components, and motility. In the lepidopteran model insect, the silkworm Bombyx mori, two types of sperm, including nucleate fertile eupyrene sperm and anucleate unfertile apyrene sperm, are generated. Apyrene sperm assists fertilization by facilitating the migration of eupyrene spermatozoa from the bursa copulatrix to the spermatheca. During spermatogenesis, eupyrene sperm bundles extrude the cytoplasm by peristaltic squeezing, while the nuclei of the apyrene sperm bundles are discarded with the same process, forming matured sperm. RESULTS: In this study, we describe that a mechanoreceptor BmPiezo, the sole Piezo ortholog in B. mori, plays key roles in larval feeding behavior and, more importantly, is essential for eupyrene spermatogenesis and male fertility. CRISPR/Cas9-mediated loss of BmPiezo function decreases larval appetite and subsequent body size and weight. Immunofluorescence analyses reveal that BmPiezo is intensely localized in the inflatable point of eupyrene sperm bundle induced by peristaltic squeezing. BmPiezo is also enriched in the middle region of apyrene sperm bundle before peristaltic squeezing. Cytological analyses of dimorphic sperm reveal developmental arrest of eupyrene sperm bundles in BmPiezo mutants, while the apyrene spermatogenesis is not affected. RNA-seq analysis and q-RT-PCR analyses demonstrate that eupyrene spermatogenic arrest is associated with the dysregulation of the actin cytoskeleton. Moreover, we show that the deformed eupyrene sperm bundles fail to migrate from the testes, resulting in male infertility due to the absence of eupyrene sperm in the bursa copulatrix and spermatheca. CONCLUSIONS: In conclusion, our studies thus uncover a new role for Piezo in regulating spermatogenesis and male fertility in insects.


Assuntos
Bombyx , Mecanorreceptores , Espermatogênese , Animais , Espermatogênese/fisiologia , Bombyx/fisiologia , Bombyx/genética , Masculino , Mecanorreceptores/fisiologia , Mecanorreceptores/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Espermatozoides/fisiologia , Espermatozoides/metabolismo
2.
J Biol Chem ; 299(10): 105168, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37595869

RESUMO

Alternative splicing in the 3'UTR of mammalian genes plays a crucial role in diverse biological processes, including cell differentiation and development. SAM68 is a key splicing regulator that controls the diversity of 3'UTR isoforms through alternative last exon (ALE) selection. However, the tissue/cell type-specific mechanisms underlying the splicing control at the 3' end and its functional significance remain unclear. Here, we show that SAM68 regulates ALE splicing in a dose-dependent manner and the neuronal splicing is differentially regulated depending on the characteristics of the target transcript. Specifically, we found that SAM68 regulates interleukin-1 receptor-associated protein splicing through the interaction with U1 small nuclear ribonucleoprotein. In contrast, the ALE splicing of protocadherin-15 (Pcdh15), a gene implicated in several neuropsychiatric disorders, is independent of U1 small nuclear ribonucleoprotein but modulated by the calcium/calmodulin-dependent protein kinase signaling pathway. We found that the aberrant ALE selection of Pcdh15 led to a conversion from a membrane-bound to a soluble isoform and consequently disrupted its localization into excitatory and inhibitory synapses. Notably, the neuronal expression of the soluble form of PCDH15 preferentially affected the number of inhibitory synapses. Moreover, the soluble form of PCDH15 interacted physically with α-neurexins and further disrupted neuroligin-2-induced inhibitory synapses in artificial synapse formation assays. Our findings provide novel insights into the role of neuron-specific alternative 3'UTR isoform selections in synapse development.

3.
Metab Eng ; 82: 225-237, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369050

RESUMO

Cis, cis-muconic acid (MA) is widely used as a key starting material in the synthesis of diverse polymers. The growing demand in these industries has led to an increased need for MA. Here, we constructed recombinant Corynebacterium glutamicum by systems metabolic engineering, which exhibit high efficiency in the production of MA. Firstly, the three major degradation pathways were disrupted in the MA production process. Subsequently, metabolic optimization strategies were predicted by computational design and the shikimate pathway was reconstructed, significantly enhancing its metabolic flux. Finally, through optimization and integration of key genes involved in MA production, the recombinant strain produced 88.2 g/L of MA with the yield of 0.30 mol/mol glucose in the 5 L bioreactor. This titer represents the highest reported titer achieved using glucose as the carbon source in current studies, and the yield is the highest reported for MA production from glucose in Corynebacterium glutamicum. Furthermore, to enable the utilization of more cost-effective glucose derived from corn straw hydrolysate, we subjected the strain to adaptive laboratory evolution in corn straw hydrolysate. Ultimately, we successfully achieved MA production in a high solid loading of corn straw hydrolysate (with the glucose concentration of 83.56 g/L), resulting in a titer of 19.9 g/L for MA, which is 4.1 times higher than that of the original strain. Additionally, the glucose yield was improved to 0.33 mol/mol. These provide possibilities for a greener and more sustainable production of MA.


Assuntos
Corynebacterium glutamicum , Ácido Sórbico/análogos & derivados , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Reatores Biológicos/microbiologia , Glucose/genética , Glucose/metabolismo , Ácido Sórbico/metabolismo , Engenharia Metabólica/métodos , Fermentação
4.
Metab Eng ; 83: 193-205, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631458

RESUMO

Consolidated bioprocessing (CBP) of lignocellulosic biomass holds promise to realize economic production of second-generation biofuels/chemicals, and Clostridium thermocellum is a leading candidate for CBP due to it being one of the fastest degraders of crystalline cellulose and lignocellulosic biomass. However, CBP by C. thermocellum is approached with co-cultures, because C. thermocellum does not utilize hemicellulose. When compared with a single-species fermentation, the co-culture system introduces unnecessary process complexity that may compromise process robustness. In this study, we engineered C. thermocellum to co-utilize hemicellulose without the need for co-culture. By evolving our previously engineered xylose-utilizing strain in xylose, an evolved clonal isolate (KJC19-9) was obtained and showed improved specific growth rate on xylose by ∼3-fold and displayed comparable growth to a minimally engineered strain grown on the bacteria's naturally preferred substrate, cellobiose. To enable full xylan deconstruction to xylose, we recombinantly expressed three different ß-xylosidase enzymes originating from Thermoanaerobacterium saccharolyticum into KJC19-9 and demonstrated growth on xylan with one of the enzymes. This recombinant strain was capable of co-utilizing cellulose and xylan simultaneously, and we integrated the ß-xylosidase gene into the KJC19-9 genome, creating the KJCBXint strain. The strain, KJC19-9, consumed monomeric xylose but accumulated xylobiose when grown on pretreated corn stover, whereas the final KJCBXint strain showed significantly greater deconstruction of xylan and xylobiose. This is the first reported C. thermocellum strain capable of degrading and assimilating hemicellulose polysaccharide while retaining its cellulolytic capabilities, unlocking significant potential for CBP in advancing the bioeconomy.


Assuntos
Clostridium thermocellum , Engenharia Metabólica , Polissacarídeos , Clostridium thermocellum/metabolismo , Clostridium thermocellum/genética , Polissacarídeos/metabolismo , Polissacarídeos/genética , Xilose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Celulose/metabolismo , Xilosidases/metabolismo , Xilosidases/genética
5.
Rev Argent Microbiol ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089979

RESUMO

Cildáñez stream (in Matanza-Riachuelo basin, Buenos Aires) is one of the most polluted watercourses of Argentina, containing a mixed contamination from agricultural and industrial wastes. The application of water bioremediation processes for this kind of effluent will require microorganisms with a high tolerance to contamination. In this sense, obtaining higher contaminant-resistant microalgae lines is widely desired. In this study, adaptive laboratory evolution (ALE) and random mutagenesis were used to obtain Chlorella vulgaris LMPA-40 strains adapted to grow in polluted water from the Cildáñez stream. The ALE process was performed by 22 successive subcultures under selective pressure (Cildáñez wastewater alone or with the addition of phenol or H2O2) while random mutagenesis was performed with UV-C radiation at 275nm. Not all the cell lines obtained after ALE could adapt enough to overcome the stress caused by the Cildáñez wastewater, indicating that the process is quite random and depends on the stressor used. The best results were obtained for the Cildáñez wastewater adapted cells (Cild 3 strain) that were more resistant than the original strain. The concentration of protein, Chlorophyll A, Chlorophyll B, and carotenoids in the Cild 3 ALE evolved strain was higher than that of the control strain. However, this strain exhibited half of the lipid content compared to the same control strain. Interestingly, these alterations and the acquired tolerance may be reversed over time during storage. These findings suggest that the acquisition of novel cell lines could not be permanent, a fact that must be considered for future trials.

6.
Neuroimage ; 283: 120413, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858905

RESUMO

Humans anticipate and evaluate both obtained and counterfactual outcomes - outcomes that could have been had an alternate decision been taken - and experience associated emotions of regret and relief. Although many functional magnetic resonance imaging (fMRI) studies have examined the neural correlates of these emotions, there is substantial heterogeneity in their results. We conducted coordinate-based ALE and network-based ANM meta-analysis of fMRI studies of experienced regret and relief to examine commonalities and differences in their neural correlates. Regionally, we observed that the experience of both regret and relief was associated with greater activation in the right ventral striatum (VS), which is implicated in tracking reward prediction error. At the network level, regret and relief shared the reward-sensitive mesocorticolimbic network with preferential activation of the medial orbitofrontal cortex (mOFC) for regret processing and medial cingulate cortex (MCC) for relief processing. Our research identified shared and separable brain systems subserving regret and relief experience, which may inform the treatment of regret-related mood disorders.


Assuntos
Comportamento de Escolha , Emoções , Humanos , Comportamento de Escolha/fisiologia , Emoções/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Córtex Pré-Frontal/fisiologia , Recompensa , Imageamento por Ressonância Magnética , Tomada de Decisões/fisiologia
7.
Neuroimage ; 279: 120335, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591478

RESUMO

Visual illusions have long been used to study visual perception and contextual integration. Neuroimaging studies employ illusions to identify the brain regions involved in visual perception and how they interact. We conducted an Activation Likelihood Estimation (ALE) meta-analysis and meta-analytic connectivity modeling on fMRI studies using static and motion illusions to reveal the neural signatures of illusory processing and to investigate the degree to which different areas are commonly recruited in perceptual inference. The resulting networks encompass ventral and dorsal regions, including the inferior and middle occipital cortices bilaterally in both types of illusions. The static and motion illusion networks selectively included the right posterior parietal cortex and the ventral premotor cortex respectively. Overall, these results describe a network of areas crucially involved in perceptual inference relying on feed-back and feed-forward interactions between areas of the ventral and dorsal visual pathways. The same network is proposed to be involved in hallucinogenic symptoms characteristic of schizophrenia and other disorders, with crucial implications in the use of illusions as biomarkers.


Assuntos
Ilusões , Humanos , Funções Verossimilhança , Redes Neurais de Computação , Percepção Visual , Cabeça
8.
Hum Brain Mapp ; 44(7): 2726-2740, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36807960

RESUMO

Math learning difficulty (MLD) is a learning disorder characterized by persistent impairments in the understanding and application of numbers independent of intelligence or schooling. The current study aims to review existing neuroimaging studies to characterize the neurobiological basis in MLD for their quantity and arithmetic dysfunctions. We identified a total of 24 studies with 728 participants through the literature. Using the activation likelihood estimate (ALE) method, we found that the most consistent neurobiological dysfunction in MLD was observed in the right intraparietal sulcus (IPS) with distinct patterns of the anterior and posterior aspects. Meanwhile, neurobiological dysfunctions were also observed in a distributed network including the fusiform gyrus, inferior temporal gyrus, insula, prefrontal cortex, anterior cingulate cortex, and claustrum. Our results suggest a core dysfunction in the right anterior IPS and left fusiform gyrus with atypically upregulated functions in brain regions for attention, working memory, visual processing, and motivation, serving as the neurobiological basis of MLD.


Assuntos
Cognição , Imageamento por Ressonância Magnética , Humanos , Funções Verossimilhança , Imageamento por Ressonância Magnética/métodos , Cognição/fisiologia , Encéfalo/fisiologia , Lobo Parietal/fisiologia
9.
Cogn Affect Behav Neurosci ; 23(2): 217-236, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36517733

RESUMO

Harnessing the placebo effects would prompt critical ramifications for research and clinical practice. Noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation and multifocal transcranial electric stimulation, could manipulate the placebo response by modulating the activity and excitability of its neural correlates. To identify potential stimulation targets, we conducted a meta-analysis to investigate placebo-associated regions in healthy volunteers, including studies with emotional components and painful stimuli. Using biophysical modeling, we identified NIBS solutions to manipulate placebo effects by targeting either a single key region or multiple connected areas. Moving to a network-oriented approach, we then ran a quantitative network mapping analysis on the functional connectivity profile of clusters emerging from the meta-analysis. As a result, we suggest a multielectrode optimized montage engaging the connectivity patterns of placebo-associated functional brain networks. These NIBS solutions hope to provide a starting point to actively control, modulate or enhance placebo effects in future clinical studies and cognitive enhancement studies.


Assuntos
Efeito Placebo , Estimulação Transcraniana por Corrente Contínua , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico , Emoções , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos
10.
Neuropsychol Rev ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37067764

RESUMO

Orienting attention by social gaze cues shares some characteristics with orienting attention by non-social arrow cues, but it is unclear whether they rely on similar neural mechanisms. The present ALE-meta-analysis assessed the pattern of brain activation reported in 40 single experiments (18 with arrows, 22 with gaze), with a total number of 806 participants. Our findings show that the network for orienting attention by social gaze and by non-social arrow cues is in part functionally segregated. Orienting by both types of cues relies on the activity of brain regions involved in endogenous attention (the superior frontal gyrus). Importantly, only orienting by gaze cues was also associated with the activity of brain regions involved in exogenous attention (medial frontal gyrus), processing gaze, and mental state attribution (superior temporal sulcus, temporoparietal junction).

11.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37102188

RESUMO

Saccharomyces pastorianus, which is responsible for the production of bottom-fermented lager beer, is a hybrid species that arose from the mating of the top-fermenting ale yeast Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus around the start of the 17th century. Based on detailed analysis of Central European brewing records, we propose that the critical event for the hybridization was the introduction of top-fermenting S. cerevisiae into an environment where S. eubayanus was present, rather than the other way around. Bottom fermentation in parts of Bavaria preceded the proposed hybridization date by a couple of hundred years and we suggest that this was carried out by mixtures of yeasts, which may have included S. eubayanus. A plausible case can be made that the S. cerevisiae parent came either from the Schwarzach wheat brewery or the city of Einbeck, and the formation of S. pastorianus happened in the Munich Hofbräuhaus between 1602 and 1615 when both wheat beer and lager were brewed contemporaneously. We also describe how the distribution of strains from the Munich Spaten brewery, and the development by Hansen and Linder of methods for producing pure starter cultures, facilitated the global spread of the Bavarian S. pastorianus lineages.


Assuntos
Hibridização Genética , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fermentação , Cerveja
12.
Microb Cell Fact ; 22(1): 71, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061714

RESUMO

BACKGROUND: Amino acid production features of Corynebacterium glutamicum were extensively studied in the last two decades. Many metabolic pathways, regulatory and transport principles are known, but purely rational approaches often provide only limited progress in production optimization. We recently generated stable synthetic co-cultures, termed Communities of Niche-optimized Strains (CoNoS), that rely on cross-feeding of amino acids for growth. This setup has the potential to evolve strains with improved production by selection of faster growing communities. RESULTS: Here we performed adaptive laboratory evolution (ALE) with a CoNoS to identify mutations that are relevant for amino acid production both in mono- and co-cultures. During ALE with the CoNoS composed of strains auxotrophic for either L-leucine or L-arginine, we obtained a 23% growth rate increase. Via whole-genome sequencing and reverse engineering, we identified several mutations involved in amino acid transport that are beneficial for CoNoS growth. The L-leucine auxotrophic strain carried an expression-promoting mutation in the promoter region of brnQ (cg2537), encoding a branched-chain amino acid transporter in combination with mutations in the genes for the Na+/H+-antiporter Mrp1 (cg0326-cg0321). This suggested an unexpected link of Mrp1 to L-leucine transport. The L-arginine auxotrophic partner evolved expression-promoting mutations near the transcriptional start site of the yet uncharacterized operon argTUV (cg1504-02). By mutation studies and ITC, we characterized ArgTUV as the only L-arginine uptake system of C. glutamicum with an affinity of KD = 30 nM. Finally, deletion of argTUV in an L-arginine producer strain resulted in a faster and 24% higher L-arginine production in comparison to the parental strain. CONCLUSION: Our work demonstrates the power of the CoNoS-approach for evolution-guided identification of non-obvious production traits, which can also advance amino acid production in monocultures. Further rounds of evolution with import-optimized strains can potentially reveal beneficial mutations also in metabolic pathway enzymes. The approach can easily be extended to all kinds of metabolite cross-feeding pairings of different organisms or different strains of the same organism, thereby enabling the identification of relevant transport systems and other favorable mutations.


Assuntos
Aminoácidos , Corynebacterium glutamicum , Aminoácidos/metabolismo , Leucina/metabolismo , Técnicas de Cocultura , Mutação , Arginina , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica/métodos
13.
Mol Biol Rep ; 50(2): 1943-1948, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36380024

RESUMO

BACKGROUND: Beer is a globally consumed and universally popular beverage. According to the fermentation conditions of brewer's yeast, ale yeast and lager yeast are the two major varieties. Normal phenotypic and genotypic approaches are insufficient and time-consuming for identifying these two forms of yeast. Therefore, a method for the rapid and cost-effective identification of lager and ale-type brewer's yeasts is necessary. METHODS AND RESULTS: In this study, we analysed the genetic diversity of 23 industrial brewer's yeasts from around the world using sequence-related amplified polymorphism (SRAP) markers and produced stable sequence characteristic amplification region (SCAR) markers. The specific DNA fragments identified by the SRAP marker were sequenced and primers were constructed; the resultant SCAR marker (757 bp) was then confirmed against the indicated brewer's yeast type. CONCLUSION: The development of SRAP-SCAR marker is more economical, simple, and fast compared to morphological markers.


Assuntos
Cerveja , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fermentação , Polimorfismo Genético
14.
Eur Eat Disord Rev ; 31(3): 363-376, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36639902

RESUMO

OBJECTIVE: Functional neuroimaging studies have found differential neural activation patterns during anticipation-related paradigms in participants with eating disorders (EDs) compared to controls. However, publications reported conflicting results on the directionality and location of the abnormal activations. There is an urgent need to integrate our existing knowledge of anticipation, both rewarding and aversive, to elucidate these differences. METHOD: We conducted an activation likelihood estimation (ALE) meta-analysis to quantitatively review functional neuroimaging studies that evaluated differences between brain correlates of anticipation in participants with and without disordered eating. PubMed, Web of Sciences, PsycINFO, Medline and EMBASE were searched for studies published up to November 2022. Exploratory sub-analyses to check for differences between reward and non-reward anticipation among all anticipation paradigms. RESULTS: Twenty-one references met the inclusion criteria for meta-analysis. The meta-analysis across anticipation all tasks identified a significant hyperactivation cluster in the right putamen in participants with disordered eating (n = 17 experiments) and a significant hypoactivation cluster in the left inferior parietal lobule (n = 13 experiments), in participants with disordered eating compared to controls. CONCLUSIONS: These findings and sub-analyses of reward- and non-reward-related cues suggest potential pathophysiological mechanisms underlying anticipatory responses to rewarding and aversive cues in ED.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos , Imageamento por Ressonância Magnética , Humanos , Encéfalo , Neuroimagem Funcional , Afeto , Transtornos da Alimentação e da Ingestão de Alimentos/diagnóstico por imagem
15.
Trends Genet ; 35(8): 553-564, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31213387

RESUMO

The concept of early termination as an important means of transcriptional control has long been established. Even so, its role in metazoan gene expression is underappreciated. Recent technological advances provide novel insights into premature transcription termination (PTT). This process is frequent, widespread, and can occur close to the transcription start site (TSS), or within the gene body. Stable prematurely terminated transcripts contribute to the transcriptome as instances of alternative polyadenylation (APA). Independently of transcript stability and function, premature termination opposes the formation of full-length transcripts, thereby negatively regulating gene expression, especially of transcriptional regulators. Premature termination can be beneficial or harmful, depending on its context. As a result, multiple factors have evolved to control this process.


Assuntos
Regulação da Expressão Gênica/genética , Terminação da Transcrição Genética , Transcrição Gênica , Transcriptoma , Animais , Bactérias/genética , Códon sem Sentido/genética , Éxons/genética , Íntrons/genética , Plantas/genética , Poliadenilação/genética , RNA Mensageiro/genética , RNA não Traduzido/genética , Sítio de Iniciação de Transcrição , Leveduras/genética
16.
Annu Rev Neurosci ; 37: 409-34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25032500

RESUMO

Spatial normalization--applying standardized coordinates as anatomical addresses within a reference space--was introduced to human neuroimaging research nearly 30 years ago. Over these three decades, an impressive series of methodological advances have adopted, extended, and popularized this standard. Collectively, this work has generated a methodologically coherent literature of unprecedented rigor, size, and scope. Large-scale online databases have compiled these observations and their associated meta-data, stimulating the development of meta-analytic methods to exploit this expanding corpus. Coordinate-based meta-analytic methods have emerged and evolved in rigor and utility. Early methods computed cross-study consensus, in a manner roughly comparable to traditional (nonimaging) meta-analysis. Recent advances now compute coactivation-based connectivity, connectivity-based functional parcellation, and complex network models powered from data sets representing tens of thousands of subjects. Meta-analyses of human neuroimaging data in large-scale databases now stand at the forefront of computational neurobiology.


Assuntos
Mapeamento Encefálico , Biologia Computacional , Bases de Dados Factuais , Mapeamento Encefálico/normas , Bases de Dados Factuais/normas , Humanos , Modelos Neurológicos
17.
Hum Brain Mapp ; 43(3): 998-1010, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34734458

RESUMO

Neurobiological pain models propose that chronic pain is accompanied by neurofunctional changes that mediate pain processing dysfunctions. In contrast, meta-analyses of neuroimaging studies in chronic pain conditions have not revealed convergent evidence for robust alterations during experimental pain induction. Against this background, the present neuroimaging meta-analysis combined three different meta-analytic approaches with stringent study selection criteria for case-control functional magnetic resonance imaging experiments during acute pain processing with a focus on chronic pain disorders. Convergent neurofunctional dysregulations in chronic pain patients were observed in the left anterior insula cortex. Seed-based resting-state functional connectivity based on a large publicly available dataset combined with a meta-analytic task-based approach identified the anterior insular region as a key node of an extended bilateral insula-fronto-cingular network, resembling the salience network. Moreover, the meta-analytic decoding showed that this region presents a high probability to be specifically activated during pain-related processes, although we cannot exclude an involvement in autonomic processes. Together, the present findings indicate that dysregulated left anterior insular activity represents a robust neurofunctional maladaptation and potential treatment target in chronic pain disorders.


Assuntos
Dor Crônica/diagnóstico por imagem , Dor Crônica/fisiopatologia , Neuroimagem Funcional , Córtex Insular/diagnóstico por imagem , Córtex Insular/fisiopatologia , Humanos
18.
Hum Brain Mapp ; 43(16): 4864-4885, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35906880

RESUMO

The dual-process theory that two different systems of thought coexist in creative thinking has attracted considerable attention. In the field of creative thinking, divergent thinking (DT) is the ability to produce multiple solutions to open-ended problems in a short time. It is mainly considered an associative and fast process. Meanwhile, insight, the new and unexpected comprehension of close-ended problems, is frequently marked as a deliberate and time-consuming thinking process requiring concentrated effort. Previous research has been dedicated to revealing their separate neural mechanisms, while few studies have compared their differences and similarities at the brain level. Therefore, the current study applied Activation Likelihood Estimation to decipher common and distinctive neural pathways that potentially underlie DT and insight. We selected 27 DT studies and 30 insight studies for retrospective meta-analyses. Initially, two single analyses with follow-up contrast and conjunction analyses were performed. The single analyses showed that DT mainly involved the inferior parietal lobe (IPL), cuneus, and middle frontal gyrus (MFG), while the precentral gyrus, inferior frontal gyrus (IFG), parahippocampal gyrus (PG), amygdala (AMG), and superior parietal lobe were engaged in insight. Compared to insight, DT mainly led to greater activation in the IPL, the crucial part of the default mode network. However, insight caused more significant activation in regions related to executive control functions and emotional responses, such as the IFG, MFG, PG, and AMG. Notably, the conjunction analysis detected no overlapped areas between DT and insight. These neural findings implicate that various neurocognitive circuits may support DT and insight.


Assuntos
Criatividade , Imageamento por Ressonância Magnética , Humanos , Funções Verossimilhança , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico
19.
Biotechnol Bioeng ; 119(9): 2541-2550, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35524438

RESUMO

Lignin is a largely untapped source for the bioproduction of value-added chemicals. Pseudomonas putida KT2440 has emerged as a strong candidate for bioprocessing of lignin feedstocks due to its resistance to several industrial solvents, broad metabolic capabilities, and genetic amenability. Here we demonstrate the engineering of P. putida for the ability to metabolize syringic acid, one of the major products that comes from the breakdown of the syringyl component of lignin. The rational design was first applied for the construction of strain Sy-1 by overexpressing a native vanillate demethylase. Subsequent adaptive laboratory evolution (ALE) led to the generation of mutations that achieved robust growth on syringic acid as a sole carbon source. The best mutant showed a 30% increase in the growth rate over the original engineered strain. Genomic sequencing revealed multiple mutations repeated in separate evolved replicates. Reverse engineering of mutations identified in agmR, gbdR, fleQ, and the intergenic region of gstB and yadG into the parental strain recaptured the improved growth of the evolved strains to varied extent. These findings thus reveal the ability of P. putida to utilize lignin more fully as a feedstock and make it a more economically viable chassis for chemical production.


Assuntos
Pseudomonas putida , Sequência de Bases , Carbono/metabolismo , Lignina/metabolismo , Engenharia Metabólica , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
20.
Nanotechnology ; 34(3)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36223734

RESUMO

Sn is the one of the materials that can be used for next generation extreme ultraviolet (EUV) mask material having a high absorption coefficient and, for the fabrication of the next generation EUV mask, a precise etching of Sn is required. In this study, the atomic layer etching (ALE) process was performed for the precise etch thickness control and low damage etching of Sn by the formation SnHxClycompounds on the Sn surface using with H and Cl radicals during the adsorption step and by the removal of the compound using Ar+ions with a controlled energy during the desorption step. Through this process, optimized ALE conditions with different H/Cl radical combinations that can etch Sn at ∼2.6 Šcycle-1were identified with a high etch selectivity over Ru which can be used as the capping layer of the EUV mask. In addition, it was confirmed that not only the Sn but also Ru showed almost no physical and chemical damage during the Sn ALE process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA