RESUMO
Cancers are caused by accumulated DNA mutations. This recognition of the central role of mutations in cancer and recent advances in next-generation sequencing, has initiated the massive screening of clinical samples and the identification of 1000s of cancer-associated gene mutations. However, proteomic analysis of the expressed mutation products lags far behind genomic (transcriptomic) analysis. With comprehensive global proteomics analysis, only a small percentage of single nucleotide variants detected by DNA and RNA sequencing have been observed as single amino acid variants due to current technical limitations. Proteomic analysis of mutations is important with the potential to advance cancer biomarker development and the discovery of new therapeutic targets for more effective disease treatment. Targeted proteomics using selected reaction monitoring (also known as multiple reaction monitoring) and parallel reaction monitoring, has emerged as a powerful tool with significant advantages over global proteomics for analysis of protein mutations in terms of detection sensitivity, quantitation accuracy and overall practicality (e.g., reliable identification and the scale of quantification). Herein we review recent advances in the targeted proteomics technology for enhancing detection sensitivity and multiplexing capability and highlight its broad biomedical applications for analysis of protein mutations in human bodily fluids, tissues, and cell lines. Furthermore, we review recent applications of top-down proteomics for analysis of protein mutations. Unlike the commonly used bottom-up proteomics which requires digestion of proteins into peptides, top-down proteomics directly analyzes intact proteins for more precise characterization of mutation isoforms. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale targeted detection and quantification of important protein mutations are discussed.
Assuntos
Proteínas , Proteômica , Humanos , Espectrometria de Massas , Peptídeos/química , MutaçãoRESUMO
Viperin is known to play an important role in innate immune and its antiviral mechanisms are well demonstrated in mammals. Fish Viperin mediates antiviral activity against several viruses. However, little has been done to the underlying mechanism. Here, we discovered a novel Viperin splice variant named Viperin_sv1 from viral-infected FHM cells. Spring varimia of carp virus (SVCV) was able to increase the mRNA levels of both Viperin and Viperin_sv1, while poly(I:C) only has effect on Viperin. Viperin functions as an antiviral protein at 24â¯h post-SVCV infection, but the antiviral activity dramatically declined at late infection stages. However, Viperin_sv1 inhibited SVCV replication significantly at all the tested time. Viperin_sv1, but not Viperin can facilitate the production of type I IFN and IFN stimulate genes (ISGs) through activation of RIG-1, IRF3 and IRF7 signaling cascades. On the other hand, SVCV down-regulated Viperin_sv1 at the protein level through the proteasome pathway to keep itself away from the immune system monitoring. Taken together, these findings provide new insights into the regulation of Viperin from the posttranscriptional modification perspective and the role of splicing variant Viperin_sv1 in virus-host interaction.
Assuntos
Antivirais/farmacologia , Cyprinidae/virologia , Proteínas de Peixes/genética , Rhabdoviridae/fisiologia , Animais , Proteínas de Peixes/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/farmacologiaRESUMO
Aim: To clarify the regulatory roles of GLDCV1, the first identified truncated glycine decarboxylase (GLDC), on cancer stem cells and tumorigenesis. Materials & methods: RT-PCR or RT-qPCR, immunoblotting and immunohistochemical staining were applied to assess gene expression. MTT, BrdU incorporation and colony formation assays were used to examine cell proliferation capacity. Soft agar colony formation and in vivo transplantation were applied to evaluate cellular transformation and tumorigenesis. Results & conclusion: Expression of GLDCV1 or GLDC was enhanced in non-small-cell lung cancer cell line and clinical samples. GLDCV1 overexpression induced MRC5 cell proliferation, transformation and tumorigenesis. Additionally, GLDCV1 increased lactate production and cancer stem cell marker expression and activated ERK and P38 pathways. Our study gained deeper insight into GLDC oncogene.
Assuntos
Processamento Alternativo , Transformação Celular Neoplásica/genética , Glicina Desidrogenase (Descarboxilante)/genética , Neoplasias Pulmonares/etiologia , Animais , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Glicina Desidrogenase (Descarboxilante)/metabolismo , Humanos , Ácido Láctico/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases , CamundongosRESUMO
The type 2 isoenzyme is the most widely expressed transglutaminase in mammals displaying several intra- and extracellular activities depending on its location (protein modification, modulation of gene expression, membrane signalling and stabilization of cellular interactions with the extracellular matrix) in relation to cell death, survival and differentiation. In contrast with the appreciable knowledge about the regulation of the enzymatic activities, much less is known concerning its inducible expression, which is altered in inflammatory and neoplastic diseases. In this context, we first summarize the gene's basic features including single-nucleotide polymorphism characterization, epigenetic DNA methylation and identification of regulatory regions and of transcription factor-binding sites at the gene promoter, which could concur to direct gene expression. Further aspects related to alternative splicing events and to ncRNAs (microRNAs and lncRNAs) are involved in the modulation of its expression. Notably, this important gene displays transcriptional variants relevant for the protein's function with the occurrence of at least seven transcripts which support the synthesis of five isoforms with modified catalytic activities. The different expression of the TG2 (type 2 transglutaminase) variants might be useful for dictating the multiple biological features of the protein and their alterations in pathology, as well as from a therapeutic perspective.
Assuntos
Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Inflamação/enzimologia , Neoplasias/enzimologia , Transglutaminases/metabolismo , Processamento Alternativo , Metilação de DNA , Proteínas de Ligação ao GTP/genética , Humanos , Inflamação/genética , Neoplasias/genética , Proteína 2 Glutamina gama-Glutamiltransferase , Processamento de Proteína Pós-Traducional , Transglutaminases/genéticaRESUMO
Human Proteome Project aims to map all human proteins including missing proteins as well as proteoforms with post translational modifications, alternative splicing variants (ASVs), and single amino acid variants (SAAVs). neXtProt and Ensemble databases are usually used to provide curated information on human coding genes. However, to find these proteoforms, we (Chr #11 team) first introduce a streamlined pipeline using customized and concatenated neXtProt and GENCODE originated from Ensemble, with controlled false discovery rate (FDR). Because of large sized databases used in this pipeline, we found more stringent FDR filtering (0.1% at the peptide level and 1% at the protein level) to claim novel findings, such as GENCODE ASVs and missing proteins, from human hippocampus data set (MSV000081385) and ProteomeXchange (PXD007166). Using our next generation proteomic pipeline (nextPP) with neXtProt and GENCODE databases, two missing proteins such as activity-regulated cytoskeleton-associated protein (ARC, Chr 8) and glutamate receptor ionotropic, kainite 5 (GRIK5, Chr 19) were additionally identified with two or more unique peptides from human brain tissues. Additionally, by applying the pipeline to human brain related data sets such as cortex (PXD000067 and PXD000561), spinal cord, and fetal brain (PXD000561), seven GENCODE ASVs such as ACTN4-012 (Chr.19), DPYSL2-005 (Chr.8), MPRIP-003 (Chr.17), NCAM1-013 (Chr.11), EPB41L1-017 (Chr.20), AGAP1-004 (Chr.2), and CPNE5-005 (Chr.6) were identified from two or more data sets. The identified peptides of GENCODE ASVs were mapped onto novel exon insertions, alternative translations at 5'-untranslated region, or novel protein coding sequence. Applying the pipeline to male reproductive organ related data sets, 52 GENCODE ASVs were identified from two testis (PXD000561 and PXD002179) and a spermatozoa (PXD003947) data sets. Four out of 52 GENCODE ASVs such as RAB11FIP5-008 (Chr. 2), RP13-347D8.7-001 (Chr. X), PRDX4-002 (Chr. X), and RP11-666A8.13-001 (Chr. 17) were identified in all of the three samples.
Assuntos
Química Encefálica , Cromossomos Humanos/genética , Bases de Dados de Proteínas , Proteômica/métodos , Processamento Alternativo , Hipocampo/química , Humanos , Masculino , Processamento de Proteína Pós-Traducional , Espermatozoides/química , Testículo/químicaRESUMO
In the Chromosome-Centric Human Proteome Project (C-HPP), false-positive identification by peptide spectrum matches (PSMs) after database searches is a major issue for proteogenomic studies using liquid-chromatography and mass-spectrometry-based large proteomic profiling. Here we developed a simple strategy for protein identification, with a controlled false discovery rate (FDR) at the protein level, using an integrated proteomic pipeline (IPP) that consists of four engrailed steps as follows. First, using three different search engines, SEQUEST, MASCOT, and MS-GF+, individual proteomic searches were performed against the neXtProt database. Second, the search results from the PSMs were combined using statistical evaluation tools including DTASelect and Percolator. Third, the peptide search scores were converted into E-scores normalized using an in-house program. Last, ProteinInferencer was used to filter the proteins containing two or more peptides with a controlled FDR of 1.0% at the protein level. Finally, we compared the performance of the IPP to a conventional proteomic pipeline (CPP) for protein identification using a controlled FDR of <1% at the protein level. Using the IPP, a total of 5756 proteins (vs 4453 using the CPP) including 477 alternative splicing variants (vs 182 using the CPP) were identified from human hippocampal tissue. In addition, a total of 10 missing proteins (vs 7 using the CPP) were identified with two or more unique peptides, and their tryptic peptides were validated using MS/MS spectral pattern from a repository database or their corresponding synthetic peptides. This study shows that the IPP effectively improved the identification of proteins, including alternative splicing variants and missing proteins, in human hippocampal tissues for the C-HPP. All RAW files used in this study were deposited in ProteomeXchange (PXD000395).
Assuntos
Hipocampo/química , Proteogenômica/métodos , Proteômica/métodos , Ferramenta de Busca , Processamento Alternativo , Biologia Computacional/métodos , Bases de Dados de Proteínas , Reações Falso-Positivas , Humanos , Espectrometria de Massas/métodosRESUMO
IL-17RA, a member of the interleukin (IL)-17 receptor family, is a single membrane-spanning protein that ubiquitously expressed on the cell surface. IL-17RA transduces IL-17A, IL-17F, and IL-17A/F heterodimer-mediated signals by forming a complex with IL-17RC, and also signals the IL-17E (also known as IL-25) response in combination with IL-17RB (also known as IL-25R). Previously, soluble isoforms of human IL-17RC and IL-17RB have been reported, but the existence of a soluble isoform of human IL-17RA has remained unclear. Here, we report the identification of a soluble isoform of human IL-17RA at the mRNA and protein levels. Reverse transcribed PCR experiments showed that the IL-17RA variant is generated by spliced out of exon 11 encoding the transmembrane region in a variety of human tissues. The soluble IL-17RA isoform was detected in the culture media of human cell lines by Western blotting. The existence of the soluble IL-17RA isoform sheds new light on the regulation of IL-17RA mediated responses.
Assuntos
Processamento Alternativo , Éxons/genética , Perfilação da Expressão Gênica , Receptores de Interleucina-17/genética , Sequência de Bases , Western Blotting , Linhagem Celular , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina-17/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , SolubilidadeRESUMO
Anthocyanins are flavonoids that contribute to the color of grape berries and are an essential component of grape berry and wine quality. Anthocyanin accumulation in grape berries is dependent on the coordinated expression of genes encoding enzymes in the anthocyanin pathway that are principally regulated at the transcriptional level, with VvMYBA1 as the main transcriptional regulator in grapes. Alternative splicing (AS) events in VvMYBA1, however, have not been examined. In the present study, VvMYBA1-L, an AS variant of VvMYBA1, was identified in 'ZhongShan-Hong' (ZS-H) and its offspring. The AS variant is characterized by a deletion in the third exon of the open reading frame (ORF) of VvMYBA1-L, resulting in the early termination of the encoded protein. Overexpression of VvMYBA1-L in grape berries resulted in delayed flesh coloration and ectopic overexpression of VvMYBA1-L in tobacco inhibited the coloration of petals. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays revealed that VvMYBA1-L interacts with VvMYBA1. Dual luciferase assays indicated that co-infiltration of VvMYC1 and VvMYBA1 significantly activated the promoter regulated expression of VvCHS3, VvDFR, VvUFGT, and VvF3H. In the presence of VvMYBA1-L, however, the induction effect of VvMYBA1 on the indicated promoters was significantly inhibited. Our findings provide insight into the essential role of VvMYBA1 and its variant, VvMYBA1-L, in regulating anthocyanin accumulation in grape berry flesh.
Assuntos
Vitis , Vinho , Vitis/genética , Vitis/metabolismo , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Processamento Alternativo/genética , Regulação da Expressão Gênica de PlantasRESUMO
Background: Detecting pathogenic intronic variants resulting in aberrant splicing remains a challenge in routine genetic testing. We describe germline whole-exome sequencing (WES) analyses and apply in silico predictive tools of familial ovarian cancer (OC) cases reported clinically negative for pathogenic BRCA1 and BRCA2 variants. Methods: WES data from 27 familial OC cases reported clinically negative for pathogenic BRCA1 and BRCA2 variants and 53 sporadic early-onset OC cases were analyzed for pathogenic variants in BRCA1 or BRCA2. WES data from carriers of pathogenic BRCA1 or BRCA2 variants were analyzed for pathogenic variants in 10 other OC predisposing genes. Loss of heterozygosity analysis was performed on tumor DNA from variant carriers. Results: BRCA1 c.5407-25T>A intronic variant, identified in two affected sisters and one sporadic OC case, is predicted to create a new splice effecting transcription of BRCA1. WES data from BRCA1 c.5407-25T>A carriers showed no evidence of pathogenic variants in other OC predisposing genes. Sequencing the tumor DNA from the variant carrier showed complete loss of the wild-type allele. Conclusions: The findings support BRCA1 c.5407-25T>A as a likely pathogenic variant and highlight the importance of investigating intronic sequences as causal variants in OC families where the involvement of BRCA1 is highly suggestive.
Assuntos
Mutação em Linhagem Germinativa , Neoplasias Ovarianas , Proteína BRCA1/genética , Proteína BRCA2/genética , Feminino , Genes BRCA2 , Predisposição Genética para Doença , Humanos , Neoplasias Ovarianas/genética , Sequenciamento do ExomaRESUMO
The pathophysiology of preeclampsia (PE) remains unclear. PE spiral artery remodeling dysfunction and PE offspring cardiovascular future development has been a worldwide concern. We collected placental and umbilical artery samples from nor-motensive and PE pregnancies. Mineralocorticoid receptor (MR) and its alternative splicing variant (ASV) expression and their biological effects on PE were examined. An MR ASV was found to be highly expressed in all PE samples and slightly expressed in about half of the normotensive samples (umbilical artery, ~57.58%; placenta, ~36.84%). The MR ASV expression was positively associated with blood pressure in both groups. The MR ASV protein changed the aldosterone-induced expression pattern of MR target genes related to ion exchanges and cell signaling pathways. The MR ASV can also impair the proliferation, migration, and tube formation ability of endothelial cells. These findings indicate that MR ASV in PE placenta plays a pathogenic role in PE pathophysiology, especially in endothelial dysfunction, and the existence of the MR ASV in PE umbilical artery provides a new direction in the study of PE offspring with increased risk of cardiovascular diseases.
Assuntos
Processamento Alternativo/genética , Pré-Eclâmpsia/tratamento farmacológico , Receptores de Mineralocorticoides/metabolismo , Doenças Vasculares/tratamento farmacológico , Adulto , Aldosterona/metabolismo , Pressão Sanguínea , DNA Complementar/metabolismo , Células Endoteliais/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Placenta/metabolismo , Fator de Crescimento Placentário , Gravidez , Proteínas da Gravidez , RNA/metabolismo , Receptores de Mineralocorticoides/genética , Fatores de Risco , Doenças Vasculares/metabolismoRESUMO
Insect chitin synthase A (CHSA) is an epidermis-specific enzyme that plays an essential role in insect development. In this study, the function and regulation of CHSA-2b, an alternative splicing variant of Bombxy mori CHSA that is discovered only in Lepidopteran insects, were investigated. Analysis of mRNA level showed that BmCHSA-2b was responsive to 20-hydroxyecdysone (20E) in pupal wing unlike BmCHSA-2a, which shares almost the identical sequence as BmCHSA-2b except the first 31 amino acids, suggesting that the expression of these two alternative splicing variants is driven by different promoters of CHSA gene. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) analysis showed that BmCHSA-2b was up-regulated in the wing of mid-pupa unlike BmCHSA-2a, which was up-regulated in epidermis and wing disc at the beginning and end of pupal stage. Further analysis reveals that the up-regulations of BmCHSA-2a and BmCHSA-2b in pupal wing were consistent with the increase of chitin content and wing area at the same stages, respectively. Furthermore, the higher transcription level of BmCHSA-2b in the mid-pupal wing of male than that in female was consistent with the chitin content of pupal wing between genders. Injection of double-stranded RNAs of BmCHSA-2b resulted in the decrease in the area and chitin content of the wing, and irregular and crimpled vein. All these results together suggest that B. mori evolves an extra promoter in CHSA gene to activate BmCHSA-2b expression in the wing of mid-pupal stage in response to 20E, and BmCHSA-2b is required for the wing development in the mid-pupa of B. mori.
Assuntos
Bombyx/enzimologia , Processamento Alternativo , Animais , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Quitina/metabolismo , Quitina Sintase , Ecdisterona/farmacologia , Epiderme/enzimologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Pupa/enzimologia , Pupa/genética , Pupa/crescimento & desenvolvimento , RNA Mensageiro/metabolismo , Asas de Animais/enzimologia , Asas de Animais/crescimento & desenvolvimentoRESUMO
Recent evidences suggest that invertebrates express families of immune molecules with high levels of sequence diversity. Hemocyanin is an important non-specific immune molecule present in the hemolymph of both mollusks and arthropods. In the present study, we characterized a novel alternative splicing variant of hemocyanin (cHE1) from Litopenaeus vannamei that produced mRNA transcript of 2579 bp in length. The isoform contained two additional sequences of 296 and 267 bp in the 5'- and 3'-terminus respectively, in comparison to that of wild type hemocyanin (cHE). Sequence of cHE1 shows 100% identity to that of hemocyanin genomic DNA (HE, which does not form an open reading frame), suggesting that cHE1 might be an alternative splicing variant due to intron retention. Moreover, cHE1 could be detected by RT-PCR from five tissues (heart, gill, stomach, intestine and brain), and from shrimps at stages from nauplius to mysis larva. Further, cHE1 mRNA transcripts were significantly increased in hearts after 12h of infection with Vibrio parahemolyticus or poly I: C, while no significant difference in the transcript levels of hepatopancreas cHE was detected in the pathogen-treated shrimps during the period. In summary, these studies suggested a novel splicing variant of hemocyanin in shrimp, which might be involved in shrimp resistance to pathogenic infection.
Assuntos
Artemia , Hemocianinas/metabolismo , Isoformas de Proteínas/metabolismo , Vibrioses/imunologia , Vibrio parahaemolyticus/imunologia , Processamento Alternativo , Sequência de Aminoácidos , Animais , Células Cultivadas , Hemocianinas/genética , Imunidade , Larva , Dados de Sequência Molecular , Miocárdio/metabolismo , Poli I-C/imunologia , Isoformas de Proteínas/genética , Regulação para CimaRESUMO
Sterile alpha motif domain-containing 11 (SAMD11) is evolutionarily conserved from zebrafish to human. Mouse Samd11 is predominantly expressed in developing retinal photoreceptors and the adult pineal gland, and its transcription is directly regulated by the cone-rod homeodomain protein Crx. However, there has been little research on human SAMD11. To investigate the function of human SAMD11, we first cloned its coding sequence (CDS) and identified up to 45 novel alternative splice variants (ASVs). Mouse Samd11 ASVs were also identified by aligning the mouse Samd11 expressed sequence tags (ESTs) with the annotated sequence. However, the range of expression and transcriptional regulation of SAMD11 differs between human and mouse. Human SAMD11 was found to be widely expressed in many cell lines and ocular tissues and its transcription was not regulated by CRX, OTX2 or NR2E3 proteins. Furthermore, functional analysis indicated that human SAMD11 could promote cell proliferation slightly. In conclusion, this study elucidated the basic characteristics of human SAMD11 and revealed that, although the occurrence of alternative splicing of SAMD11 was conserved, the function of SAMD11 may vary in different species.