Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods ; 218: 27-38, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37507059

RESUMO

Investigating the relationship between genetic variation and phenotypic traits is a key issue in quantitative genetics. Specifically for Alzheimer's disease, the association between genetic markers and quantitative traits remains vague while, once identified, will provide valuable guidance for the study and development of genetics-based treatment approaches. Currently, to analyze the association of two modalities, sparse canonical correlation analysis (SCCA) is commonly used to compute one sparse linear combination of the variable features for each modality, giving a pair of linear combination vectors in total that maximizes the cross-correlation between the analyzed modalities. One drawback of the plain SCCA model is that the existing findings and knowledge cannot be integrated into the model as priors to help extract interesting correlations as well as identify biologically meaningful genetic and phenotypic markers. To bridge this gap, we introduce preference matrix guided SCCA (PM-SCCA) that not only takes priors encoded as a preference matrix but also maintains computational simplicity. A simulation study and a real-data experiment are conducted to investigate the effectiveness of the model. Both experiments demonstrate that the proposed PM-SCCA model can capture not only genotype-phenotype correlation but also relevant features effectively.


Assuntos
Doença de Alzheimer , Neuroimagem , Humanos , Neuroimagem/métodos , Análise de Correlação Canônica , Algoritmos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Encéfalo , Imageamento por Ressonância Magnética
2.
Sensors (Basel) ; 24(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38894435

RESUMO

This article proposes a distributed intelligent Coordinated Multi-Point Non-Orthogonal Multiple-Access (CoMP-NOMA) collaborative transmission model with the assistance of reconfigurable intelligent surfaces (RISs) to address the issues of poor communication quality, low fairness, and high system power consumption for edge users in multi-cellular networks. By analyzing the interaction mechanisms and influencing factors among RIS signal enhancement, NOMA user scheduling, and multi-point collaborative transmission, the model establishes RIS-enhanced edge user grouping and coordinates NOMA user clusters based on this. In the multi-cell RIS-assisted JT-CoMP NOMA downlink transmission, joint optimization of the power allocation (PA), user clustering (UC), and RIS phase-shift matrix design (PS) poses a challenging Mixed-Integer Non-Linear Programming (MINLP) problem. The original problem is decomposed by optimizing the formulas into joint sub-problems of PA, UC, and PA and PS, and solved using an alternating optimization approach. Simulation results demonstrate that the proposed scheme effectively reduces the system's power consumption while significantly improving the system's throughput and rates.

3.
Entropy (Basel) ; 25(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37510020

RESUMO

A reconfigurable intelligent surface (RIS) is a new and revolutionizing technology to achieve spectrum-efficient (SE) and energy-efficient (EE) wireless networks. In this paper, we study an optimal deployment strategy of RIS in a line-of-sight domain (LoSD) based on an actual deployment scenario, which jointly considers path loss, transmit power and the energy efficiency of the system. Furthermore, we aim to minimize the transmit power via jointly optimizing its transmit beamforming and the reflect phase shifts of RIS, subject to the quality-of-service (QoS) constraint, namely, the signal-to-noise ratio (SNR) constraint at the user. However, this optimization problem is non-convex with intricately coupled variables. To tackle this challenge, we first apply proper transformation on the QoS constraint and then propose an efficient alternating optimization (AO) algorithm. Simulation results demonstrate that compared to a conventional endpoint deployment strategy that simply deploys RIS at the transceiver ends, our proposed LoSD deployment strategy significantly reduces the transmit power by optimizing the available LoS links when a single RIS is relayed. The impact of the number of reflect elements on the system EE is also unveiled.

4.
Entropy (Basel) ; 24(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36359695

RESUMO

This paper studies the intelligent reflecting surface (IRS) assisted secure transmission in unmanned aerial vehicle (UAV) communication systems, where the UAV base station, the legitimate receiver, and the malicious eavesdropper in the system are all equipped with multiple antennas. By deploying an IRS on the facade of a building, the UAV base station can be assisted to realize the secure transmission in this multiple-input multiple-output (MIMO) system. In order to maximize the secrecy rate (SR), the transmit precoding (TPC) matrix, artificial noise (AN) matrix, IRS phase shift matrix, and UAV position are jointly optimized subject to the constraints of transmit power limit, unit modulus of IRS phase shift, and maximum moving distance of UAV. Since the problem is non-convex, an alternating optimization (AO) algorithm is proposed to solve it. Specifically, the TPC matrix and AN covariance matrix are derived by the Lagrange dual method. The alternating direction method of multipliers (ADMM), majorization-minimization (MM), and Riemannian manifold gradient (RCG) algorithms are presented, respectively, to solve the IRS phase shift matrix, and then the performance of the three algorithms is compared. Based on the proportional integral (PI) control theory, a secrecy rate gradient (SRG) algorithm is proposed to iteratively search for the UAV position by following the direction of the secrecy rate gradient. The theoretic analysis and simulation results show that our proposed AO algorithm has a good convergence performance and can increase the SR by 40.5% compared with the method without IRS assistance.

5.
Sensors (Basel) ; 21(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34833776

RESUMO

The OFDM chirp signal is suitable for MIMO radar applications due to its large time-bandwidth product, constant time-domain, and almost constant frequency-domain modulus. Particularly, by introducing the time-frequency structure of the non-linear frequency modulation (NLFM) signal into the design of an OFDM chirp waveform, a new OFDM-NLFM waveform with low peak auto-correlation sidelobe ratio (PASR) and peak cross-correlation ratio (PCCR) is obtained. IN-OFDM is the OFDM-NLFM waveform set currently with the lowest PASR and PCCR. Here we construct the optimization model of the OFDM-NLFM waveform set with the objective function being the maximum of the PASR and PCCR. Further, this paper proposes an OFDM-NLFM waveform set design algorithm inspired by alternating optimization. We implement the proposed algorithm by the alternate execution of two sub-algorithms. First, we keep both the sub-chirp sequence code matrix and sub-chirp rate plus and minus (PM) code matrix unchanged and use the particle swarm optimization (PSO) algorithm to obtain the optimal parameters of the NLFM signal's time-frequency structure (NLFM parameters). Next, we keep current optimal NLFM parameters unchanged, and optimize the sub-chirp sequence code matrix and sub-chirp rate PM code matrix using the block coordinate descent (BCD) algorithm. The above two sub-algorithms are alternately executed until the objective function converges to the optimal solution. The results show that the PASR and PCCR of the obtained OFDM-NLFM waveform set are about 5 dB lower than that of the IN-OFDM.

6.
Sensors (Basel) ; 20(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575647

RESUMO

Intelligent reflecting surface (IRS) is a very promising technology for the development of beyond 5G or 6G wireless communications due to its low complexity, intelligence, and green energy-efficient properties. In this paper, we combined IRS with physical layer security (PLS) to solve the security issue of cognitive radio (CR) networks. Specifically, an IRS-assisted multi-input single-output (MISO) CR wiretap channel was studied. To maximize the secrecy rate of secondary users subject to a total power constraint (TPC) for the transmitter and interference power constraint (IPC) for a single antenna primary receiver (PR) in this channel, an alternating optimization (AO) algorithm is proposed to jointly optimize the transmit covariance R at transmitter and phase shift coefficient Q at IRS by fixing the other as constant. When Q is fixed, R is globally optimized by equivalently transforming the quasi-convex sub-problem to convex one. When R is fixed, bisection search in combination with minorization-maximization (MM) algorithm was applied to optimize Q from the non-convex fractional programming sub-problem. During each iteration of MM, another bisection search algorithm is proposed, which is able to find the global optimal closed-form solution of Q given the initial point from the previous iteration of MM. The convergence of the proposed algorithm is analyzed, and an extension of applying this algorithm to multi-antenna PR case is discussed. Simulations have shown that our proposed IRS-assisted design greatly enhances the secondary user's secrecy rate compared to existing methods without IRS. Even when IPC is active, the secrecy rate returned by our algorithm increases with transmit power as if there is no IPC at all.

7.
Phys Med Biol ; 68(6)2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36821863

RESUMO

Objective. Photoacoustic tomography (PAT) is a rapidly evolving imaging modality that provides images with high contrast and spatial resolution showing the optical properties of biological tissues. The photoacoustic pressure is proportional to the product of the optical absorption coefficient and the local light fluence. The essential challenge in reconstructing quantitative images representing spatially varying absorption coefficients is the unknown light fluence. In addition, optical attenuation induces spatial variations in the light fluence, and the heterogeneity of the fluence determines the limits of reconstruction quality and depth.Approach.In this work, a reconstruction enhancement scheme is proposed to compensate for the variation in the light fluence in the absorption coefficient recovery. The inverse problem of the radiance Monte Carlo model describing light transport through the tissue is solved by using an alternating optimization strategy. In the iteration, the absorption coefficients and photon weights are alternately updated.Main results.The method provides highly accurate quantitative images of absorption coefficients in simulations, phantoms, andin vivostudies. The results show that the method has great potential for improving the accuracy of absorption coefficient recovery compared to conventional reconstruction methods that ignore light fluence variations. Comparison with state-of-the-art fluence compensation methods shows significant improvements in root mean square error, normalized mean square absolute distance, and structural similarity metrics.Significance.This method achieves high precision quantitative imaging by compensating for nonuniform light fluence without increasing the complexity and operation of the imaging system.


Assuntos
Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Tomografia Computadorizada por Raios X , Fótons , Imagens de Fantasmas , Método de Monte Carlo
8.
Artigo em Inglês | MEDLINE | ID: mdl-36845995

RESUMO

Investigating the relationship between genetic variation and phenotypic traits is a key issue in quantitative genetics. Specifically for Alzheimer's disease, the association between genetic markers and quantitative traits remains vague while, once identified, will provide valuable guidance for the study and development of genetic-based treatment approaches. Currently, to analyze the association of two modalities, sparse canonical correlation analysis (SCCA) is commonly used to compute one sparse linear combination of the variable features for each modality, giving a pair of linear combination vectors in total that maximizes the cross-correlation between the analyzed modalities. One drawback of the plain SCCA model is that the existing findings and knowledge cannot be integrated into the model as priors to help extract interesting correlation as well as identify biologically meaningful genetic and phenotypic markers. To bridge this gap, we introduce preference matrix guided SCCA (PM-SCCA) that not only takes priors encoded as a preference matrix but also maintains computational simplicity. A simulation study and a real-data experiment are conducted to investigate the effectiveness of the model. Both experiments demonstrate that the proposed PM-SCCA model can capture not only genotype-phenotype correlation but also relevant features effectively.

9.
IEEE Trans Comput Imaging ; 8: 449-461, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795003

RESUMO

This work proposes an alternating learning approach to learn the sampling pattern (SP) and the parameters of variational networks (VN) in accelerated parallel magnetic resonance imaging (MRI). We investigate four variations of the learning approach, that alternates between improving the SP, using bias-accelerated subset selection, and improving parameters of the VN, using ADAM. The variations include the use of monotone or non-monotone alternating steps and systematic reduction of learning rates. The algorithms learn an effective pair to be used in future scans, including an SP that captures fewer k-space samples in which the generated undersampling artifacts are removed by the VN reconstruction. The quality of the VNs and SPs obtained by the proposed approaches is compared against different methods, including other kinds of joint learning methods and state-of-art reconstructions, on two different datasets at various acceleration factors (AF). We observed improvements visually and in three different figures of merit commonly used in deep learning (RMSE, SSIM, and HFEN) on AFs from 2 to 20 with brain and knee joint datasets when compared to the other approaches. The improvements ranged from 1% to 62% over the next best approach tested with VNs. The proposed approach has shown stable performance, obtaining similar learned SPs under different initial training conditions. We observe that the improvement is not only due to the learned sampling density, it is also due to the learned position of samples in k-space. The proposed approach was able to learn effective pairs of SPs and reconstruction VNs, improving 3D Cartesian accelerated parallel MRI applications.

10.
Data Min Knowl Discov ; 35(5): 1882-1905, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177356

RESUMO

The ability to accurately and consistently discover anomalies in time series is important in many applications. Fields such as finance (fraud detection), information security (intrusion detection), healthcare, and others all benefit from anomaly detection. Intuitively, anomalies in time series are time points or sequences of time points that deviate from normal behavior characterized by periodic oscillations and long-term trends. For example, the typical activity on e-commerce websites exhibits weekly periodicity and grows steadily before holidays. Similarly, domestic usage of electricity exhibits daily and weekly oscillations combined with long-term season-dependent trends. How can we accurately detect anomalies in such domains while simultaneously learning a model for normal behavior? We propose a robust offline unsupervised framework for anomaly detection in seasonal multivariate time series, called AURORA. A key innovation in our framework is a general background behavior model that unifies periodicity and long-term trends. To this end, we leverage a Ramanujan periodic dictionary and a spline-based dictionary to capture both seasonal and trend patterns. We conduct experiments on both synthetic and real-world datasets and demonstrate the effectiveness of our method. AURORA has significant advantages over existing models for anomaly detection, including high accuracy (AUC of up to 0.98), interpretability of recovered normal behavior ( 100 % accuracy in period detection), and the ability to detect both point and contextual anomalies. In addition, AURORA is orders of magnitude faster than baselines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA