Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686274

RESUMO

αH-Crystallin, a high molecular weight form of α-crystallin, is one of the major proteins in the lens nucleus. This high molecular weight aggregate (HMWA) plays an important role in the pathogenesis of cataracts. We have shown that the chaperone-like activity of HMWA is 40% of that of α-crystallin from the lens cortex. Refolding with urea significantly increased-up to 260%-the chaperone-like activity of α-crystallin and slightly reduced its hydrodynamic diameter (Dh). HMWA refolding resulted in an increase in chaperone-like activity up to 120% and a significant reduction of Dh of protein particles compared with that of α-crystallin. It was shown that the chaperone-like activity of HMWA, α-crystallin, and refolded α-crystallin but not refolded HMWA was strongly correlated with the denaturation enthalpy measured with differential scanning calorimetry (DSC). The DSC data demonstrated a significant increase in the native protein portion of refolded α-crystallin in comparison with authentic α-crystallin; however, the denaturation enthalpy of refolded HMWA was significantly decreased in comparison with authentic HMWA. The authors suggested that the increase in the chaperone-like activity of both α-crystallin and HMWA could be the result of the correction of misfolded proteins during renaturation and the rearrangement of protein supramolecular structures.


Assuntos
Catarata , Cristalinas , alfa-Cristalinas , Humanos , Hidrodinâmica , Varredura Diferencial de Calorimetria
2.
Biochemistry (Mosc) ; 87(2): 131-140, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35508910

RESUMO

Loss of eye lens transparency due to cataract is the leading cause of blindness all over the world. While aggregation of lens crystallins is the most common endpoint in various types of cataracts, chaperone-like activity (CLA) of α-crystallin preventing protein aggregation is considered to be important for maintaining the eye lens transparency. Osmotic stress due to increased accumulation of sorbitol under hyperglycemic conditions is believed to be one of the mechanisms for diabetic cataract. In addition, compromised CLA of α-crystallin in diabetic cataract has been reported. However, the effect of sorbitol on the structure and function of α-crystallin has not been elucidated yet. Hence, in the present exploratory study, we described the effect of varying concentrations of sorbitol on the structure and function of α-crystallin. Alpha-crystallin purified from the rat lens was incubated with varying concentrations of sorbitol in the dark under sterile conditions for up to 5 days. At the end of incubation, structural properties and CLA were evaluated by spectroscopic methods. Interestingly, different concentrations of sorbitol showed contrasting results: at lower concentrations (5 and 50 mM) there was a decrease in CLA and subtle alterations in secondary and tertiary structure but not at higher concentrations (500 mM). Though, these results shed a light on the effect of sorbitol on α-crystallin structure-function, further studies are required to understand the mechanism of the observed effects and their implication to cataractogenesis.


Assuntos
Catarata , Diabetes Mellitus , Cristalino , alfa-Cristalinas , Animais , Cristalino/metabolismo , Chaperonas Moleculares/metabolismo , Ratos , Sorbitol/farmacologia , alfa-Cristalinas/química , alfa-Cristalinas/metabolismo , alfa-Cristalinas/farmacologia
3.
Glia ; 69(4): 1022-1036, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33314354

RESUMO

Astrocytes are key players in CNS neuroinflammation and neuroregeneration that may help or hinder recovery, depending on the context of the injury. Although pro-inflammatory factors that promote astrocyte-mediated neurotoxicity have been shown to be secreted by reactive microglia, anti-inflammatory factors that suppress astrocyte activation are not well-characterized. Olfactory ensheathing cells (OECs), glial cells that wrap axons of olfactory sensory neurons, have been shown to moderate astrocyte reactivity, creating an environment conducive to regeneration. Similarly, astrocytes cultured in medium conditioned by cultured OECs (OEC-CM) show reduced nuclear translocation of nuclear factor kappa-B (NFκB), a pro-inflammatory protein that induces neurotoxic reactivity in astrocytes. In this study, we screened primary and immortalized OEC lines to identify these factors and discovered that Alpha B-crystallin (CryAB), an anti-inflammatory protein, is secreted by OECs via exosomes, coordinating an intercellular immune response. Our results showed that: (a) OEC exosomes block nuclear NFκB translocation in astrocytes while exosomes from CryAB-null OECs could not; (b) OEC exosomes could be taken up by astrocytes, and (c) CryAB treatment suppressed neurotoxicity-associated astrocyte transcripts. Our results indicate CryAB, as well as other factors secreted by OECs, are potential agents that can ameliorate, or even reverse, the growth-inhibitory environment created by neurotoxic reactive astrocytes following CNS injuries.


Assuntos
Astrócitos , alfa-Cristalinas , Anti-Inflamatórios/farmacologia , Células Cultivadas , Humanos , Regeneração Nervosa , Neuroglia , Doenças Neuroinflamatórias , Bulbo Olfatório
4.
J Synchrotron Radiat ; 28(Pt 2): 490-498, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650561

RESUMO

An experimental setup to measure X-ray photon correlation spectroscopy during continuous sample translation is presented and its effectiveness as a means to avoid sample damage in dynamics studies of protein diffusion is evaluated. X-ray damage from focused coherent synchrotron radiation remains below tolerable levels as long as the sample is translated through the beam sufficiently quickly. Here it is shown that it is possible to separate sample dynamics from the effects associated with the transit of the sample through the beam. By varying the sample translation rate, the damage threshold level, Dthresh = 1.8 kGy, for when beam damage begins to modify the dynamics under the conditions used, is also determined. Signal-to-noise ratios, Rsn ≥ 20, are obtained down to the shortest delay times of 20 µs. The applicability of this method of data collection to the next generation of multi-bend achromat synchrotron sources is discussed and it is shown that sub-microsecond dynamics should be obtainable on protein samples.


Assuntos
Proteínas , Síncrotrons , Raios X
5.
Exp Eye Res ; 210: 108697, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34233175

RESUMO

Hyperbaric oxygen (HBO) treatment of animals or ocular lenses in culture recapitulates many molecular changes observed in human age-related nuclear cataract. The guinea pig HBO model has been one of the best examples of such treatment leading to dose-dependent development of lens nuclear opacities. In this study, complimentary mass spectrometry methods were employed to examine protein truncation after HBO treatment of aged guinea pigs. Quantitative liquid chromatography-mass spectrometry (LC-MS) analysis of the membrane fraction of guinea pig lenses showed statistically significant increases in aquaporin-0 (AQP0) C-terminal truncation, consistent with previous reports of accelerated loss of membrane and cytoskeletal proteins. In addition, imaging mass spectrometry (IMS) analysis spatially mapped the acceleration of age-related αA-crystallin truncation in the lens nucleus. The truncation sites in αA-crystallin closely match those observed in human lenses with age. Taken together, our results suggest that HBO accelerates the normal lens aging process and leads to nuclear cataract.


Assuntos
Envelhecimento/fisiologia , Catarata/etiologia , Cristalinas/metabolismo , Oxigenoterapia Hiperbárica/efeitos adversos , Núcleo do Cristalino/metabolismo , Proteólise/efeitos dos fármacos , Animais , Aquaporinas/metabolismo , Catarata/metabolismo , Catarata/patologia , Cromatografia Líquida , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Cobaias , Núcleo do Cristalino/patologia , Espectrometria de Massas em Tandem , Cadeia A de alfa-Cristalina/metabolismo
6.
Neurochem Res ; 44(10): 2314-2324, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30847857

RESUMO

The behavior of female rats changes profoundly as they become mothers. The brain region that plays a central role in this regulation is the preoptic area, and lesions in this area eliminates maternal behaviors in rodents. The molecular background of the behavioral changes has not been established yet; therefore, in the present study, we applied proteomics to compare protein level changes associated with maternal care in the rat preoptic area. Using 2-dimensional fluorescence gel electrophoresis followed by identification of altered spots with mass spectrometry, 12 proteins were found to be significantly increased, and 6 proteins showed a significantly reduced level in mothers. These results show some similarities with a previous proteomics study of the maternal medial prefrontal cortex and genomics approaches applied to the preoptic area. Gene ontological analysis suggested that most altered proteins are involved in glucose metabolism and neuroplasticity. These proteins may support the maintenance of increased neuronal activity in the preoptic area, and morphological changes in preoptic neuronal circuits are known to take place in mothers. An increase in the level of alpha-crystallin B chain (Cryab) was confirmed by Western blotting. This small heat shock protein may also contribute to maintaining the increased activity of preoptic neurons by stabilizing protein structures. Common regulator and target analysis of the altered proteins suggested a role of prolactin in the molecular changes in the preoptic area. These results first identified the protein level changes in the maternal preoptic area. The altered proteins contribute to the maintenance of maternal behaviors and may also be relevant to postpartum depression, which can occur as a molecular level maladaptation to motherhood.


Assuntos
Comportamento Materno/fisiologia , Córtex Pré-Frontal/fisiopatologia , Área Pré-Óptica/metabolismo , Proteômica , Animais , Comportamento Animal/fisiologia , Eletroforese em Gel Bidimensional/métodos , Feminino , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Área Pré-Óptica/fisiopatologia , Proteômica/métodos , Ratos
7.
Biochim Biophys Acta ; 1860(1 Pt B): 211-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26073614

RESUMO

BACKGROUND: α-Crystallin acts like a molecular chaperone by interacting with its substrate proteins and thus prevents their aggregation. It also interacts with various kinds of small molecules that affect its structure and function. SCOPE OF REVIEW: In this article we will present a review of work done with respect to the interaction of ATP, peptide generated from lens crystallin and other proteins and some bivalent metal ions with α-crystallin and discuss the role of these interactions on its structure and function and cataract formation. We will also discuss the interaction of some hydrophobic fluorescence probes and surface active agents with α-crystallin. MAJOR CONCLUSIONS: Small molecule interaction controls the structure and function of α-crystallin. ATP and Zn+2 stabilize its structure and enhance chaperone function. Therefore the depletion of these small molecules can be detrimental to maintenance of lens transparency. However, the accumulation of small peptides due to protease activity in the lens can also be harmful as the interaction of these peptides with α-crystallin and other crystallin proteins in the lens promotes aggregation and loss of lens transparency. The use of hydrophobic probe has led to a wealth of information regarding the location of substrate binding site and nature of chaperone-substrate interaction. Interaction of surface active agents with α-crystallin has helped us to understand the structural stability and oligomeric dissociation in α-crystallin. GENERAL SIGNIFICANCE: These interactions are very helpful in understanding the mechanistic details of the structural changes and chaperone function of α-crystallin. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.


Assuntos
Trifosfato de Adenosina/química , Metais/química , Peptídeos/química , Tensoativos/química , alfa-Cristalinas/química , alfa-Cristalinas/ultraestrutura , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
8.
Biochem Biophys Res Commun ; 494(1-2): 402-408, 2017 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-28935373

RESUMO

The aim of this study was to determine relative importance of N-terminal domain and C-terminal extension of αA-crystallin during their in vitro complex formation with phakinin and filensin (the two lens-specific intermediate filament [IF] proteins). Cloned phakinin, filensin and vimentin were purified under a denaturing conditions by consecutive DEAE-cellulose-, hydroxyapatite- and Sephadex G-75-column chromatographic methods. WTαA-crystallin, αA-NT (N-terminal domain [residue number 1-63])-deleted and αA-CT (C-terminal terminal extension [residue number 140-173]-deleted), were cloned in pET 100 TOPO vector, expressed in BL-21 (DE3) cells using 1% IPTG, and purified using a Ni2+-affinity column. The following two in vitro methods were used to determine complex formation of WT-αA, αA-NT, or αA-CT with phakinin, filensin or both phakinin plus filensin together: an ultracentrifugation sedimentation (centrifugation at 80,000 × g for 30 min at 20 °C) followed by SDS-PAGE analysis, and an electron microscopic analysis. In the first method, the individual control proteins (WT-αA, αA-NT and αA-CT crystallin species) remained in the supernatant fractions whereas phakinin, filensin, and vimentin were recovered in the pellet fractions. On complex formation by individual WT-αA-, αA-NT or αA-CT-species with filensin, phakinin or both phakinin and filensin, WT-αA and αA-CT were recovered in the pellet fraction with phakinin, filensin or both filensin and phakinin, whereas αA-NT remained mostly in the supernatant, suggesting its poor complex formation property. EM-studies showed filamentous structure formation between WT-αA and αA-CT with phakinin or filensin, or with both filensin and phakinin together but relatively poor filamentous structures with αA-NT. Together, the results suggest that the N-terminal domain of αA-crystallin is required during in vitro complex formation with filensin and phakinin.


Assuntos
Proteínas do Olho/metabolismo , Vetores Genéticos/química , Proteínas de Filamentos Intermediários/metabolismo , Cadeia A de alfa-Cristalina/metabolismo , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/ultraestrutura , Expressão Gênica , Vetores Genéticos/metabolismo , Humanos , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/ultraestrutura , Filamentos Intermediários/metabolismo , Filamentos Intermediários/ultraestrutura , Cristalino/metabolismo , Cristalino/ultraestrutura , Microscopia Eletrônica , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Cadeia A de alfa-Cristalina/genética , Cadeia A de alfa-Cristalina/ultraestrutura
9.
Proc Natl Acad Sci U S A ; 111(47): 16748-53, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385638

RESUMO

We study the equilibrium liquid structure and dynamics of dilute and concentrated bovine eye lens α-crystallin solutions, using small-angle X-ray scattering, static and dynamic light scattering, viscometry, molecular dynamics simulations, and mode-coupling theory. We find that a polydisperse Percus-Yevick hard-sphere liquid-structure model accurately reproduces both static light scattering data and small-angle X-ray scattering liquid structure data from α-crystallin solutions over an extended range of protein concentrations up to 290 mg/mL or 49% vol fraction and up to ca. 330 mg/mL for static light scattering. The measured dynamic light scattering and viscosity properties are also consistent with those of hard-sphere colloids and show power laws characteristic of an approach toward a glass transition at α-crystallin volume fractions near 58%. Dynamic light scattering at a volume fraction beyond the glass transition indicates formation of an arrested state. We further perform event-driven molecular dynamics simulations of polydisperse hard-sphere systems and use mode-coupling theory to compare the measured dynamic power laws with those of hard-sphere models. The static and dynamic data, simulations, and analysis show that aqueous eye lens α-crystallin solutions exhibit a glass transition at high concentrations that is similar to those found in hard-sphere colloidal systems. The α-crystallin glass transition could have implications for the molecular basis of presbyopia and the kinetics of molecular change during cataractogenesis.


Assuntos
Cristalino/metabolismo , alfa-Cristalinas/metabolismo , Animais , Bovinos , Espalhamento de Radiação , Viscosidade , alfa-Cristalinas/química
10.
Proteomics ; 16(4): 545-53, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26644245

RESUMO

Proteomic identifications hinge on the measurement of both parent and fragment masses and matching these to amino acid sequences via database search engines. The correctness of the identifications is assessed by statistical means. Here we present an experimental approach to test identifications. Chemical modification of all peptides in a sample leads to shifts in masses depending on the chemical properties of each peptide. The identification of a native peptide sequence and its perturbed version with a different parent mass and fragment ion masses provides valuable information. Labeling all peptides using reductive alkylation with formaldehyde is one such perturbation where the ensemble of peptides shifts mass depending on the number of reactive amine groups. Matching covalently perturbed fragmentation patterns from the same underlying peptide sequence increases confidence in the assignments and can salvage low scoring post-translationally modified peptides. Applying this strategy to bovine alpha-crystallin, we identify 9 lysine acetylation sites, 4 O-GlcNAc sites and 13 phosphorylation sites.


Assuntos
Processamento de Proteína Pós-Traducional , alfa-Cristalinas/análise , Acetilação , Sequência de Aminoácidos , Animais , Bovinos , Cromatografia Líquida , Glicosilação , Peptídeos/análise , Fosforilação , Proteômica , Espectrometria de Massas em Tandem
11.
Glia ; 64(6): 963-76, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26893190

RESUMO

Retinoic acid (RA), a metabolite of vitamin A, is required for the regulation of growth and development. Aberrant expression of molecules involved in RA signaling has been reported in various cancer types including glioblastoma multiforme (GBM). Cellular retinoic acid-binding protein 2 (CRABP2) has previously been shown to play a key role in the transport of RA to retinoic acid receptors (RARs) to activate their transcription regulatory activity. Here, we demonstrate that CRABP2 is predominantly located in the cytoplasm of GBM tumors. Cytoplasmic, but not nuclear, CRABP2 levels in GBM tumors are associated with poor patient survival. Treatment of malignant glioma cell lines with RA results in a dose-dependent increase in accumulation of CRABP2 in the cytoplasm. CRABP2 knockdown reduces proliferation rates of malignant glioma cells, and enhances RA-induced RAR activation. Levels of CRYAB, a small heat shock protein with anti-apoptotic activity, and GFAP, an astrocyte-specific intermediate filament protein, are greatly reduced in CRABP2-depleted cells. Restoration of CRYAB expression partially but significantly reversed the effect of CRABP2 depletion on RAR activation. Our combined in vivo and in vitro data indicate that: (i) CRABP2 is an important determinant of clinical outcome in GBM patients, and (ii) the mechanism of action of CRABP2 in GBM involves sequestration of RA in the cytoplasm and activation of an anti-apoptotic pathway, thereby enhancing proliferation and preventing RA-mediated cell death and differentiation. We propose that reducing CRABP2 levels may enhance the therapeutic index of RA in GBM patients.


Assuntos
Diferenciação Celular/fisiologia , Citoplasma/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/metabolismo , Receptores do Ácido Retinoico/metabolismo , Apoptose/fisiologia , Linhagem Celular Tumoral , Humanos , Prognóstico , Transdução de Sinais/fisiologia
12.
J Cell Sci ; 127(Pt 21): 4762-73, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25179594

RESUMO

Leishmania parasites must survive and proliferate in two vastly different environments - the guts of poikilothermic sandflies and the antigen-presenting cells of homeothermic mammals. The change of temperature during the transmission from sandflies to mammals is both a key trigger for the progression of their life cycle and for elevated synthesis of heat shock proteins, which have been implicated in their survival at higher temperatures. Although the functions of the main heat shock protein families in the Leishmania life cycle have been studied, nothing is known about the roles played by small heat shock proteins. Here, we present the first evidence for the pivotal role played by the Leishmania donovani 23-kDa heat shock protein (which we called HSP23), which is expressed preferentially during the mammalian stage where it assumes a perinuclear localisation. Loss of HSP23 causes increased sensitivity to chemical stressors and renders L. donovani non-viable at 37°C. Consequently, HSP23-null mutants are non-infectious to primary macrophages in vitro. All phenotypic effects could be abrogated by the introduction of a functional HSP23 transgene into the null mutant, confirming the specificity of the mutant phenotype. Thus, HSP23 expression is a prerequisite for L. donovani survival at mammalian host temperatures and a crucial virulence factor.


Assuntos
Proteínas de Choque Térmico Pequenas/metabolismo , Leishmania donovani/metabolismo , Leishmania donovani/fisiologia , Proteínas de Protozoários/metabolismo , Animais , Células Cultivadas , Proteínas de Choque Térmico Pequenas/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/genética , Temperatura
13.
BMC Ophthalmol ; 16: 67, 2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-27234311

RESUMO

BACKGROUND: The purpose of this study was to investigate the different expressions of αA-crystallin and αB-crystallin in human lens epithelium of age-related and congenital cataracts. METHODS: The central part of the human anterior lens capsule approximately 5 mm in diameter together with the adhering epithelial cells, were harvested and processed within 6 hours after cataract surgery from age-related and congenital cataract patients or from normal eyes of fresh cadavers. The mRNA and soluble protein levels of αA-crystallin and αB-crystallin in the human lens epithelium were detected by real-time PCR and western blots, respectively. RESULTS: The mRNA and soluble protein expressions of αA-crystallin and αB-crystallin in the lens epithelium were both reduced in age-related and congenital cataract groups when compared with the normal control group. However, the degree of α-crystallin loss in the lens epithelium was highly correlated with different cataract types. The α-crystallin expression of the lens epithelium was greatly reduced in the congenital cataract group but only moderately decreased in the age-related cataract group. The reduction of αA-crystallin soluble protein levels in the congenital cataract group was approximately 2.4 fold decrease compared with that of the age-related cataract group, while an mRNA fold change of 1.67 decrease was observed for the age-related cataract group. Similarly, the reduction of soluble protein levels of αB-crystallin in the congenital cataract group was approximately a 1.57 fold change compared with that of the age-related cataract group. A 1.75 fold change for mRNA levels compared with that of the age-related cataract group was observed. CONCLUSIONS: The results suggest that the differential loss of α-crystallin in the human lens epithelium could be associated with the different mechanisms of cataractogenesis in age-related versus congenital cataracts, subsequently resulting in different clinical presentations.


Assuntos
Catarata/metabolismo , Cristalino/metabolismo , alfa-Cristalinas/metabolismo , beta-Cristalinas/metabolismo , Idoso , Análise de Variância , Western Blotting , Catarata/congênito , Criança , Pré-Escolar , Epitélio/metabolismo , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
14.
Biochim Biophys Acta ; 1843(2): 309-15, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24275510

RESUMO

In addition to their key role as structural lens proteins, α-crystallins also appear to confer protection against many eye diseases, including cataract, retinitis pigmentosa, and macular degeneration. Exogenous recombinant α-crystallin proteins were examined for their ability to prevent cell death induced by heat or oxidative stress in a human lens epithelial cell line (HLE-B3). Wild type αA- or αB-crystallin (WT-αA and WT-αB) and αA- or αB-crystallins, modified by the addition of a cell penetration peptide (CPP) designed to enhance the uptake of proteins into cells (gC-αB, TAT-αB, gC-αA), were produced by recombinant methods. In vitro chaperone-like assays were used to assay the ability of α-crystallins to protect client proteins from chemical or heat induced aggregation. In vivo viability assays were performed in HLE-B3 to determine whether pre-treatment with α-crystallins reduced death after exposure to oxidative or heat stress. Most of the five recombinant α-crystallin proteins tested conferred some in vitro protection from protein aggregation, with the greatest effect seen with WT-αB and gC-αB. All α-crystallins displayed significant protection to oxidative stress induced cell death, while only the αB-crystallins reduced cell death induced by thermal stress. Our findings indicate that the addition of the gC tag enhanced the protective effect of αB-crystallin against oxidative but not thermally-induced cell death. In conclusion, modifications that increase the uptake of α-crystallin proteins into cells, without destroying their chaperone-like activity and anti-apoptotic functions, create the potential to use these proteins therapeutically.


Assuntos
Cristalinas/farmacologia , Citoproteção/efeitos dos fármacos , Temperatura Alta , Cristalino/patologia , Estresse Oxidativo/efeitos dos fármacos , Cadeia B de alfa-Cristalina/farmacologia , Aldeído Redutase/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacologia , Cristalinas/metabolismo , Humanos , Estrutura Quaternária de Proteína , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/toxicidade
15.
Exp Eye Res ; 138: 104-13, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26149094

RESUMO

αA- and αB-crystallins are small heat shock proteins that bind thermodynamically destabilized proteins thereby inhibiting their aggregation. Highly expressed in the mammalian lens, the α-crystallins have been postulated to play a critical role in the maintenance of lens optical properties by sequestering age-damaged proteins prone to aggregation as well as through a multitude of roles in lens epithelial cells. Here, we have examined the role of α-crystallins in the development of the vertebrate zebrafish lens. For this purpose, we have carried out morpholino-mediated knockdown of αA-, αBa- and αBb-crystallin and characterized the gross morphology of the lens. We observed lens abnormalities, including increased reflectance intensity, as a consequence of the interference with expression of these proteins. These abnormalities were less frequent in transgenic zebrafish embryos expressing rat αA-crystallin suggesting a specific role of α-crystallins in embryonic lens development. To extend and confirm these findings, we generated an αA-crystallin knockout zebrafish line. A more consistent and severe lens phenotype was evident in maternal/zygotic αA-crystallin mutants compared to those observed by morpholino knockdown. The penetrance of the lens phenotype was reduced by transgenic expression of rat αA-crystallin and its severity was attenuated by maternal αA-crystallin expression. These findings demonstrate that the role of α-crystallins in lens development is conserved from mammals to zebrafish and set the stage for using the embryonic lens as a model system to test mechanistic aspects of α-crystallin chaperone activity and to develop strategies to fine-tune protein-protein interactions in aging and cataracts.


Assuntos
Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Cristalino/embriologia , Peixe-Zebra/embriologia , Cadeia A de alfa-Cristalina/fisiologia , Animais , Animais Geneticamente Modificados , Western Blotting , Eletroforese em Gel de Poliacrilamida , Técnicas de Inativação de Genes , Reação em Cadeia da Polimerase em Tempo Real
16.
Amino Acids ; 47(12): 2601-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26215735

RESUMO

Alpha crystallin, a small heat-shock protein, has been studied extensively for its chaperone function. Alpha crystallin subunits are expressed in stress conditions and have been found to prevent apoptosis by inhibiting the activation of caspase pathway. Non-enzymatic glycation of protein leads to the formation of advanced glycation end-products (AGEs). These AGEs bind to receptors and lead to blocking the signaling pathways or cause protein precipitation as observed in aggregation-related diseases. Methylglyoxal (MGO) is one of the major glycating agents expressed in pathological conditions due to defective glycolysis pathway. MGO reacts rapidly with proteins, forms AGEs and finally leads to aggregation. The goal of this study was to understand the non-enzymatic glycation-induced structural damage in alpha crystallin using biophysical and spectroscopic characterization. This will help to develop better disease models for understanding the biochemical pathways and also in drug discovery.


Assuntos
Envelhecimento , Diabetes Mellitus/patologia , Doenças Neurodegenerativas/patologia , alfa-Cristalinas/química , Animais , Apoptose , Catarata/patologia , Bovinos , Modelos Animais de Doenças , Descoberta de Drogas , Produtos Finais de Glicação Avançada/metabolismo , Glicólise , Glicosilação , Proteínas de Choque Térmico/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cristalino/patologia , Luz , Chaperonas Moleculares/metabolismo , Presbiopia/patologia , Ligação Proteica , Aldeído Pirúvico/química , Espalhamento de Radiação , Transdução de Sinais , Espectrometria de Fluorescência , Temperatura
17.
J Infect Dis ; 209(9): 1436-45, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24218502

RESUMO

Mycobacterium tuberculosis (M. tuberculosis) in latently infected individuals survives and thwarts the attempts of eradication by the immune system. During latency, Acr1 is predominantly expressed by the bacterium. However, whether M. tuberculosis exploits its Acr1 in impairing the host immunity remains widely unexplored. Hence, currently we have investigated the role of Acr1 in influencing the differentiation and function of dendritic cells (DCs), which play a cardinal role in innate and adaptive immunity. Therefore, for the first time, we have revealed a novel mechanism of mycobacterial Acr1 in inhibiting the maturation and differentiation of DCs by inducing tolerogenic phenotype by modulating the expression of PD-L1; Tim-3; indoleamine 2, 3-dioxygenase (IDO); and interleukin 10. Furthermore, Acr1 interferes in the differentiation of DCs by targeting STAT-6 and STAT-3 pathways. Continuous activation of STAT-3 inhibited the translocation of NF-κB in Acr1-treated DCs. Furthermore, Acr1 also augmented the induction of regulatory T cells. These DCs displayed decline in their antigen uptake capacity and reduced ability to help T cells. Interestingly, M. tuberculosis exhibited better survival in Acr1-treated DCs. Thus, this study provides a crucial insight into a strategy adopted by M. tuberculosis to survive in the host by impairing the function of DCs.


Assuntos
Células Dendríticas/citologia , Células Dendríticas/imunologia , Mycobacterium tuberculosis/imunologia , alfa-Cristalinas/imunologia , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Fenótipo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT6/antagonistas & inibidores , Fator de Transcrição STAT6/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , alfa-Cristalinas/farmacologia
18.
Biopolymers ; 101(5): 549-60, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24122648

RESUMO

α-Crystallin is a multimeric eye lens protein having molecular chaperone-like function which is crucial for lens transparency. The stability and unfolding-refolding properties of α-crystallin plays important roles for its function. We undertook a multi probe based fluorescence spectroscopic approach to explore the changes in the various levels of organization of this protein at different urea concentration. Steady state fluorescence studies reveal that at 0.6M urea a compact structural intermediate is formed which has a native-like secondary structure with enhanced surface exposure of hydrophobic groups. At 2.8M urea the tertiary interactions are largely collapsed with partial collapse of secondary and quaternary structure. The surface solvation probed by picosecond time resolved fluorescence of acrylodan labeled α-crystallin revealed dry native-like core of α-crystallin at 0.6M urea compared to enhanced water penetration at 2.8M urea and extensive solvation at 6M urea. Activation energy for the subunit exchange decreased by 22 kJ mol(-1) on changing urea concentration from 0 to 0.6M compared with over 75 kJ mol(-1) on changing urea concentration from 0 to 2.8M. Light scattering and analytical ultracentrifugation techniques were used to determine size and oligomerization of the unfolding intermediates. The data indicated swelling but no oligomer breakdown at 0.6M urea. At 2.8M urea the oligomeric size is considerably reduced and a monomer is produced at 6M urea. The data clearly reveals that structural breakdown of α-crystallin does not follow hierarchical sequence as tertiary structure dissolution takes place before complete oligomeric dissociation.


Assuntos
Dobramento de Proteína , Multimerização Proteica , alfa-Cristalinas/química , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Cinética , Peso Molecular , Desnaturação Proteica , Subunidades Proteicas/química , Espectrometria de Fluorescência , Fatores de Tempo , Triptofano/metabolismo
19.
Mol Cells ; 47(8): 100091, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38997088

RESUMO

Exposure to blue light can lead to retinal degeneration, causing adverse effects on eye health. Although the loss of retinal cells due to blue light exposure has been observed, the precise molecular mechanisms underlying this process remain poorly understood. In this study, we investigate the role of alpha-crystallin A (CRYAA) in neuro-retinal degeneration and their regulation by blue light. We observed significant apoptotic cell death in both the retina of rats and the cultured neuro-retinal cells. The expressions of Cryaa mRNA and protein were significantly downregulated in the retina exposed to blue light. We identified that miR-325-3p reduces Cryaa mRNA and protein by binding to its 3'-untranslated region. Upregulation of miR-325-3p destabilized Cryaa mRNA and suppresses CRYAA, whereas downregulation of miR-325-3p increased both expressions. Blue light-induced neuro-retinal cell death was alleviated by CRYAA overexpression. These results highlight the critical role of Cryaa mRNA and miR-325-3p molecular axis in blue light-induced retinal degeneration. Consequently, targeting CRYAA and miR-325-3p presents a potential strategy for protecting against blue light-induced retinal degeneration.

20.
J Mol Cell Cardiol ; 61: 123-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23791817

RESUMO

The recent exponential increase in human genetic studies due to the advances of next generation sequencing has generated unprecedented numbers of new gene variants. Determining which of these are causative of human disease is a major challenge. In-vitro studies and murine models have been used to study inherited cardiac arrhythmias but have several limitations. Zebrafish models provide an attractive alternative for modeling human heart disease due to similarities in cardiac electrophysiology and contraction, together with ease of genetic manipulation, external development and optical transparency. Although zebrafish cardiac mutants and morphants have been widely used to study loss and knockdown of zebrafish gene function, the phenotypic effects of human dominant-negative gene mutations expressed in transgenic zebrafish have not been evaluated. The aim of this study was to generate and characterize a transgenic zebrafish arrhythmia model harboring the pathogenic human cardiac sodium channel mutation SCN5A-D1275N, that has been robustly associated with a range of cardiac phenotypes, including conduction disease, sinus node dysfunction, atrial and ventricular arrhythmias, and dilated cardiomyopathy in humans and in mice. Stable transgenic fish with cardiac expression of human SCN5A were generated using Tol2-mediated transgenesis and cardiac phenotypes were analyzed using video microscopy and ECG. Here we show that transgenic zebrafish expressing the SCN5A-D1275N mutation, but not wild-type SCN5A, exhibit bradycardia, conduction-system abnormalities and premature death. We furthermore show that SCN5A-WT, and to a lesser degree SCN5A-D1275N, are able to compensate the loss of endogenous zebrafish cardiac sodium channels, indicating that the basic pathways, through which SCN5A acts, are conserved in teleosts. This proof-of-principle study suggests that zebrafish may be highly useful in vivo models to differentiate functional from benign human genetic variants in cardiac ion channel genes in a time- and cost-efficient manner. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".


Assuntos
Bradicardia/genética , Sistema de Condução Cardíaco/anormalidades , Canal de Sódio Disparado por Voltagem NAV1.5/biossíntese , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Bradicardia/fisiopatologia , Modelos Animais de Doenças , Frequência Cardíaca , Humanos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Penetrância , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA