RESUMO
Conus regius is a marine venomous mollusk of the Conus genus that captures its prey by injecting a rich cocktail of bioactive disulfide bond rich peptides called conotoxins. These peptides selectively target a broad range of ion channels, membrane receptors, transporters, and enzymes, making them valuable pharmacological tools and potential drug leads. C. regius-derived conotoxins are particularly attractive due to their marked potency and selectivity against specific nicotinic acetylcholine receptor subtypes, whose signalling is involved in pain, cognitive disorders, drug addiction, and cancer. However, the species-specific differences in sensitivity and the low stability and bioavailability of these conotoxins limit their clinical development as novel therapeutic agents for these disorders. Here, we give an overview of the main pharmacological features of the C. regius-derived conotoxins described so far, focusing on the molecular mechanisms underlying their potential therapeutic effects. Additionally, we describe adoptable chemical engineering solutions to improve their pharmacological properties for future potential clinical translation.
Assuntos
Conotoxinas , Caramujo Conus , Receptores Nicotínicos , Animais , Conotoxinas/farmacologia , Conotoxinas/química , Organismos Aquáticos , Caramujo Conus/química , Peptídeos/farmacologia , Antagonistas Nicotínicos/farmacologiaRESUMO
Opioids are first-line drugs for moderate to severe acute pain and cancer pain. However, these medications are associated with severe side effects, and whether they are efficacious in treatment of chronic nonmalignant pain remains controversial. Medications that act through alternative molecular mechanisms are critically needed. Antagonists of α9α10 nicotinic acetylcholine receptors (nAChRs) have been proposed as an important nonopioid mechanism based on studies demonstrating prevention of neuropathology after trauma-induced nerve injury. However, the key α9α10 ligands characterized to date are at least two orders of magnitude less potent on human vs. rodent nAChRs, limiting their translational application. Furthermore, an alternative proposal that these ligands achieve their beneficial effects by acting as agonists of GABAB receptors has caused confusion over whether blockade of α9α10 nAChRs is the fundamental underlying mechanism. To address these issues definitively, we developed RgIA4, a peptide that exhibits high potency for both human and rodent α9α10 nAChRs, and was at least 1,000-fold more selective for α9α10 nAChRs vs. all other molecular targets tested, including opioid and GABAB receptors. A daily s.c. dose of RgIA4 prevented chemotherapy-induced neuropathic pain in rats. In wild-type mice, oxaliplatin treatment produced cold allodynia that could be prevented by RgIA4. Additionally, in α9 KO mice, chemotherapy-induced development of cold allodynia was attenuated and the milder, temporary cold allodynia was not relieved by RgIA4. These findings establish blockade of α9-containing nAChRs as the basis for the efficacy of RgIA4, and that α9-containing nAChRs are a critical target for prevention of chronic cancer chemotherapy-induced neuropathic pain.
Assuntos
Dor do Câncer/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Peptídeos/administração & dosagem , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Analgésicos Opioides/efeitos adversos , Animais , Dor do Câncer/induzido quimicamente , Dor do Câncer/genética , Dor do Câncer/patologia , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Hiperalgesia/patologia , Ligantes , Camundongos , Camundongos Knockout , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/genética , Neuralgia/patologia , Antagonistas Nicotínicos/administração & dosagem , Compostos Organoplatínicos/efeitos adversos , Oxaliplatina , Receptores de GABA-B/genéticaRESUMO
UNLABELLED: After CNS injury, axon regeneration is blocked by an inhibitory environment consisting of the highly upregulated tenascin-C and chondroitin sulfate proteoglycans (CSPGs). Tenascin-C promotes growth of axons if they express a tenascin-binding integrin, particularly α9ß1. Additionally, integrins can be inactivated by CSPGs, and this inhibition can be overcome by the presence of a ß1-binding integrin activator, kindlin-1. We examined the synergistic effect of α9 integrin and kindlin-1 on sensory axon regeneration in adult rat spinal cord after dorsal root crush and adeno-associated virus transgene expression in dorsal root ganglia. After 12 weeks, axons from C6-C7 dorsal root ganglia regenerated through the tenascin-C-rich dorsal root entry zone into the dorsal column up to C1 level and above (>25 mm axon length) through a normal pathway. Animals also showed anatomical and electrophysiological evidence of reconnection to the dorsal horn and behavioral recovery in mechanical pressure, thermal pain, and ladder-walking tasks. Expression of α9 integrin or kindlin-1 alone promoted much less regeneration and recovery. SIGNIFICANCE STATEMENT: The study demonstrates that long-distance sensory axon regeneration over a normal pathway and with sensory and sensory-motor recovery can be achieved. This was achieved by expressing an integrin that recognizes tenascin-C, one of the components of glial scar tissue, and an integrin activator. This enabled extensive long-distance (>25 mm) regeneration of both myelinated and unmyelinated sensory axons with topographically correct connections in the spinal cord. The extent of growth and recovery we have seen would probably be clinically significant. Restoration of sensation to hands, perineum, and genitalia would be a significant improvement for a spinal cord-injured patient.
Assuntos
Axônios/fisiologia , Regulação da Expressão Gênica/fisiologia , Integrinas/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/citologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Modelos Animais de Doenças , Feminino , Lateralidade Funcional , Gânglios Espinais/citologia , Integrinas/genética , Proteínas do Tecido Nervoso/metabolismo , Neuritos/fisiologia , Pressão , Ratos , Ratos Sprague-Dawley , Caminhada/fisiologiaRESUMO
α9ß1 is the most recent addition to the integrin family of membrane receptors and consequently remains the one that is the least characterized. To better understand how transcription of the human gene encoding the α9 subunit is regulated, we cloned the α9 promoter and characterized the regulatory elements that are required to ensure its transcription. Transfection of α9 promoter/CAT plasmids in primary cultured human corneal epithelial cells (HCECs) and uveal melanoma cell lines demonstrated the presence of both negative and positive regulatory elements along the α9 promoter and positioned the basal α9 promoter to within 118 bp from the α9 mRNA start site. In vitro DNaseI footprinting and in vivo ChIP analyses demonstrated the binding of the transcription factors Sp1, c-Myb and NFI to the most upstream α9 negative regulatory element. The transcription factors Sp1 and NFI were found to bind the basal α9 promoter individually but Sp1 binding clearly predominates when both transcription factors are present in the same extract. Suppression of Sp1 expression through RNAi also caused a dramatic reduction in the expression of the α9 gene. Most of all, addition of tenascin-C (TNC), the ligand of α9ß1, to the tissue culture plates prior to seeding HCECs increased α9 transcription whereas it simultaneously decreased expression of the α5 integrin subunit gene. This dual regulatory action of TNC on the transcription of the α9 and α5 genes suggests that both these integrins must work together to appropriately regulate cell adhesion, migration and differentiation that are hallmarks of tissue wound healing.
Assuntos
Epitélio Corneano/citologia , Regulação da Expressão Gênica/fisiologia , Cadeias alfa de Integrinas/fisiologia , Regiões Promotoras Genéticas/fisiologia , Células Cultivadas , Células Epiteliais/metabolismo , Epitélio Corneano/metabolismo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Cadeias alfa de Integrinas/genética , Fatores de Transcrição NFI/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , TransfecçãoRESUMO
INTRODUCTION: Cervical cancer is a common malignancy among woman, strong molecular epidemiological data show that high risk HPV infection is the main cause of cervical cancer. MATERIAL AND METHODS: Samples were collected from Sichuan women's and children's hospital based on the relevant guidelines and regulations, HPV DNA was extracted and evaluated by Human Papillomavirus Genotyping Kit for 21 types, according to the manufacturer's guidelines to analyze the epidemic age, mixed infection types, variation trend of HPV types in Sichuan from 2014 to 2021; Results: Out of 51174 samples11165 (21.82 %) HPV positive samples were detected, all belonging to alpha family, 53.32 % HPV positive samples and 61.51 % high-risk (HR) HPV positive samples are alpha-9 genus; The three commonest HR were HPV-52, HPV-16, HPV-58, and the low-risk (LR) HPV were HPV-81, HPV-6, HPV-11; Single infection was absolutely predominant and the age group with the highest HPV detection rate was 26-30 years old. During 2014-2021, HPV-16, HPV-6 and HPV-11 decline, while HPV-58 and HPV-52 increased; Conclusions: The most prevalent age group of HPV in this region was 26-30 years old. The detection rate of HPV-52 increased in the region, overtaking HPV-16 as the commonest type of HPV. α-9 genus HPV with strong pathogenicity is the commonest HR HPV. HPV prevalence systematic comparison in certain areas and continuous time can accurately and intuitively understand its distribution changes, achieve analysis of the epidemic trend, and provide guidance for the prevention, treatment and scientific research of HPV in Sichuan.
Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Criança , Feminino , Humanos , Adulto , Neoplasias do Colo do Útero/diagnóstico , Genótipo , Papillomaviridae/genética , Papillomavirus Humano 16 , Prevalência , China/epidemiologiaRESUMO
Persistent infection with Human Papillomavirus (HPV) is responsible for almost all cases of cervical cancers, and HPV16 and HPV18 associated with the majority of these. These types differ in the proportion of viral minor nucleotide variants (MNVs) caused by APOBEC3 mutagenesis as well as integration frequencies. Whether these traits extend to other types remains uncertain. This study aimed to investigate and compare genomic variability and chromosomal integration in the two phylogenetically distinct Alpha-7 and Alpha-9 clades of carcinogenic HPV types. The TaME-seq protocol was employed to sequence cervical cell samples positive for HPV31, HPV33 or HPV45 and combine these with data from a previous study on HPV16 and HPV18. APOBEC3 mutation signatures were found in Alpha-9 (HPV16/31/33) but not in Alpha-7 (HPV18/45). HPV45 had significantly more MNVs compared to the other types. Alpha-7 had higher integration frequency compared to Alpha-9. An increase in integration frequency with increased diagnostic severity was found for Alpha-7. The results highlight important differences and broaden our understanding of the molecular mechanisms behind cervical cancer induced by high-risk HPV types from the Alpha-7 and Alpha-9 clades.
Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Infecções por Papillomavirus/genética , Filogenia , Papillomavirus Humano 18/genética , Papillomavirus Humano 16/genética , Papillomaviridae/genética , Neoplasias do Colo do Útero/genética , Desaminases APOBEC/genéticaRESUMO
Adhesion of basal keratinocytes to the underlying extracellular matrix (ECM) plays a key role in the control of skin homeostasis and response to injury. Integrin receptors indirectly link the ECM to the cell cytoskeleton through large protein complexes called focal adhesions (FA). FA also function as intracellular biochemical signaling platforms to enable cells to respond to changing extracellular cues. The α4ß1 and α9ß1 integrins are both expressed in basal keratinocytes, share some common ECM ligands, and have been shown to promote wound healing in vitro and in vivo. However, their roles in maintaining epidermal homeostasis and relative contributions to pathological processes in the skin remain unclear. We found that α4ß1 and α9ß1 occupied distinct regions in monolayers of a basal keratinocyte cell line (NEB-1). During collective cell migration (CCM), α4 and α9 integrins co-localized along the leading edge. Pharmacological inhibition of α4ß1 and α9ß1 integrins increased keratinocyte proliferation and induced a dramatic change in cytoskeletal remodeling and FA rearrangement, detrimentally affecting CCM. Further analysis revealed that α4ß1/α9ß1 integrins suppress extracellular signal-regulated kinase (ERK1/2) activity to control migration through the regulation of downstream kinases including Mitogen and Stress Activated Kinase 1 (MSK1). This work demonstrates the roles of α4ß1 and α9ß1 in regulating migration in response to damage cues.
RESUMO
BACKGROUND: Rheumatoid arthritis (RA) is a chronic, debilitating autoimmune condition characterized by joint synovial inflammation. Current treatments include methotrexate (MTX), biologic agents, and Janus kinase (JAK) inhibitors. However, these agents are not efficacious in all patients and there are concerns regarding side effects and risk of infection as these treatments target immune-related pathways. Overexpression and activation of integrin alpha-9 (α9) on fibroblast-like synoviocytes are associated with RA disease onset and exacerbation. The humanized immunoglobulin G1 monoclonal antibody ASP5094 was designed to inhibit human α9 and is currently under investigation for the treatment of RA. METHODS: This phase 2a, multicenter, randomized, placebo-controlled, double-blind, parallel-group study (NCT03257852) evaluated the efficacy, safety, and biological activity of intravenous ASP5094 10 mg/kg in patients with moderate to severe RA that was refractory to MTX. Patients received ASP5094 or placebo every 4 weeks for a total of three administrations. Both treatment groups used concomitant MTX. The primary efficacy endpoint was the proportion of patients who responded per American College of Rheumatology 50% improvement using C-reactive protein (ACR50-CRP) after 12 weeks of treatment. Biological activity of ASP5094 was assessed via pharmacokinetics and pharmacodynamics of known downstream effectors of α9. Safety was also assessed. RESULTS: Sixty-six patients were enrolled and randomized to placebo (n = 33) or ASP5094 (n = 33). In the primary efficacy analysis, ACR50-CRP response rates were 6.3% and 18.2% at week 12 in the ASP5094 and placebo groups, respectively; a difference of - 11.9, which was not significant (2-sided P value = 0.258). No trends in ACR50 response rates were observed in subgroups based on demographics or baseline disease characteristics, and no significant differences between placebo and ASP5094 were identified in secondary efficacy or pharmacodynamic endpoints, despite achievement of target serum concentrations of ASP5094. Most treatment-emergent adverse events were mild to moderate in severity, and ASP5094 was considered safe and well tolerated overall. CONCLUSION: Although no notable safety signals were observed in this study, ASP5094 was not efficacious in patients with moderate to severe RA with an inadequate response to MTX. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03257852 . Registered on 22 Aug. 2017.
Assuntos
Antirreumáticos , Artrite Reumatoide , Anticorpos Monoclonais Humanizados/uso terapêutico , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Método Duplo-Cego , Quimioterapia Combinada , Humanos , Integrinas , Metotrexato/uso terapêutico , Resultado do TratamentoRESUMO
Integrin, alpha9 subunit (hereinafter, alpha9) has been identified as a novel putative therapeutic target for rheumatoid arthritis (RA). Support for this target comes from the observations that alpha9 is overexpressed both in the joints of RA patients and in animal models of arthritis. In the experimental models, the increase in alpha9 expression precedes the onset of arthritic symptoms. The current study presents data on the pharmacological profile of an anti-alpha9 antibody in a collagen-induced arthritis (CIA) mouse model. Administration of an alpha9-blocking antibody in CIA mice suppressed the development of arthritis and significantly decreased plasma level of activated fibroblast-like synoviocyte (FLS)-derived biomarkers without reducing the formation of anti-type II collagen antibodies. While anti-alpha9 antibody administration significantly suppress the accumulation of immune cells in arthritic joints it had no effect on immune cell number in the spleen. Furthermore, in non-arthritic mice, alpha9 had no inhibitory effect in either a mixed lymphocyte reaction (MLR) or in a delayed type hypersensitivity (DTH) reaction. These results suggest that blocking alpha9 exerts its anti-arthritic effect through suppression of FLS-activation via a non-immune mediated mechanism. Finally, therapeutic administration of anti-alpha9 antibody alleviated established arthritis in CIA mice. Our data provide evidence that alpha9 blockade is a promising therapy for joint inflammation with minimal systemic immunomodulation.
Assuntos
Antirreumáticos/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Imunomodulação/efeitos dos fármacos , Integrinas/antagonistas & inibidores , Animais , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Antirreumáticos/uso terapêutico , Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Biomarcadores/metabolismo , Células Cultivadas , Colágeno Tipo II/imunologia , Humanos , Integrinas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Tacrolimo/farmacologia , Resultado do TratamentoRESUMO
In turtle posterior cristae, cholinergic vestibular efferent neurons (VENs) synapse on type II hair cells, bouton afferents innervating type II hair cells, and afferent calyces innervating type I hair cells. Electrical stimulation of VENs releases acetylcholine (ACh) at these synapses to exert diverse effects on afferent background discharge including rapid inhibition of bouton afferents and excitation of calyx-bearing afferents. Efferent-mediated inhibition is most pronounced in bouton afferents innervating type II hair cells near the torus, but becomes progressively smaller and briefer when moving longitudinally through the crista toward afferents innervating the planum. Sharp-electrode recordings have inferred that efferent-mediated inhibition of bouton afferents requires the sequential activation of alpha9-containing nicotinic ACh receptors (α9*nAChRs) and small-conductance, calcium-dependent potassium channels (SK) in type II hair cells. Gradations in the strength of efferent-mediated inhibition across the crista likely reflect variations in α9*nAChRs and/or SK activation in type II hair cells from those different regions. However, in turtle cristae, neither inference has been confirmed with direct recordings from type II hair cells. To address these gaps, we performed whole-cell, patch-clamp recordings from type II hair cells within a split-epithelial preparation of the turtle posterior crista. Here, we can easily visualize and record hair cells while maintaining their native location within the neuroepithelium. Consistent with α9*nAChR/SK activation, ACh-sensitive currents in type II hair cells were inward at hyperpolarizing potentials but reversed near -90 mV to produce outward currents that typically peaked around -20 mV. ACh-sensitive currents were largest in torus hair cells but absent from hair cells near the planum. In current clamp recordings under zero-current conditions, ACh robustly hyperpolarized type II hair cells. ACh-sensitive responses were reversibly blocked by the α9nAChR antagonists ICS, strychnine, and methyllycaconitine as well as the SK antagonists apamin and UCL1684. Intact efferent terminals in the split-epithelial preparation spontaneously released ACh that also activated α9*nAChRs/SK in type II hair cells. These release events were accelerated with high-potassium external solution and all events were blocked by strychnine, ICS, methyllycaconitine, and apamin. These findings provide direct evidence that activation of α9*nAChR/SK in turtle type II hair cells underlies efferent-mediated inhibition of bouton afferents.
RESUMO
Studies have suggested a role of weakened medial olivocochlear (OC) efferent feedback in accelerated hearing loss and increased susceptibility to noise. The present study investigated the progression of hearing loss with age and exposure to a noisy environment in medial OC-deficient mice. Alpha9 nicotinic acetylcholine receptor knockout (α9KO) and wild types were screened for hearing loss using auditory brainstem responses. α9KO mice housed in a quiet environment did not show increased hearing loss compared to wild types in young adulthood and middle age. Challenging the medial OC system by housing in a noisy environment did not increase hearing loss in α9KO mice compared to wild types. ABR wave 1 amplitudes also did not show differences between α9KO mice and wild types. These data suggest that deficient medial OC feedback does not result in early onset of hearing loss.
RESUMO
All craniate chordates have inner ears with hair cells that receive input from the brain by cholinergic centrifugal fibers, the so-called inner ear efferents (IEEs). Comparative data suggest that IEEs derive from facial branchial motor (FBM) neurons that project to the inner ear instead of facial muscles. Developmental data showed that IEEs develop adjacent to FBMs and segregation from IEEs might depend on few transcription factors uniquely associated with IEEs. Like other cholinergic terminals in the peripheral nervous system (PNS), efferent terminals signal on hair cells through nicotinic acetylcholine channels, likely composed out of alpha 9 and alpha 10 units (Chrna9, Chrna10). Consistent with the evolutionary ancestry of IEEs is the even more conserved ancestry of Chrna9 and 10. The evolutionary appearance of IEEs may reflect access of FBMs to a novel target, possibly related to displacement or loss of mesoderm-derived muscle fibers by the ectoderm-derived ear vesicle. Experimental transplantations mimicking this possible aspect of ear evolution showed that different motor neurons of the spinal cord or brainstem form cholinergic synapses on hair cells when ears replace somites or eyes. Transplantation provides experimental evidence in support of the evolutionary switch of FBM neurons to become IEEs. Mammals uniquely evolved a prestin related motor system to cause shape changes in outer hair cells regulated by the IEEs. In summary, an ancient motor neuron population drives in craniates via signaling through highly conserved Chrna receptors a uniquely derived cellular contractility system that is essential for hearing in mammals.
RESUMO
There is a neural matrix controlling the sleep-wake cycle (SWC) embedded within high ranking integrative mechanisms in the central nervous system. Nicotinic alpha-9 acetylcholine receptor subunit (alpha-9 nAChR) participate in physiological processes occurring in sensory, endocrine and immune systems. There is a relationship between the SWC architecture, body homeostasis and sensory afferents so that disruption of afferent signaling is expected to affect the temporal organization of sleep and wake states. The analysis of the SWC of 9 nAChR knock-out animals may help to reveal the contribution of alpha-9 nAChR to sleep chronobiological determinants. Here we explore the polysomnogram in chronically implanted alpha-9 nAChR knock-out (KO) and wild-type (WT) individuals of the hybrid CBA/Sv129 mouse strain. Records were obtained in isolation chambers under a stable 12:12 light:dark cycle (LD). To unmask the 24-h modulation of the SWC a skeleton photoperiod (SP) protocol was performed. Under LD the daily quota (in %) of wakefulness (W), NREM sleep and REM sleep obtained in KO and WT animals were 45, 48 and 7, and 46, 46 and 8 respectively. Both groups exhibit nocturnal phase preference of W as well as diurnal and unimodal phase preference of NREM and REM sleep. The acrophase mean angles of KO vs. WT genotypes were not different (Zeitgeber Time: 6.5 vs. 14.9 for W, 4.3 vs. 2.8 for NREM sleep and 5.3 vs. 3.4 for REM sleep, respectively). Transference to SP do not affect daily state quotas, phase preferences and acrophases among genotypes. Unmasking phenomena of the SWC such as wake increment during the rest phase under SP was evident only among WT mice suggesting the involvement of retinal structures containing alpha-9 nAChR in masking processes. Furthermore, KO animals exhibit longer NREM and REM sleep episodes that is independent of illumination conditions. Consolidated diurnal NREM sleep contributed to obtain higher values of NREM sleep delta-EEG activity among KO mice during rest phase. In conclusion, circadian and sleep homeostatic aspects of the SWC are operative among alpha-9 nAChR KO animals. We propose that alpha-9 nAChR participate in retinal signaling processes responsible of the positive masking of sleep by light.
RESUMO
Approximately 15% of American adults report some degree of difficulty hearing in a noisy environment or have auditory filtering difficulties. There are objective clinical tests of auditory filtering, yet few tests exist for mouse models that do not rely on extensive training. We have used reflex modification audiometry (RMA) and developed exclusion criteria for the mouse model. This RMA based test makes use of the acoustic startle response (ASR) and the ability of prepulses to inhibit the ASR [i.e., prepulse inhibition (PPI)] to assess the mouse's ability to detect prepulse signals presented in quiet or embedded in masking noise. We have studied PPI behavior across four inbred mouse strains with normal cochlear function and developed pre-testing exclusion criteria and test/retest reliability measures. Moreover, because both the medial (MOC) and the lateral (LOC) olivocochlear efferent feedback systems have been proposed to improve auditory behavior performance, especially in noisy backgrounds, we have examined PPI abilities in mice (with their littermate controls) either lacking the MOC receptor subunit α9 nicotinic acetylcholine receptor [α9 nAChR (-/-)] or expressing an overactive receptor [Ld'T mutation in α9 nAChR KI], or lacking an LOC efferent neuropeptide, alpha calcitonin gene-related peptide [αCGRP (-/-)] only in the CNS. Because CGRP receptor formation has been shown to mature from juvenile to adult ages, we also studied if this maturation would be reflected in PPI behavioral responses in juvenile and adult (+/+) controls and in adult αCGRP (-/-) animals. We show that 50% PPI response thresholds (sound level with 50% correct responses) in quiet are decreased in the (-/-) α9 nAChR animals, and 50% PPI responses are increased for mice with an overactive receptor (α9 nAChR KI) and are increased in adult mice lacking αCGRP (-/-). However, in background noise, only mice lacking αCGRP exhibited increased 50% PPI response thresholds, as there were no significant differences between α9 nAChR adult mouse lines and their littermate controls. These findings suggest that MOC and LOC olivocochlear neurotransmission work in tandem to improve behavioral responses to sound. These experiments further pave the way for rapid behavioral hearing assessments in other mouse models.
RESUMO
Although acetylcholine is widely utilized in vertebrate nervous systems, nicotinic acetylcholine receptors (nAChRs), including the α9α10 subtype, also are expressed in a wide variety of non-neuronal cells. These cell types include cochlear hair cells, adrenal chromaffin cells and immune cells. α9α10 nAChRs present in these cells may respectively play roles in protection from noise-induced hearing loss, response to stress and neuroprotection. Despite these critical functions, there are few available selective ligands to confirm mechanistic hypothesis regarding the role of α9α10 nAChRs. Conus, has been a rich source of ligands for receptors and ion channels. Here, we identified Conus geographus venom as a lead source for a novel α9α10 antagonist. The active component was isolated and the encoding gene cloned. The peptide signal sequence and cysteine arrangement had the signature of the σ-conotoxin superfamily. Previously isolated σ-conotoxin GVIIIA, also from Conus geographus, targets the 5-HT3 receptor. In contrast, αS-GVIIIB blocked the α9α10 nAChR with an IC50 of 9.8 nM, yet was inactive at the 5-HT3 receptor. Pharmacological characterization of αS-GVIIIB shows that it is over 100-fold selective for the α9α10 nAChR compared to other nAChR subtypes. Thus, the S-superfamily represents a novel conotoxin scaffold for flexibly targeting a variety of receptor subtypes. Functional competition studies utilized distinct off-rate kinetics of conotoxins to identify the α10/α9 nAChR interface as the site of αS-GVIIIB binding; this adds to the importance of the (+) face of the α10 rather than the (+) face of the α9 nAChR subunit as critical to binding of α9α10-targeted conotoxins.
Assuntos
Conotoxinas/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Conotoxinas/química , Conotoxinas/isolamento & purificação , Caramujo Conus , Feminino , Dados de Sequência Molecular , Antagonistas Nicotínicos/isolamento & purificação , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Ratos , Xenopus laevisRESUMO
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels involved in fast synaptic transmission. nAChRs are pentameric receptors formed from a combination of different or similar subunits to produce heteromeric or homomeric channels. The heteromeric, α9α10 nAChR subtype is well-known for its role in the auditory system, being expressed in cochlear hair cells. These nAChRs have also been shown to be involved in immune-modulation. Antagonists of α9α10 nAChRs, like the α-conotoxin Vc1.1, have analgesic effects in neuropathic pain. Unlike other nAChR subtypes there is no evidence that functional receptor stoichiometries of α9α10 exist. By using 2-electrode voltage clamp methods and maintaining a constant intracellular Ca(2+) concentration, we observed a biphasic activation curve for ACh that is dependent on receptor stoichiometry. Vc1.1, but not the α9α10 antagonists RgIA or atropine, inhibits ACh-evoked currents in a biphasic manner. Characteristics of the ACh and Vc1.1 activation and inhibition curves can be altered by varying the ratio of α9 and α10 mRNA injected into oocytes, changing the curves from biphasic to monophasic when an excess of α10 mRNA is used. These results highlight the difference in the pharmacological profiles of at least two different α9α10 nAChR stoichiometries, possibly (α9)3(α10)2 and (α9)2(α10)3. As a result, we infer that there is an additional binding site for ACh and Vc1.1 at the α9-α9 interface on the hypothesized (α9)3(α10)2 nAChR, in addition to the α10-α9 and or α9-α10 interfaces that are common to both stoichiometries. This study provides further evidence that receptor stoichiometry contributes another layer of complexity in understanding Cys-loop receptors.
Assuntos
Conotoxinas/farmacologia , Receptores Nicotínicos/metabolismo , Adulto , Animais , Sítios de Ligação , Conotoxinas/metabolismo , Feminino , Humanos , Microeletrodos , Receptores Nicotínicos/fisiologia , Xenopus laevisRESUMO
AIMS: Levels of the endothelium-derived peptide endothelin-1 (ET-1) are elevated in obese humans, and ET-1 mediated vascular tone is increased. Renal arterial smooth muscle is highly responsive to ET-1. Whether or not endothelium-derived ET-1 affects contractions of the renal artery under normal conditions or in obesity is unknown. The present study was designed to investigate whether or not overexpression of endogenous ET-1 in the endothelium affects the responsiveness of the main and segmental renal arteries differently in obesity. MAIN METHODS: Mice with tie-1 promoter-driven endothelium-restricted heterozygous overexpression of preproendothelin-1 were used (TET(het)). Obesity was induced in TET(het) mice and wild-type (WT) littermates by feeding a high fat diet for 30 weeks; lean controls were kept on standard chow. The renal arteries were studied in wire myographs testing contractions (in the presence of l-NAME) to ET-1, serotonin, and U46619. KEY FINDINGS: Contractions to ET-1 were comparable between groups in main renal arteries, but augmented in segmental preparations from obese mice. Serotonin-induced responses were enhanced in obese TET(het) mice renal arteries compared to lean controls. Concentration-contraction curves to U46619 were shifted significantly to the left in main renal arteries of obese animals, and the maximal response was significantly increased between lean and obese TET(het) mice. SIGNIFICANCE: These results indicate an augmented responsiveness of main renal arteries in obesity particularly to TP receptor activation. When combined with endothelial ET-1 overexpression this effect is even more pronounced, which may help to gain further insights into the mechanisms of hypertension in obesity.
Assuntos
Endotelina-1/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Artéria Renal/fisiopatologia , Vasoconstritores/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Heterozigoto , Testes de Função Renal , Masculino , Camundongos Endogâmicos C57BL , Receptores de Tromboxanos/agonistas , Receptores de Tromboxanos/metabolismo , Artéria Renal/efeitos dos fármacos , Serotonina/farmacologia , Magreza/metabolismo , Vasoconstrição/efeitos dos fármacosRESUMO
Cone snail venoms provide a largely untapped source of novel peptide drug leads. To enhance the discovery phase, a detailed comparative proteomic analysis was undertaken on milked venom from the mollusk-hunting cone snail, Conus textile, from three different geographic locations (Hawai'i, American Samoa and Australia's Great Barrier Reef). A novel milked venom conopeptide rich in post-translational modifications was discovered, characterized and named α-conotoxin TxIC. We assign this conopeptide to the 4/7 α-conotoxin family based on the peptide's sequence homology and cDNA pre-propeptide alignment. Pharmacologically, α-conotoxin TxIC demonstrates minimal activity on human acetylcholine receptor models (100 µM, <5% inhibition), compared to its high paralytic potency in invertebrates, PD50 = 34.2 nMol kg(-1). The non-post-translationally modified form, [Pro](2,8)[Glu](16)α-conotoxin TxIC, demonstrates differential selectivity for the α3ß2 isoform of the nicotinic acetylcholine receptor with maximal inhibition of 96% and an observed IC50 of 5.4 ± 0.5 µM. Interestingly its comparative PD50 (3.6 µMol kg(-1)) in invertebrates was ~100 fold more than that of the native peptide. Differentiating α-conotoxin TxIC from other α-conotoxins is the high degree of post-translational modification (44% of residues). This includes the incorporation of γ-carboxyglutamic acid, two moieties of 4-trans hydroxyproline, two disulfide bond linkages, and C-terminal amidation. These findings expand upon the known chemical diversity of α-conotoxins and illustrate a potential driver of toxin phyla-selectivity within Conus.