Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
BMC Plant Biol ; 24(1): 523, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853237

RESUMO

Allelopathy is a biological process in which one organism releases biochemicals that affect the growth and development of other organisms. The current investigation sought to determine the allelopathic effect of Rumex acetosella on white clover (Trifolium repens) growth and development by using its shoot extract (lower IC50 value) as a foliar treatment. Here, different concentrations (25, 50, 100, and 200 g/L) of shoot extract from Rumex acetosella were used as treatments. With increasing concentrations of shoot extract, the plant growth parameters, chlorophyll and total protein content of Trifolium repens decreased. On the other hand, ROS, such as O2.- and H2O2, and antioxidant enzymes, including SOD, CAT, and POD, increased with increasing shoot extract concentration. A phytohormonal study indicated that increased treatment concentrations increased ABA and SA levels while JA levels were reduced. For the identification of allelochemicals, liquid‒liquid extraction, thin-layer chromatography, and open-column chromatography were conducted using R. acetosella shoot extracts, followed by a seed bioassay on the separated layer. A lower IC50 value was obtained through GC/MS analysis. gammaSitosterol was identified as the most abundant component. The shoot extract of Rumex acetosella has strong allelochemical properties that may significantly impede the growth and development of Trifolium repens. This approach could help to understand the competitive abilities of this weed species and in further research provide an alternate weed management strategy.


Assuntos
Alelopatia , Antioxidantes , Extratos Vegetais , Reguladores de Crescimento de Plantas , Rumex , Trifolium , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo , Trifolium/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antioxidantes/metabolismo , Rumex/crescimento & desenvolvimento , Rumex/metabolismo , Rumex/efeitos dos fármacos , Rumex/química , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Metanol , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Feromônios/farmacologia , Feromônios/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Brotos de Planta/química
2.
Adv Exp Med Biol ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39384701

RESUMO

Insects are incapable of biosynthesising sterols de novo so they need to obtain them from their diets or, in certain cases, from symbiotic microorganisms. Sterols serve a structural role in cellular membranes and act as precursors for signalling molecules and defence compounds. Many phytophagous insects dealkylate phytosterols to yield primarily cholesterol, which is also the main sterol that carnivorous and omnivorous insects obtain in their diets. Some phytophagous species have secondarily lost the capacity to dealkylate and consequently use phytosterols for structural and functional roles. The polyhydroxylated steroid hormones of insects, the ecdysteroids, are derived from cholesterol (or phytosterols in non-dealkylating phytophagous species) and regulate many crucial aspects of insect development and reproduction by means of precisely regulated titres resulting from controlled synthesis, storage and further metabolism/excretion. Ecdysteroids differ significantly from vertebrate steroid hormones in their chemical, biochemical and biological properties. Defensive steroids (cardenolides, bufadienolides, cucurbitacins and ecdysteroids) can be accumulated from host plants or biosynthesised within the insect, depending on species, stored in significant amounts in the insect and released when it is attacked. Other allelochemical steroids serve as pheromones. Vertebrate-type steroids have also been conclusively identified from insect sources, but debate continues about their significance. Side chain dealkylation of phytosterols, ecdysteroid metabolism and ecdysteroid mode of action are targets of potential insect control strategies.

3.
Molecules ; 29(19)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39407602

RESUMO

Ageratum conyzoides L. is native to Tropical America, and it has naturalized in many other tropical, subtropical, and temperate countries in South America, Central and Southern Africa, South and East Asia, Eastern Austria, and Europe. The population of the species has increased dramatically as an invasive alien species, and it causes significant problems in agriculture and natural ecosystems. The life history traits of Ageratum conyzoides, such as its short life cycle, early reproductive maturity, prolific seed production, and high adaptive ability to various environmental conditions, may contribute to its naturalization and increasing population. Possible evidence of the molecules involved in the defense of Ageratum conyzoides against its natural enemies, such as herbivore insects and fungal pathogens, and the allelochemicals involved in its competitive ability against neighboring plant species has been accumulated in the literature. The volatiles, essential oils, extracts, residues, and/or rhizosphere soil of Ageratum conyzoides show insecticidal, fungicidal, nematocidal, and allelopathic activity. The pyrrolizidine alkaloids lycopsamine and echinatine, found in the species, are highly toxic and show insecticidal activity. Benzopyran derivatives precocenes I and II show inhibitory activity against insect juvenile hormone biosynthesis and trichothecene mycotoxin biosynthesis. A mixture of volatiles emitted from Ageratum conyzoides, such as ß-caryophyllene, ß-bisabolene, and ß-farnesene, may work as herbivore-induced plant volatiles, which are involved in the indirect defense function against herbivore insects. Flavonoids, such as nobiletin, eupalestin, 5'-methoxynobiletin, 5,6,7,3',4',5'-hexamethoxyflavone, and 5,6,8,3,4',5'-hexamethoxyflavone, show inhibitory activity against the spore germination of pathogenic fungi. The benzoic acid and cinnamic acid derivatives found in the species, such as protocatechuic acid, gallic acid, p-coumaric acid, p-hydroxybenzoic acid, and ferulic acid, may act as allelopathic agents, causing the germination and growth inhibition of competitive plant species. These molecules produced by Ageratum conyzoides may act as defense molecules against its natural enemies and as allelochemicals against neighboring plant species, and they may contribute to the naturalization of the increasing population of Ageratum conyzoides in new habitats as an invasive plant species. This article presents the first review focusing on the defense function and allelopathy of Ageratum conyzoides.


Assuntos
Ageratum , Espécies Introduzidas , Ageratum/química , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia
4.
New Phytol ; 240(5): 2007-2019, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37737029

RESUMO

Allelopathy is a common and important stressor that shapes plant communities and can alter soil microbiomes, yet little is known about the direct effects of allelochemical addition on bacterial and fungal communities or the potential for allelochemical-selected microbiomes to mediate plant performance responses, especially in habitats naturally structured by allelopathy. Here, we present the first community-wide investigation of microbial mediation of allelochemical effects on plant performance by testing how allelopathy affects soil microbiome structure and how these microbial changes impact germination and productivity across 13 plant species. The soil microbiome exhibited significant changes to 'core' bacterial and fungal taxa, bacterial composition, abundance of functionally important bacterial and fungal taxa, and predicted bacterial functional genes after the addition of the dominant allelochemical native to this habitat. Furthermore, plant performance was mediated by the allelochemical-selected microbiome, with allelopathic inhibition of plant productivity moderately mitigated by the microbiome. Through our findings, we present a potential framework to understand the strength of plant-microbial interactions in the presence of environmental stressors, in which frequency of the ecological stress may be a key predictor of microbiome-mediation strength.


Assuntos
Alelopatia , Microbiota , Plantas , Microbiologia do Solo , Bactérias , Solo/química , Feromônios/farmacologia
5.
New Phytol ; 237(2): 563-575, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36263726

RESUMO

Plants actively respond to their neighbors by altering root placement patterns. Neighbor-modulated root responses involve root detection and interactions mediated by root-secreted functional metabolites. However, chemically mediated root placement patterns and their underlying mechanisms remain elusive. We used an allelopathic wheat model system challenged with 60 target species to identify root placement responses in window rhizobox experiments. We then tested root responses and their biochemical mechanisms in incubation experiments involving the addition of activated carbon and functional metabolites with amyloplast staining and auxin localization in roots. Wheat and each target species demonstrated intrusive, avoidant or unresponsive root placement, resulting in a total of nine combined patterns. Root placement patterns were mediated by wheat allelochemicals and (-)-loliolide signaling of neighbor species. In particular, (-)-loliolide triggered wheat allelochemical production that altered root growth and placement, degraded starch grains in the root cap and induced uneven distribution of auxin in target species roots. Root placement patterns in wheat-neighbor interactions were perception dependent and species dependent. Signaling (-)-loliolide induced the production and release of wheat allelochemicals that modulated root placement patterns. Therefore, root placement patterns are generated by both signaling chemicals and allelochemicals in allelopathic plant-plant interactions.


Assuntos
Plantas , Triticum , Plantas/metabolismo , Triticum/metabolismo , Ácidos Indolacéticos/metabolismo , Alelopatia , Feromônios/metabolismo , Raízes de Plantas/metabolismo
6.
Bull Entomol Res ; 113(1): 86-97, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35817762

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs (sRNAs) that regulate gene expression by inhibiting translation or degrading mRNA. Although the functions of miRNAs in many biological processes have been reported, there is currently no research on the possible roles of miRNAs in Micromelalopha troglodyta (Graeser) involved in the response of plant allelochemicals. In this article, six sRNA libraries (three treated with tanic acid and three control) from M. troglodyta were constructed using Illumina sequencing. From the results, 312 known and 43 novel miRNAs were differentially expressed. Notably, some of the most abundant miRNAs, such as miR-432, miR-541-3p, and miR-4448, involved in important physiological processes were also identified. To better understand the function of the targeted genes, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results indicated that differentially expressed miRNA targets were involved in metabolism, development, hormone biosynthesis, and immunity. Finally, we visualized a miRNA-mRNA regulatory module that supports the role of miRNAs in host-allelochemical interactions. To our knowledge, this is the first report on miRNAs responding to tannic acid in M. troglodyta. This study provides indispensable information for understanding the potential roles of miRNAs in M. troglodyta and the applications of these miRNAs in M. troglodyta management.


Assuntos
Lepidópteros , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Lepidópteros/genética , Lepidópteros/metabolismo , Redes Reguladoras de Genes , Análise de Sequência de RNA , Perfilação da Expressão Gênica
7.
Pestic Biochem Physiol ; 191: 105360, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963951

RESUMO

Insect P450s play crucial roles in metabolizing insecticides and toxic plant allelochemicals. In this study, our results demonstrate that Helicoverpa armigera can adapt to a lower concentration of flavone (a flavonoid phytochemical), and P450 activities and CYP321A1 transcript levels significantly increase after exposure to flavone. RNAi-mediated knockdown of CYP321A1 significantly reduced the tolerance of H. armigera larvae to flavone. In addition, the regulatory mechanisms driving CYP321A1 induction following exposure to flavone were investigated. Flavone exposure significantly increased H2O2 generation in the larval midgut. The mRNA levels of HaCncC and HaMaf-s significantly increased in the midgut of H. armigera after exposure to flavone. Knockdown of HaCncC significantly inhibited expression of flavone-induced CYP321A1 and resulted in a decrease in flavone induction of CYP321A1. HaCncC knockdown significantly reduced the tolerance of H. armigera larvae to flavone. Taken together, these results indicate that HaCncC regulates expression of the CYP321A1 gene responsible for flavone tolerance in H. armigera.


Assuntos
Flavonas , Mariposas , Animais , Fatores de Transcrição , Peróxido de Hidrogênio , Mariposas/genética , Larva/genética , Sistema Enzimático do Citocromo P-450/genética , Flavonas/farmacologia
8.
Molecules ; 28(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36615564

RESUMO

Each metabolite, regardless of its molecular simplicity or complexity, has a mission or function in the organism biosynthesizing it. In this review, the biological, allelochemical, and chemical properties of acetophenone, as a metabolite involved in multiple interactions with various (mi-cro)organisms, are discussed. Further, the details of its biogenesis and chemical synthesis are provided, and the possibility of its application in different areas of life sciences, i.e., the status quo of acetophenone and its simple substituted analogs, is examined. In particular, natural and synthetic simple acetophenone derivatives are analyzed as promising agrochemicals and useful scaffolds for drug research and development.


Assuntos
Disciplinas das Ciências Biológicas , Cetonas , Acetofenonas/química
9.
BMC Plant Biol ; 22(1): 402, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35974304

RESUMO

BACKGROUND: Plants growing in proximity to other plants are exposed to a variety of metabolites that these neighbors release into the environment. Some species produce allelochemicals to inhibit growth of neighboring plants, which in turn have evolved ways to detoxify these compounds. RESULTS: In order to understand how the allelochemical-receiving target plants respond to chemically diverse compounds, we performed whole-genome transcriptome analysis of Arabidopsis thaliana exposed to either the benzoxazinoid derivative 2-amino- 3H-phenoxazin-3-one (APO) or momilactone B. These two allelochemicals belong to two very different compound classes, benzoxazinoids and diterpenes, respectively, produced by different Poaceae crop species. CONCLUSIONS: Despite their distinct chemical nature, we observed similar molecular responses of A. thaliana to these allelochemicals. In particular, many of the same or closely related genes belonging to the three-phase detoxification pathway were upregulated in both treatments. Further, we observed an overlap between genes upregulated by allelochemicals and those involved in herbicide detoxification. Our findings highlight the overlap in the transcriptional response of a target plant to natural and synthetic phytotoxic compounds and illustrate how herbicide resistance could arise via pathways involved in plant-plant interaction.


Assuntos
Arabidopsis , Diterpenos , Arabidopsis/genética , Arabidopsis/metabolismo , Benzoxazinas/metabolismo , Benzoxazinas/farmacologia , Diterpenos/metabolismo , Diterpenos/farmacologia , Feromônios/análise , Feromônios/metabolismo , Plantas/metabolismo
10.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563008

RESUMO

Molecular responses of plants to natural phytotoxins comprise more general and compound-specific mechanisms. How phytotoxic chalcones and other flavonoids inhibit seedling growth was widely studied, but how they interfere with seed germination is largely unknown. The dihydrochalcone and putative allelochemical myrigalone A (MyA) inhibits seed germination and seedling growth. Transcriptome (RNAseq) and hormone analyses of Lepidium sativum seed responses to MyA were compared to other bioactive and inactive compounds. MyA treatment of imbibed seeds triggered the phased induction of a detoxification programme, altered gibberellin, cis-(+)-12-oxophytodienoic acid and jasmonate metabolism, and affected the expression of hormone transporter genes. The MyA-mediated inhibition involved interference with the antioxidant system, oxidative signalling, aquaporins and water uptake, but not uncoupling of oxidative phosphorylation or p-hydroxyphenylpyruvate dioxygenase expression/activity. MyA specifically affected the expression of auxin-related signalling genes, and various transporter genes, including for auxin transport (PIN7, ABCG37, ABCG4, WAT1). Responses to auxin-specific inhibitors further supported the conclusion that MyA interferes with auxin homeostasis during seed germination. Comparative analysis of MyA and other phytotoxins revealed differences in the specific regulatory mechanisms and auxin transporter genes targeted to interfere with auxin homestasis. We conclude that MyA exerts its phytotoxic activity by multiple auxin-dependent and independent molecular mechanisms.


Assuntos
Germinação , Lepidium sativum , Chalconas , Regulação da Expressão Gênica de Plantas , Germinação/genética , Homeostase , Hormônios/metabolismo , Ácidos Indolacéticos/metabolismo , Lepidium sativum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Plântula/metabolismo , Sementes/genética
11.
Molecules ; 27(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744974

RESUMO

We determined the allelopathic effects of crude organic (hexane, ethyl acetate, and methanol) extracts of the cyanobacterial Spirulina platensis on barnyardgrass (Echinochloa crus-galli (L.) Beauv.) and Chinese amaranth (Amaranthus tricolor L.). The crude ethyl acetate extract showed the highest inhibitory activity and was subsequently fractionated by column chromatography into 23 fractions based on thin-layer chromatography band pattern similarities. Four concentrations (2000, 1000, 500, and 250 ppm) of each fraction were tested for their allelopathic activity. Fractions E6 and E13 exhibited the most significant inhibitory effects against Chinese amaranth. The constituents of the highly active E6F3-E6F5 fractions determined by GC-MS, chromatography, and spectroscopy included the fatty acids, γ-linolenic acid 15, oleic acid 12, and predominantly palmitic acid 7; minor constituents included 2-ethyl-3-methylmaleimide 9 and C11 norisoprenoids (dihydroactinidiolide 10 and 4-oxo-ß-ionone 13). Isolation of E13 fraction by column chromatography revealed four C13 norisoprenoids: 3-hydroxy-ß-ionone 17, 3-hydroxy-5α,6α-epoxy-ß-ionone 18, 3-hydroxy-5ß,6ß-epoxy-ß-ionone 19, and loliolide 20. Their structures were elucidated by NMR spectroscopy. All six isolated norisoprenoids inhibited seed germination and seedling growth of Chinese amaranth at concentrations of 250-1000 ppm. Allelochemicals from S. platensis could be utilized in the development of novel bioactive herbicides.


Assuntos
Echinochloa , Spirulina , Alelopatia , Norisoprenoides/química , Extratos Vegetais/química
12.
Annu Rev Entomol ; 66: 101-119, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417819

RESUMO

Thrips (Thysanoptera) are small insects that can cause huge problems in agriculture, horticulture, and forestry through feeding and the transmission of plant viruses. They produce a rich chemical diversity of pheromones and allomones and also respond to a broad range of semiochemicals from plants. These semiochemicals offer many opportunities to develop new approaches to pest management. Aggregation pheromones and plant-derived semiochemicals are already available in commercial products. We review these semiochemicals and consider how we can move away from using them mainly for monitoring to using them for control. We still know very little about the behavioral responses of thrips to semiochemicals, and we show that research in this area is needed to improve the use of semiochemicals in pest management. We also propose that thrips should be used as a model system for semiochemically mediated behaviors of small insects that have limited ability to fly upwind.


Assuntos
Controle de Insetos , Feromônios , Tisanópteros , Animais
13.
New Phytol ; 230(2): 683-697, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33460457

RESUMO

Sorgoleone, a hydrophobic compound exuded from root hair cells of Sorghum spp., accounts for much of the allelopathic activity of the genus. The enzymes involved in the biosynthesis of this compound have been identified and functionally characterized. Here, we report the successful assembly of the biosynthetic pathway and the significant impact of in vivo synthesized sorgoleone on the heterologous host Nicotiana benthamiana. A multigene DNA construct was prepared for the expression of genes required for sorgoleone biosynthesis in planta and deployed in N. benthamiana leaf tissues via Agrobacterium-mediated transient expression. RNA-sequencing was conducted to investigate the effects of sorgoleone, via expression of its biosynthesis pathway, on host gene expression. The production of sorgoleone in agroinfiltrated leaves as detected by gas chromatography/mass spectrometry (GC/MS) resulted in the formation of necrotic lesions, indicating that the compound caused severe phytotoxicity to these tissues. RNA-sequencing profiling revealed significant changes in gene expression in the leaf tissues expressing the pathway during the formation of sorgoleone-induced necrotic lesions. Transcriptome analysis suggested that the compound produced in vivo impaired the photosynthetic system as a result of downregulated gene expression for the photosynthesis apparatus and elevated expression of proteasomal genes which may play a major role in the phytotoxicity of sorgoleone.


Assuntos
Vias Biossintéticas , Nicotiana , Benzoquinonas , Vias Biossintéticas/genética , Lipídeos , Folhas de Planta , Raízes de Plantas/genética , Nicotiana/genética
14.
Plant Cell Environ ; 44(12): 3479-3491, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33993534

RESUMO

Species interactions and mechanisms affect plant coexistence and community assembly. Despite increasing knowledge of kin recognition and allelopathy in regulating inter-specific and intra-specific interactions among plants, little is known about whether kin recognition mediates allelopathic interference. We used allelopathic rice cultivars with the ability for kin recognition grown in kin versus non-kin mixtures to determine their impacts on paddy weeds in field trials and a series of controlled experiments. We experimentally tested potential mechanisms of the interaction via altered root behaviour, allelochemical production and resource partitioning in the dominant weed competitor, as well as soil microbial communities. We consistently found that the establishment and growth of paddy weeds were more inhibited by kin mixtures compared to non-kin mixtures. The effect was driven by kin recognition that induced changes in root placement, altered weed carbon and nitrogen partitioning, but was associated with similar soil microbial communities. Importantly, genetic relatedness enhanced the production of intrusive roots towards weeds and reduced the production of rice allelochemicals. These findings suggest that relatedness allows allelopathic plants to discriminate their neighbouring collaborators (kin) or competitors and adjust their growth, competitiveness and chemical defense accordingly.


Assuntos
Alelopatia , Oryza/fisiologia , Feromônios/metabolismo , Plantas Daninhas/fisiologia
15.
Ecotoxicol Environ Saf ; 210: 111852, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33418155

RESUMO

Symbiosis of marine algae is inevitable in the marine environment, and species may occur interaction on the growth. In this study, the macroalgae Ulva pertusa and marine microalgae Heterosigma akashiwo were selected as target species to study the interaction mechanism between them. After the 8 days of co-cultivation, the inhibition on growth was observed for both of U. pertusa and H. akashiwo. Eight fatty acids in U. pertusa was detected, with the significant decrease in contents of polyunsaturated fatty acids (PUFAs) especially for C18:2, C18:3n-3 and C18:3n-6. Twelve fatty acids in H. akashiwo was detected, with the significant change for PUFAs. PUFA concentrations in the co-culture group were less than those in the mono-culture. Meanwhile the principal component analysis was conducted to insight into the interaction between U. pertusa and H. akashiwo by fatty acids content and carbon stable isotope ratio of fatty acids (δ13CFAs). Fatty acid content could not distinguish mono and co-culture. However, δ13CFAs could distinguish not only the culture time of algae, but also the living environment of algae. In addition, this study combined fatty acids content and δ13CFAs to explore the release of fatty acids by algae into the seawater. The C18:3n-3 was identified as the allelochemical released by U. pertusa to inhibit the growth of H. akashiwo. The ratio of δ13CFAs in seawater decreased. This study provides a theoretical basis for the symbiosis of marine algae, and a new method of compound-specific stable carbon isotopes was used to better explore the metabolism of fatty acids in algae.


Assuntos
Ácidos Graxos/metabolismo , Microalgas/metabolismo , Estramenópilas/metabolismo , Ulva/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Ácidos Graxos/análise , Água do Mar/química , Estramenópilas/crescimento & desenvolvimento , Simbiose , Ulva/crescimento & desenvolvimento
16.
J Exp Bot ; 71(4): 1540-1550, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31677347

RESUMO

Neighbor detection and allelochemical response are important mediators in plant-plant interactions. Although there is increasing knowledge about plant allelochemicals released in response to the presence of competitors and involved in neighbor-derived signaling, less is known about which signaling chemicals are responsible for the neighbor-induced allelochemical response. Here, we experimentally demonstrate that (-)-loliolide, a carotenoid metabolite, acts as a signaling chemical in barnyardgrass-rice allelopathic interactions. The production of the rice allelochemicals momilactone B and tricin was increased in the presence of five biotypes of barnyardgrass. (-)-Loliolide was found in all the biotypes of barnyardgrass and their root exudates and rhizosphere soils. There were significant positive relationships between rice allelochemicals and (-)-loliolide concentrations across the biotypes of barnyardgrass. Furthermore, (-)-loliolide elicited the production of momilactone B and tricin. Comparative transcriptomic analysis revealed regulatory activity of (-)-loliolide on the diterpenoid and flavonoid biosynthesis pathway. The expression of key genes involved in the biosynthesis of momilactone B (CPS4, KSL4, and MAS) and tricin (CYP75B3 and CYP75B4) was up-regulated by (-)-loliolide. These findings suggest that (-)-loliolide acts as a signaling chemical and participates in barnyardgrass-rice allelopathic interactions. Allelopathic rice plants can detect competing barnyardgrass through the presence of this signaling chemical and respond by increasing levels of their allelochemicals to achieve an advantage for their own growth.


Assuntos
Echinochloa , Oryza , Alelopatia , Benzofuranos , Echinochloa/genética , Lactonas , Oryza/genética , Raízes de Plantas
17.
Ecotoxicology ; 29(7): 1095-1104, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32666147

RESUMO

Several invasive alien plants (IAP) can trigger evidently allelopathy on the seed germination and seedling growth (SgSg) of native plant species (NPS). The getting worse condition with heavy metal pollution (e.g., cadmium) can significantly impact SgSg of plant species. Silicon can offset the adverse effects of environmental pressure on the growth and development of plant species. Thus, it is important to evaluate the influences of silicon on the allelopathy of IAP on SgSg of NPS under cadmium stress to better understand the mechanism driving the successful colonization of IAP. This study focuses on the allelopathy of the infamous IAP Solidago canadensis L. (Canada goldenrod; by using leaf extracts) on SgSg of NPS Lactuca sativa L. under the separated and mixed silicon and cadmium addition. S. canadensis triggers notably allelopathy on SgSg of L. sativa and gradually upsurges with increasing leaf extract concentration. Thus, the growth performance of NPS will be gradually reduced with an increasing degree of S. canadensis invasion. Cadmium evidently declines SgSg of L. sativa due to the broken balance of plant species for nutrient absorption. The mixed S. canadensis leaf extracts and cadmium synergistically impact seed germination of L. sativa but antagonistically affect seedling growth of L. sativa. The mixed silicon and cadmium intensify the allelopathy of S. canadensis on SgSg of L. sativa probably due to the increased effective content of cadmium in plant roots under silicon addition. Thus, the mixed silicon and cadmium will be advantageous to the following invasion process of IAP largely via the depressed SgSg of NPS.


Assuntos
Alelopatia/efeitos dos fármacos , Cádmio/efeitos adversos , Lactuca/crescimento & desenvolvimento , Substâncias Protetoras/farmacologia , Silício/farmacologia , Poluentes do Solo/efeitos adversos , Solidago/efeitos dos fármacos , Germinação/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Solidago/fisiologia
18.
Chem Biodivers ; 17(12): e2000552, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33098214

RESUMO

Chemical investigation of the secondary metabolites of the whole plant of bryophyte Hypnum plumaeforme Wilson led to the isolation of a new pimarane-type diterpenoid, momilactone F (1), along with seventeen known compounds. Their chemical structures were elucidated based on massive spectroscopic data. The allelopathic and antifungal properties were evaluated. Among them, momilactone F (1), acrenol (2),[11] momilactones A (3) and B (4) showed significant allelopathic activity against Samolus parviflorus Raf. and Lactuca sativa L. var. angustana Irish, as well as selected antifungal property against crop pathogenic fungi strains. On the other hand, 8(14)-podocarpen-13-on-18-oic acid (8) exhibited strong promoting activity on the growth of L. sativa L. var. angustana Irish. The present investigation provided new insights for developing of H. plumaeforme for further application as a potential agricultural tool.


Assuntos
Briófitas/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
19.
Microbiology (Reading) ; 165(6): 587-592, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30688632

RESUMO

Algal blooms have severe impacts on the utilization of water resources. The discovery of allelopathy provides a new dimension to solving this problem due to its high efficiency, safety and economy. Allelopathy can suppress the growth of microalgae by impairing the structure, photosynthesis and enzyme activity of algal cells. In the current work, we first demonstrate the allelopathy and allelochemicals derived from both plants and algae. We then expound the potential mechanisms of allelopathy on microalgae. Next, the potential application of allelochemicals in water environment is proposed. Finally, the key challenge and future perspective are presented.


Assuntos
Alelopatia , Recuperação e Remediação Ambiental , Microalgas/efeitos dos fármacos , Feromônios/farmacologia , Proliferação Nociva de Algas , Microalgas/química , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Feromônios/efeitos adversos , Plantas/química
20.
Plant Cell Environ ; 42(3): 1078-1086, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30151965

RESUMO

Plants possess a suite of traits that make them challenging to consume by insect herbivores. Plant tissues are recalcitrant, have low levels of protein, and may be well defended by chemicals. Insects use diverse strategies for overcoming these barriers, including co-opting metabolic activities from microbial associates. In this review, we discuss the co-option of bacteria and fungi in the herbivore gut. We particularly focus upon chewing, folivorous insects (Coleoptera and Lepidoptera) and discuss the impacts of microbial co-option on herbivore performance and plant responses. We suggest that there are two components to microbial co-option: fixed and plastic relationships. Fixed relationships are involved in integral dietary functions and can be performed by microbial enzymes co-opted into the genome or by stably transferred associates. In contrast, the majority of gut symbionts appear to be looser and perform more facultative, context-dependent functions. This more plastic, variable co-option of bacteria likely produces a greater number of insect phenotypes, which interact differently with plant hosts. By altering plant detection of herbivory or mediating insect interactions with plant defensive compounds, microbes can effectively improve herbivore performance in real time within and between generations.


Assuntos
Microbioma Gastrointestinal/fisiologia , Herbivoria , Insetos/fisiologia , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Simbiose , Animais , Besouros/microbiologia , Besouros/fisiologia , Insetos/microbiologia , Lepidópteros/microbiologia , Lepidópteros/fisiologia , Simbiose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA