Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Mol Struct ; 1094: 203-209, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25937671

RESUMO

In the present study, a comparative Raman vibrational analysis of alpha-cyano-4-hydroxycinnamic acid (4CHCA) and its derivative, alpha-cyano-3-hydroxycinnamic acid (3CHCA), was performed. The Raman spectra of the 4CHCA and 3CHCA in solid form were obtained and analyzed to determine differences between the two structurally similar derivatives. For comparison, the CHCA derivatives cyanocinnamic acid (CCA) and coumaric acid (CA) were also studied. The plausible vibrational assignments were made and matched with those obtained theoretically using density functional theory (DFT) based method employing a 6-31 g basis set. The computational wavenumbers obtained were in good agreement with the observed experimental results. This was the first reported Raman study of CCA, 3CHCA and 4CHCA.

2.
Cytokine ; 65(2): 167-74, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24345576

RESUMO

Interleukin-17A (IL-17A) is the prototype of IL-17 family and has been implicated in the pathogenesis of a variety of autoimmune diseases. Therefore its structural and functional properties are of great medical interest. During our research on a recombinant human IL-17A (rhIL-17A) variant, four isoforms were obtained when it was refolded. While isoforms 1 and 2 represented non-covalent dimers, isoforms 3 and 4 were determined to be covalent dimers. All four isoforms were structurally similar by Circular Dichroism and fluorescence spectroscopy studies, but differential scanning calorimetry demonstrated thermal stability in the order of isoform 1=isoform 2

Assuntos
Dissulfetos/metabolismo , Interleucina-17/metabolismo , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Humanos , Interleucina-17/química , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Redobramento de Proteína , Soluções , Espectrometria de Fluorescência
3.
J Pharm Biomed Anal ; 190: 113540, 2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-32846401

RESUMO

Accumulating evidence has been suggesting that combining two or more anticancer drugs can provide additive or synergistic effects, improving therapeutic efficacy and delaying resistance. Nowadays, advances in nanotechnology-based delivery systems have enabled the association of different drugs into a single carrier and provided therapeutic gains to the proposed regimen. However, a new strategy also requires innovative analytical approaches that assess loading capacity, biological performance, and also comprehend the mechanisms of action. Alpha-cyano-4-hydroxycinnamic acid (CHC) and the monoclonal antibody (mAb) cetuximab (CTX) are explored worldwide for their therapeutic benefits against multiple cancer cells. The present work aims to develop and validate a new method for simultaneous quantification of CHC and CTX in nanoparticulate systems by using reverse phase high-performance liquid chromatography (RP-HPLC) with ultraviolet (UV) detection for CHC, and fluorescence detection for CTX. This method was designed following the guidelines of the International Conference on Harmonization ICH Q2 (R1) and the Food and Drug Administration (FDA) - Guidance for Bioanalytical Method Validation. Chromatographic separation was performed on a C18 column with the mobile phase composed by water, 0.1 % (v/v) trifluoroacetic acid (TFA) and acetonitrile (ACN)-0.1 % TFA on gradient mode at a flow rate of 0.6 mL/min. The performance of the present method was evaluated by system suitability; therefore, linearity, accuracy, precision, detection, limit of detection / limit of quantification, and robustness were also highlighted. Specificity was demonstrated by the chromatographic analyses of CHC and CTX, subjected to several informative stress conditions. The developed method was also successfully used for the first time to quantify the CHC and CTX content in poly(lactic-co-glycolic acid)-based nanoparticles. In conclusion, this new and rapid method presented acceptable analytical performance and can be helpful to simultaneously quantify CHC and CTX in future studies applied to anticancer therapy.


Assuntos
Anticorpos Monoclonais , Nanopartículas , Cetuximab , Cromatografia Líquida de Alta Pressão , Ácidos Cumáricos , Limite de Detecção
4.
AAPS J ; 22(4): 84, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32529599

RESUMO

Monocarboxylate transporter 1 (MCT1) represents a potential therapeutic target in cancer. The objective of this study was to determine the efficacy of AZD3965 (a specific inhibitor of MCT1) and α-cyano-4-hydroxycinnamic acid (CHC, a nonspecific inhibitor of MCTs) in the murine 4T1 tumor model of triple-negative breast cancer (TNBC). Expression of MCT1 and MCT4 in 4T1 and mouse mammary epithelial cells were determined by Western blot. Inhibition of MCT1-mediated L-lactate uptake and cellular proliferation by AZD3965 and CHC was determined. Mice bearing 4T1 breast tumors were treated with AZD3965 100 mg/kg i.p. twice-daily or CHC 200 mg/kg i.p. once-daily. Tumor growth, metastasis, intra-tumor lactate concentration, immune function, tumor MCT expression, and concentration-effect relationships were determined. AZD3965 and CHC inhibited cell growth and L-lactate uptake in 4T1 cells. AZD3965 treatment resulted in trough plasma and tumor concentrations of 29.1 ± 13.9 and 1670 ± 946 nM, respectively. AZD3965 decreased the tumor proliferation biomarker Ki67 expression, increased intra-tumor lactate concentration, and decreased tumor volume, although tumor weight was not different from untreated controls. CHC had no effect on tumor volume and weight, or intra-tumor lactate concentration. AZD3965 treatment reduced the blood leukocyte count and spleen weight and increased lung metastasis, while CHC did not. These findings indicate AZD3965 is a potent MCT1 inhibitor that accumulates to high concentrations in 4T1 xenograft tumors, where it increases tumor lactate concentrations and produces beneficial effects on markers of TNBC; however, overall effects on tumor growth were minimal and lung metastases increased.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Ácidos Cumáricos/administração & dosagem , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Pirimidinonas/administração & dosagem , Simportadores/antagonistas & inibidores , Tiofenos/administração & dosagem , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Ácidos Cumáricos/metabolismo , Relação Dose-Resposta a Droga , Feminino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Transportadores de Ácidos Monocarboxílicos/metabolismo , Pirimidinonas/metabolismo , Simportadores/metabolismo , Tiofenos/metabolismo , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
5.
Neuropeptides ; 77: 101962, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31488323

RESUMO

Hindbrain energy state shapes hypothalamic control of glucostasis. Dorsal vagal complex (DVC) L-lactate deficiency is a potent glucose-stimulatory signal that triggers neuronal transcriptional activation in key hypothalamic metabolic loci. The energy gauge AMPK is activated in DVC metabolic-sensory A2 noradrenergic neurons by hypoglycemia-associated lactoprivation, but sensor reactivity is diminished by antecedent hypoglycemia (AH). Current research addressed the premise that AH alters hindbrain lactoprivic regulation of hypothalamic metabolic transmitter function. AH did not modify reductions in A2 dopamine-beta-hydroxylase and monocarboxylate-2 (MCT2) protein expression elicited by caudal fourth ventricular delivery of the MCT inhibitor alpha-cyano-4-hydroxycinnamic acid (4CIN), but attenuated 4CIN activation of A2 AMPK. 4CIN constraint of hypothalamic norepinephrine (NE) activity was averted by AH in a site-specific manner. 4CIN induction of Fos immunolabeling in hypothalamic arcuate (ARH), ventromedial (VMN), dorsomedial (DMN) and paraventricular (PVN) nuclei and lateral hypothalamic area (LHA) was avoided by AH. AH affected reactivity of select hypothalamic metabolic neurotransmitter/enzyme marker proteins, e.g. ARH neuropeptide Y, VMN glutamate decarboxylase, DMN RFamide-related peptide-1 and -3, and LHA orexin-A profiles to 4CIN, but did not alleviate drug inhibition of ARH proopiomelanocortin. AH prevented 4CIN augmentation of circulating glucagon, but did not alter hyperglycemic or hypocorticosteronemic responses to that treatment. Results identify hindbrain lactate deficiency as a stimulus for glucagon secretion, and imply that habituation of this critical counter-regulatory hormone to recurring hypoglycemia may involve one or more hypothalamic neurotransmitters characterized here by acclimation to this critical sensory stimulus.


Assuntos
Hipoglicemia/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Rombencéfalo/metabolismo , Animais , Glicemia/metabolismo , Hipoglicemia/induzido quimicamente , Insulina , Masculino , Neuropeptídeo Y/metabolismo , Norepinefrina/metabolismo , Pró-Opiomelanocortina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Ativação Transcricional
6.
J Mass Spectrom ; 53(8): 635-648, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29745432

RESUMO

MALDI mass spectrometry imaging (MSI) enables analysis of peptides along with histology. However, there are several critical steps in MALDI MSI of peptides, 1 of which is spectral quality. Suppression of MALDI matrix clusters by the aid of ammonium salts in MALDI experiments is well known. It is asserted that addition of ammonium salts dissociates potential matrix adducts and thereafter decreases matrix cluster formation. Consequently, MALDI MS sensitivity and mass accuracy increase. Up to our knowledge, a limited number of MALDI MSI studies used ammonium salts as matrix additives to suppress matrix clusters and enhance peptide signals. In this work, we investigated the effect of ammonium phosphate monobasic (AmP) as alpha-cyano-4-hydroxycinnamic acid (α-CHCA) matrix additive in MALDI MSI of peptides. Prior to MALDI MSI, the effect of varying concentrations of AmP in α-CHCA was assessed in bovine serum albumin tryptic digests and compared with the control (α-CHCA without AmP). Based on our data, the addition of AmP as matrix additive decreased matrix cluster formation regardless of its concentration, and specifically, 8 mM AmP and 10 mM AmP increased bovine serum albumin peptide signal intensities. In MALDI MSI of peptides, both 8 and 10 mM AmP in α-CHCA improved peptide signals especially in the mass range of m/z 2000 to 3000. In particular, 9 peptide signals were found to have differential intensities within the tissues deposited with AmP in α-CHCA (AUC > 0.60). To the best of our knowledge, this is the first MALDI MSI of peptides work investigating different concentrations of AmP as α-CHCA matrix additive to enhance peptide signals in formalin-fixed paraffin-embedded (FFPE) tissues. Further, AmP as part of α-CHCA matrix could enhance protein identifications and support MALDI MSI-based proteomic approaches.

7.
Syst Appl Microbiol ; 36(8): 572-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24054697

RESUMO

MALDI-TOF MS is currently becoming the method of choice for rapid identification of bacterial species in routine diagnostics. Yet, this method suffers from the inability to differentiate reliably between some closely related bacterial species including those of the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex, namely A. baumannii and Acinetobacter nosocomialis. In the present study, we evaluated a protocol which was different from that used in the Bruker Daltonics identification system (MALDI BioTyper) to improve species identification using a taxonomically precisely defined set of 105 strains representing the four validly named species of the ACB complex. The novel protocol is based on the change in matrix composition from alpha-cyano-4-hydroxycinnamic acid (saturated solution in water:acetonitrile:trifluoroacetic acid, 47.5:50:2.5, v/v) to ferulic acid (12.5mgml(-1) solution in water:acetonitrile:formic acid 50:33:17, v/v), while the other steps of sample processing remain unchanged. Compared to the standard protocol, the novel one extended the range of detected compounds towards higher molecular weight, produced signals with better mass resolution, and allowed the detection of species-specific signals. As a result, differentiation of A. nosocomialis and A. baumannii strains by cluster analysis was improved and 13 A. nosocomialis strains, assigned erroneously or ambiguously by using the standard protocol, were correctly identified.


Assuntos
Acinetobacter/química , Acinetobacter/classificação , Técnicas Bacteriológicas/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Acinetobacter/isolamento & purificação , Análise por Conglomerados , Manejo de Espécimes/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA