Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.114
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2313599121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739790

RESUMO

The ecoevolutionary drivers of species niche expansion or contraction are critical for biodiversity but challenging to infer. Niche expansion may be promoted by local adaptation or constrained by physiological performance trade-offs. For birds, evolutionary shifts in migratory behavior permit the broadening of the climatic niche by expansion into varied, seasonal environments. Broader niches can be short-lived if diversifying selection and geography promote speciation and niche subdivision across climatic gradients. To illuminate niche breadth dynamics, we can ask how "outlier" species defy constraints. Of the 363 hummingbird species, the giant hummingbird (Patagona gigas) has the broadest climatic niche by a large margin. To test the roles of migratory behavior, performance trade-offs, and genetic structure in maintaining its exceptional niche breadth, we studied its movements, respiratory traits, and population genomics. Satellite and light-level geolocator tracks revealed an >8,300-km loop migration over the Central Andean Plateau. This migration included a 3-wk, ~4,100-m ascent punctuated by upward bursts and pauses, resembling the acclimatization routines of human mountain climbers, and accompanied by surging blood-hemoglobin concentrations. Extreme migration was accompanied by deep genomic divergence from high-elevation resident populations, with decisive postzygotic barriers to gene flow. The two forms occur side-by-side but differ almost imperceptibly in size, plumage, and respiratory traits. The high-elevation resident taxon is the world's largest hummingbird, a previously undiscovered species that we describe and name here. The giant hummingbirds demonstrate evolutionary limits on niche breadth: when the ancestral niche expanded due to evolution (or loss) of an extreme migratory behavior, speciation followed.


Assuntos
Migração Animal , Aves , Especiação Genética , Animais , Migração Animal/fisiologia , Aves/genética , Aves/fisiologia , Aves/classificação , Ecossistema , Altitude , Evolução Biológica
2.
Proc Natl Acad Sci U S A ; 121(27): e2322291121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38913905

RESUMO

Tibetan sheep were introduced to the Qinghai Tibet plateau roughly 3,000 B.P., making this species a good model for investigating genetic mechanisms of high-altitude adaptation over a relatively short timescale. Here, we characterize genomic structural variants (SVs) that distinguish Tibetan sheep from closely related, low-altitude Hu sheep, and we examine associated changes in tissue-specific gene expression. We document differentiation between the two sheep breeds in frequencies of SVs associated with genes involved in cardiac function and circulation. In Tibetan sheep, we identified high-frequency SVs in a total of 462 genes, including EPAS1, PAPSS2, and PTPRD. Single-cell RNA-Seq data and luciferase reporter assays revealed that the SVs had cis-acting effects on the expression levels of these three genes in specific tissues and cell types. In Tibetan sheep, we identified a high-frequency chromosomal inversion that exhibited modified chromatin architectures relative to the noninverted allele that predominates in Hu sheep. The inversion harbors several genes with altered expression patterns related to heart protection, brown adipocyte proliferation, angiogenesis, and DNA repair. These findings indicate that SVs represent an important source of genetic variation in gene expression and may have contributed to high-altitude adaptation in Tibetan sheep.


Assuntos
Altitude , Animais , Ovinos/genética , Tibet , Variação Estrutural do Genoma , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica , Genoma , Aclimatação/genética
3.
Proc Natl Acad Sci U S A ; 120(25): e2218049120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307471

RESUMO

Environmental hypoxia challenges female reproductive physiology in placental mammals, increasing rates of gestational complications. Adaptation to high elevation has limited many of these effects in humans and other mammals, offering potential insight into the developmental processes that lead to and protect against hypoxia-related gestational complications. However, our understanding of these adaptations has been hampered by a lack of experimental work linking the functional, regulatory, and genetic underpinnings of gestational development in locally adapted populations. Here, we dissect high-elevation adaptation in the reproductive physiology of deer mice (Peromyscus maniculatus), a rodent species with an exceptionally broad elevational distribution that has emerged as a model for hypoxia adaptation. Using experimental acclimations, we show that lowland mice experience pronounced fetal growth restriction when challenged with gestational hypoxia, while highland mice maintain normal growth by expanding the compartment of the placenta that facilitates nutrient and gas exchange between gestational parent and fetus. We then use compartment-specific transcriptome analyses to show that adaptive structural remodeling of the placenta is coincident with widespread changes in gene expression within this same compartment. Genes associated with fetal growth in deer mice significantly overlap with genes involved in human placental development, pointing to conserved or convergent pathways underlying these processes. Finally, we overlay our results with genetic data from natural populations to identify candidate genes and genomic features that contribute to these placental adaptations. Collectively, these experiments advance our understanding of adaptation to hypoxic environments by revealing physiological and genetic mechanisms that shape fetal growth trajectories under maternal hypoxia.


Assuntos
Peromyscus , Placenta , Gravidez , Humanos , Animais , Feminino , Aclimatação , Desenvolvimento Fetal , Hipóxia
4.
Plant J ; 117(2): 464-482, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37872890

RESUMO

Rhodiola L. is a genus that has undergone rapid radiation in the mid-Miocene and may represent a typic case of adaptive radiation. Many species of Rhodiola have also been widely used as an important adaptogen in traditional medicines for centuries. However, a lack of high-quality chromosome-level genomes hinders in-depth study of its evolution and biosynthetic pathway of secondary metabolites. Here, we assembled two chromosome-level genomes for two Rhodiola species with different chromosome number and sexual system. The assembled genome size of R. chrysanthemifolia (2n = 14; hermaphrodite) and R. kirilowii (2n = 22; dioecious) were of 402.67 and 653.62 Mb, respectively, with approximately 57.60% and 69.22% of transposable elements (TEs). The size difference between the two genomes was mostly due to proliferation of long terminal repeat-retrotransposons (LTR-RTs) in the R. kirilowii genome. Comparative genomic analysis revealed possible gene families responsible for high-altitude adaptation of Rhodiola, including a homolog of plant cysteine oxidase 2 gene of Arabidopsis thaliana (AtPCO2), which is part of the core molecular reaction to hypoxia and contributes to the stability of Group VII ethylene response factors (ERF-VII). We found extensive chromosome fusion/fission events and structural variations between the two genomes, which might have facilitated the initial rapid radiation of Rhodiola. We also identified candidate genes in the biosynthetic pathway of salidroside. Overall, our results provide important insights into genome evolution in plant rapid radiations, and possible roles of chromosome fusion/fission and structure variation played in rapid speciation.


Assuntos
Glucosídeos , Fenóis , Rhodiola , Rhodiola/genética , Rhodiola/metabolismo , Vias Biossintéticas , Tamanho do Genoma , Cromossomos , Evolução Molecular
5.
FASEB J ; 38(7): e23594, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38573451

RESUMO

A high prevalence of osteoarthritis (OA) has been observed among individuals living at high altitudes, and hypobaric hypoxia (HH) can cause bone mass and strength deterioration. However, the effect of HH on OA remains unclear. In this study, we aimed to explore the impact of HH on OA and its potential mechanisms. A rat knee OA model was established by surgery, and the rats were bred in an HH chamber simulating a high-altitude environment. Micro-computed tomography (Micro-CT), histological analysis, and RNA sequencing were performed to evaluate the effects of HH on OA in vivo. A hypoxic co-culture model of osteoclasts and osteoblasts was also established to determine their effects on chondrogenesis in vitro. Cartilage degeneration significantly worsened in the HH-OA group compared to that in the normoxia-OA (N-OA) group, 4 weeks after surgery. Micro-CT analysis revealed more deteriorated bone mass in the HH-OA group than in the N-OA group. Decreased hypoxia levels in the cartilage and enhanced hypoxia levels in the subchondral bone were observed in the HH-OA group. Furthermore, chondrocytes cultured in a conditioned medium from the hypoxic co-culture model showed decreased anabolism and extracellular matrix compared to those in the normoxic model. RNA sequencing analysis of the subchondral bone indicated that the glycolytic signaling pathway was highly activated in the HH-OA group. HH-related OA progression was associated with alterations in the oxygen environment and bone remodeling in the subchondral zone, which provided new insights into the pathogenesis of OA.


Assuntos
Osteoartrite , Oxigênio , Animais , Ratos , Microtomografia por Raio-X , Hipóxia , Osteoartrite/etiologia , Remodelação Óssea
6.
Artigo em Inglês | MEDLINE | ID: mdl-38507607

RESUMO

RATIONALE: Individuals with COPD have airflow obstruction and maldistribution of ventilation. For those living at high altitude, any gas exchange abnormality is compounded by reduced partial pressures of inspired oxygen. OBJECTIVES: Does residence at higher-altitude exposure affect COPD outcomes, including lung function, imaging characteristics, symptoms, health status, functional exercise capacity, exacerbations, or mortality? METHODS: From the SPIROMICS cohort, we identified individuals with COPD living below 1,000 ft (305 m) elevation (n= 1,367) versus above 4,000 ft (1,219 m) elevation (n= 288). Multivariable regression models were used to evaluate associations of exposure to high altitude with COPD-related outcomes. MEASUREMENTS AND MAIN RESULTS: Living at higher altitude was associated with reduced functional exercise capacity as defined by 6MWD (-32.3 m, (-55.7 to -28.6)). There were no differences in patient-reported outcomes as defined by symptoms (CAT, mMRC), or health status (SGRQ). Higher altitude was not associated with a different rate of FEV1 decline. Higher altitude was associated with lower odds of severe exacerbations (IRR 0.65, (0.46 to 0.90)). There were no differences in small airway disease, air trapping, or emphysema. In longitudinal analyses, higher altitude was associated with increased mortality (HR 1.25, (1.0 to 1.55)); however, this association was no longer significant when accounting for air pollution. CONCLUSIONS: Chronic altitude exposure is associated with reduced functional exercise capacity in individuals with COPD, but this did not translate into differences in symptoms or health status. Additionally, chronic high-altitude exposure did not affect progression of disease as defined by longitudinal changes in spirometry.

7.
Proc Natl Acad Sci U S A ; 119(40): e2200421119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161951

RESUMO

Strong ultraviolet (UV) radiation at high altitude imposes a serious selective pressure, which may induce skin pigmentation adaptation of indigenous populations. We conducted skin pigmentation phenotyping and genome-wide analysis of Tibetans in order to understand the underlying mechanism of adaptation to UV radiation. We observe that Tibetans have darker baseline skin color compared with lowland Han Chinese, as well as an improved tanning ability, suggesting a two-level adaptation to boost their melanin production. A genome-wide search for the responsible genes identifies GNPAT showing strong signals of positive selection in Tibetans. An enhancer mutation (rs75356281) located in GNPAT intron 2 is enriched in Tibetans (58%) but rare in other world populations (0 to 18%). The adaptive allele of rs75356281 is associated with darker skin in Tibetans and, under UVB treatment, it displays higher enhancer activities compared with the wild-type allele in in vitro luciferase assays. Transcriptome analyses of gene-edited cells clearly show that with UVB treatment, the adaptive variant of GNPAT promotes melanin synthesis, likely through the interactions of CAT and ACAA1 in peroxisomes with other pigmentation genes, and they act synergistically, leading to an improved tanning ability in Tibetans for UV protection.


Assuntos
Adaptação Fisiológica , Altitude , Pigmentação da Pele , Aciltransferases/genética , Adaptação Fisiológica/genética , Etnicidade , Humanos , Melaninas/genética , Fenótipo , Pigmentação da Pele/genética , Tibet , Transcriptoma , Raios Ultravioleta
8.
Genomics ; 116(5): 110890, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909906

RESUMO

Previous studies have presented evidence suggesting that altitude exerts detrimental effects on reproductive processes, yet the underlying mechanism remains elusive. Our study employed two distinct goat breeds inhabiting low and high altitudes, and conducted a comparative analysis of mRNA profiles in testis tissues and the composition of gut microbiota. The results revealed a reduced testis size in high-altitude goats. RNA-seq analysis identified the presence of 214 differentially expressed genes (DEGs) in the testis. These DEGs resulted in a weakened immunosuppressive effect, ultimately impairing spermatogenesis in high-altitude goats. Additionally, 16S rDNA amplicon sequencing recognized statistically significant variations in the abundance of the genera Treponema, unidentified_Oscillospiraceae, Desulfovibrio, Butyricicoccus, Dorea, Parabacteroides between the two groups. The collective evidence demonstrated the gut and testis played a synergistic role in causing decreased fertility at high altitudes. Our research provides a theoretical basis for future investigations into the reproductive fitness of male goats.

9.
Genomics ; 116(3): 110854, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701989

RESUMO

Several studies demonstrated that populations living in the Tibetan plateau are genetically and physiologically adapted to high-altitude conditions, showing genomic signatures ascribable to the action of natural selection. However, so far most of them relied solely on inferences drawn from the analysis of coding variants and point mutations. To fill this gap, we focused on the possible role of polymorphic transposable elements in influencing the adaptation of Tibetan and Sherpa highlanders. To do so, we compared high-altitude and middle/low-lander individuals of East Asian ancestry by performing in silico analyses and differentiation tests on 118 modern and ancient samples. We detected several transposable elements associated with high altitude, which map genes involved in cardiovascular, hematological, chem-dependent and respiratory conditions, suggesting that metabolic and signaling pathways taking part in these functions are disproportionately impacted by the effect of environmental stressors in high-altitude individuals. To our knowledge, our study is the first hinting to a possible role of transposable elements in the adaptation of Tibetan and Sherpa highlanders.


Assuntos
Altitude , Elementos de DNA Transponíveis , Tibet , Humanos , Adaptação Fisiológica/genética , Aclimatação/genética , Polimorfismo Genético , Povo Asiático/genética
10.
J Proteome Res ; 23(3): 891-904, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377575

RESUMO

Quickly identifying and characterizing isolates from extreme environments is currently challenging while very important to explore the Earth's biodiversity. As these isolates may, in principle, be distantly related to known species, techniques are needed to reliably identify the branch of life to which they belong. Proteotyping these environmental isolates by tandem mass spectrometry offers a rapid and cost-effective option for their identification using their peptide profiles. In this study, we document the first high-throughput proteotyping approach for environmental extremophilic and halophilic isolates. Microorganisms were isolated from samples originating from high-altitude Andean lakes (3700-4300 m a.s.l.) in the Chilean Altiplano, which represent environments on Earth that resemble conditions on other planets. A total of 66 microorganisms were cultivated and identified by proteotyping and 16S rRNA gene amplicon sequencing. Both the approaches revealed the same genus identification for all isolates except for three isolates possibly representing not yet taxonomically characterized organisms based on their peptidomes. Proteotyping was able to indicate the presence of two potentially new genera from the families of Paracoccaceae and Chromatiaceae/Alteromonadaceae, which have been overlooked by 16S rRNA amplicon sequencing approach only. The paper highlights that proteotyping has the potential to discover undescribed microorganisms from extreme environments.


Assuntos
Extremófilos , Lagos , Altitude , RNA Ribossômico 16S/genética , Biodiversidade
11.
J Physiol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780974

RESUMO

Pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension are the main precapillary forms of pulmonary hypertension (PH) summarized as pulmonary vascular diseases (PVD). PVDs are characterized by exertional dyspnoea and oxygen desaturation, and reduced quality of life and survival. Medical therapies improve life expectancy and physical performance of PVD patients, of whom many wish to participate in professional work and recreational activities including traveling to high altitude. The exposure to the hypobaric hypoxic environment of mountain regions incurs the risk of high altitude adverse events (AEHA) due to severe hypoxaemia exacerbating symptoms and further increase in pulmonary artery pressure, which may lead to right heart decompensation. Recent prospective and randomized trials show that altitude-induced hypoxaemia, pulmonary haemodynamic changes and impairment of exercise performance in PVD patients are in the range found in healthy people. The vast majority of optimally treated stable PVD patients who do not require long-term oxygen therapy at low altitude can tolerate short-term exposure to moderate altitudes up to 2500 m. PVD patients that reveal persistent severe resting hypoxaemia ( S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$  <80% for >30 min) at 2500 m respond well to supplemental oxygen therapy. Although there are no accurate predictors for AEHA, PVD patients with unfavourable risk profiles at low altitude, such as higher WHO functional class, lower exercise capacity with more pronounced exercise-induced desaturation and more severely impaired haemodynamics, are at increased risk of AEHA. Therefore, doctors with experience in PVD and high-altitude medicine should counsel PVD patients before any high-altitude sojourn. This review aims to summarize recent literature and clinical recommendations about PVD patients travelling to high altitude.

12.
J Physiol ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180146

RESUMO

Platelets are known primarily for their role in blood clotting; however, it is becoming clear that they play diverse roles beyond that of haemostasis. Exercise has been shown to activate platelets and stimulate neurogenesis, neuroplasticity and improve cognitive function, highlighting a potentially powerful link between platelet function and brain health. Despite this clear link between platelets and the brain, very little is known about the behaviour of platelets through the cerebral circulation in humans. We examined platelet concentration across the brain in exercising humans at sea level (340 m) and high altitude (6-8 days at 3800 m; a stimulus known to modify platelet function). During intense exercise at sea level, platelet concentration increased similarly by 27 ± 17% in the arterial and internal jugular venous circulations (exercise: P < 0.001, interaction: P = 0.262), indicating no uptake or release of platelets into/from the brain. At high altitude, resting platelet concentrations were similar to sea level values in both the arterial and jugular venous circulations (P = 0.590); however, intense exercise at high altitude caused a 31 ± 35% decrease in platelet concentration across the brain (P = 0.016). This divergent response across the brain was not observed in any other haematological or metabolic variables. These data highlight a unique situation where the combination of intense exercise and high altitude hypoxia cause a decrease in platelet concentration across the cerebral circulation. The physiological implications and mechanisms that might influence platelet function across the brain during exercise at high altitude remain to be established. KEY POINTS: Platelets are known primarily for their role in blood clotting; however, it is becoming clear that they play diverse roles beyond that of haemostasis. Exercise has been shown to activate platelets, which in turn stimulate neurogenesis, neuroplasticity and improve cognitive function, highlighting a powerful link between platelet function and brain health. At sea level, platelet concentration in blood going into and out of the brain was similar at rest, during maximal exercise and in recovery from exercise. During maximal exercise at high altitude, platelet concentration was 31% lower in the blood exiting the brain; the final destination of these platelets is unknown. The physiological implications and mechanisms that might influence platelet function across the cerebral circulation during exercise at high altitude remain to be established.

13.
J Physiol ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299739

RESUMO

On the 70th anniversary of the first climb of Mount Everest by Edmund Hillary and Tensing Norgay, we discuss the physiological bases of climbing Everest with or without supplementary oxygen. After summarizing the data of the 1953 expedition and the effects of oxygen administration, we analyse the reasons why Reinhold Messner and Peter Habeler succeeded without supplementary oxygen in 1978. The consequences of this climb for physiology are briefly discussed. An overall analysis of maximal oxygen consumption ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ) at altitude follows. In this section, we discuss the reasons for the non-linear fall of V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ at altitude, we support the statement that it is a mirror image of the oxygen equilibrium curve, and we propose an analogue of Hill's model of the oxygen equilibrium curve to analyse the V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ fall. In the following section, we discuss the role of the ventilatory and pulmonary resistances to oxygen flow in limiting V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , which becomes progressively greater while moving toward higher altitudes. On top of Everest, these resistances provide most of the V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ limitation, and the oxygen equilibrium curve and the respiratory system provide linear responses. This phenomenon is more accentuated in athletes with elevated V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , due to exercise-induced arterial hypoxaemia. The large differences in V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ that we observe at sea level disappear at altitude. There is no need for a very high V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ at sea level to climb the highest peaks on Earth.

14.
J Physiol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38533641

RESUMO

Sympathoexcitation is a hallmark of hypoxic exposure, occurring acutely, as well as persisting in acclimatised lowland populations and with generational exposure in highland native populations of the Andean and Tibetan plateaus. The mechanisms mediating altitude sympathoexcitation are multifactorial, involving alterations in both peripheral autonomic reflexes and central neural pathways, and are dependent on the duration of exposure. Initially, hypoxia-induced sympathoexcitation appears to be an adaptive response, primarily mediated by regulatory reflex mechanisms concerned with preserving systemic and cerebral tissue O2 delivery and maintaining arterial blood pressure. However, as exposure continues, sympathoexcitation is further augmented above that observed with acute exposure, despite acclimatisation processes that restore arterial oxygen content ( C a O 2 ${C_{{\mathrm{a}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ). Under these conditions, sympathoexcitation may become maladaptive, giving rise to reduced vascular reactivity and mildly elevated blood pressure. Importantly, current evidence indicates the peripheral chemoreflex does not play a significant role in the augmentation of sympathoexcitation during altitude acclimatisation, although methodological limitations may underestimate its true contribution. Instead, processes that provide no obvious survival benefit in hypoxia appear to contribute, including elevated pulmonary arterial pressure. Nocturnal periodic breathing is also a potential mechanism contributing to altitude sympathoexcitation, although experimental studies are required. Despite recent advancements within the field, several areas remain unexplored, including the mechanisms responsible for the apparent normalisation of muscle sympathetic nerve activity during intermediate hypoxic exposures, the mechanisms accounting for persistent sympathoexcitation following descent from altitude and consideration of whether there are sex-based differences in sympathetic regulation at altitude.

15.
J Physiol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534039

RESUMO

Periodic breathing during sleep at high altitude is almost universal among sojourners. Here, in the context of acclimatization and adaptation, we provide a contemporary review on periodic breathing at high altitude, and explore whether this is an adaptive or maladaptive process. The mechanism(s), prevalence and role of periodic breathing in acclimatized lowlanders at high altitude are contrasted with the available data from adapted indigenous populations (e.g. Andean and Tibetan highlanders). It is concluded that (1) periodic breathing persists with acclimatization in lowlanders and the severity is proportional to sleeping altitude; (2) periodic breathing does not seem to coalesce with poor sleep quality such that, with acclimatization, there appears to be a lengthening of cycle length and minimal impact on the average sleeping oxygen saturation; and (3) high altitude adapted highlanders appear to demonstrate a blunting of periodic breathing, compared to lowlanders, comprising a feature that withstands the negative influences of chronic mountain sickness. These observations indicate that periodic breathing persists with high altitude acclimatization with no obvious negative consequences; however, periodic breathing is attenuated with high altitude adaptation and therefore potentially reflects an adaptive trait to this environment.

16.
J Physiol ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687185

RESUMO

During acute hypoxic exposure, cerebral blood flow (CBF) increases to compensate for the reduced arterial oxygen content (CaO2). Nevertheless, as exposure extends, both CaO2 and CBF progressively normalize. Haemoconcentration is the primary mechanism underlying the CaO2 restoration and may therefore explain, at least in part, the CBF normalization. Accordingly, we tested the hypothesis that reversing the haemoconcentration associated with extended hypoxic exposure returns CBF towards the values observed in acute hypoxia. Twenty-three healthy lowlanders (12 females) completed two identical 4-day sojourns in a hypobaric chamber, one in normoxia (NX) and one in hypobaric hypoxia (HH, 3500 m). CBF was measured by ultrasound after 1, 6, 12, 48 and 96 h and compared between sojourns to assess the time course of changes in CBF. In addition, CBF was measured at the end of the HH sojourn after hypervolaemic haemodilution. Compared with NX, CBF was increased in HH after 1 h (P = 0.001) but similar at all later time points (all P > 0.199). Haemoglobin concentration was higher in HH than NX from 12 h to 96 h (all P < 0.001). While haemodilution reduced haemoglobin concentration from 14.8 ± 1.0 to 13.9 ± 1.2 g·dl-1 (P < 0.001), it did not increase CBF (974 ± 282 to 872 ± 200 ml·min-1; P = 0.135). We thus conclude that, at least at this moderate altitude, haemoconcentration is not the primary mechanism underlying CBF normalization with acclimatization. These data ostensibly reflect the fact that CBF regulation at high altitude is a complex process that integrates physiological variables beyond CaO2. KEY POINTS: Acute hypoxia causes an increase in cerebral blood flow (CBF). However, as exposure extends, CBF progressively normalizes. We investigated whether hypoxia-induced haemoconcentration contributes to the normalization of CBF during extended hypoxia. Following 4 days of hypobaric hypoxic exposure (corresponding to 3500 m altitude), we measured CBF before and after abolishing hypoxia-induced haemoconcentration by hypervolaemic haemodilution. Contrary to our hypothesis, the haemodilution did not increase CBF in hypoxia. Our findings do not support haemoconcentration as a stimulus for the CBF normalization during extended hypoxia.

17.
J Physiol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924564

RESUMO

During sea-level exercise, blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) in humans without a patent foramen ovale (PFO) is negatively correlated with pulmonary pressure. Yet, it is unknown whether the superior exercise capacity of Tibetans well adapted to living at high altitude is the result of lower pulmonary pressure during exercise in hypoxia, and whether their cardiopulmonary characteristics are significantly different from lowland natives of comparable ancestry (e.g. Han Chinese). We found a 47% PFO prevalence in male Tibetans (n = 19) and Han Chinese (n = 19) participants. In participants without a PFO (n = 10 each group), we measured heart structure and function at rest and peak oxygen uptake ( V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ ), peak power output ( W ̇ p e a k ${{\dot{W}}_{peak}}$ ), pulmonary artery systolic pressure (PASP), blood flow through IPAVA and cardiac output ( Q ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ ) at rest and during recumbent cycle ergometer exercise at 760 Torr (SL) and at 410 Torr (ALT) barometric pressure in a pressure chamber. Tibetans achieved a higher W peak ${W}_{\textit{peak}}$ than Han, and a higher V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ at ALT without differences in heart rate, stroke volume or Q ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ . Blood flow through IPAVA was generally similar between groups. Increases in PASP and total pulmonary resistance at ALT were comparable between the groups. There were no differences in the slopes of PASP plotted as a function of Q ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ during exercise. In those without PFO, our data indicate that the superior aerobic exercise capacity of Tibetans over Han Chinese is independent of cardiopulmonary features and more probably linked to differences in local muscular oxygen extraction. KEY POINTS: Patent foramen ovale (PFO) prevalence was 47% in Tibetans and Han Chinese living at 2 275 m. Subjects with PFO were excluded from exercise studies. Compared to Han Chinese, Tibetans had a higher peak workload with acute compression to sea level barometric pressure (SL) and acute decompression to 5000 m altitude (ALT). Comprehensive cardiac structure and function at rest were not significantly different between Han Chinese and Tibetans. Tibetans and Han had similar blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) during exercise at SL. Peak pulmonary artery systolic pressure (PASP) and total pulmonary resistance were different between SL and ALT, with significantly increased PASP for Han compared to Tibetans at ALT. No differences were observed between groups at acute SL and ALT.

18.
J Physiol ; 602(4): 683-712, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349000

RESUMO

Recent thermodynamic modelling indicates that maintaining the brain tissue ratio of O2 to CO2 (abbreviated tissue O2 /CO2 ) is critical for preserving the entropy increase available from oxidative metabolism of glucose, with a fall of that available entropy leading to a reduction of the phosphorylation potential and impairment of brain energy metabolism. This provides a novel perspective for understanding physiological responses under different conditions in terms of preserving tissue O2 /CO2 . To enable estimation of tissue O2 /CO2 in the human brain, a detailed mathematical model of O2 and CO2 transport was developed, and applied to reported physiological responses to different challenges, asking: how well is tissue O2 /CO2 preserved? Reported experimental results for increased neural activity, hypercapnia and hypoxia due to high altitude are consistent with preserving tissue O2 /CO2 . The results highlight two physiological mechanisms that control tissue O2 /CO2 : cerebral blood flow, which modulates tissue O2 ; and ventilation rate, which modulates tissue CO2 . The hypoxia modelling focused on humans at high altitude, including acclimatized lowlanders and Tibetan and Andean adapted populations, with a primary finding that decreasing CO2 by increasing ventilation rate is more effective for preserving tissue O2 /CO2 than increasing blood haemoglobin content to maintain O2 delivery to tissue. This work focused on the function served by particular physiological responses, and the underlying mechanisms require further investigation. The modelling provides a new framework and perspective for understanding how blood flow and other physiological factors support energy metabolism in the brain under a wide range of conditions. KEY POINTS: Thermodynamic modelling indicates that preserving the O2 /CO2 ratio in brain tissue is critical for preserving the entropy change available from oxidative metabolism of glucose and the phosphorylation potential underlying energy metabolism. A detailed model of O2 and CO2 transport was developed to allow estimation of the tissue O2 /CO2 ratio in the human brain in different physiological states. Reported experimental results during hypoxia, hypercapnia and increased oxygen metabolic rate in response to increased neural activity are consistent with maintaining brain tissue O2 /CO2 ratio. The hypoxia modelling of high-altitude acclimatization and adaptation in humans demonstrates the critical role of reducing CO2 with increased ventilation for preserving tissue O2 /CO2 . Preservation of tissue O2 /CO2 provides a novel perspective for understanding the function of observed physiological responses under different conditions in terms of preserving brain energy metabolism, although the mechanisms underlying these functions are not well understood.


Assuntos
Hipercapnia , Oxigênio , Humanos , Oxigênio/metabolismo , Dióxido de Carbono , Encéfalo/metabolismo , Hipóxia , Consumo de Oxigênio , Termodinâmica , Glucose/metabolismo , Altitude
19.
Pflugers Arch ; 476(1): 49-57, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37816992

RESUMO

The intensification of the stress response during resistance training (RT) under hypoxia conditions could trigger unwanted effects that compromise muscle health and, therefore, the ability of the muscle to adapt to longer training periods. We examined the effect of acute moderate terrestrial hypoxia on metabolic, inflammation, antioxidant capacity and muscle atrophy biomarkers after a single RT session in a young male population. Twenty healthy volunteers allocated to the normoxia (N < 700 m asl) or moderate altitude (HH = 2320 m asl) group participated in this study. Before and throughout the 30 min following the RT session (3 × 10 reps, 90 s rest, 70% 1RM), venous blood samples were taken and analysed for circulating calcium, inorganic phosphate, cytokines (IL-6, IL-10 and TNF-α), total antioxidant capacity (TAC) and myostatin. Main results displayed a marked metabolic stress response after the RT in both conditions. A large to very large proportional increase in the adjusted to pre-exercise change of inflammatory and anti-inflammatory markers favoured HH (serum TNF-α [ES = 1.10; p = 0.024] and IL-10 [ES = 1.31; p = 0.009]). The exercise produced a similar moderate increment of myostatin in both groups, followed by a moderate non-significant reduction in HH throughout the recovery (ES = - 0.72; p = 0.21). The RT slightly increased the antioxidant response regardless of the environmental condition. These results revealed no clear impact of RT under acute hypoxia on the metabolic, TAC and muscle atrophy biomarkers. However, a coordinated pro/anti-inflammatory response balances the potentiated effect of RT on systemic inflammation.


Assuntos
Altitude , Treinamento Resistido , Humanos , Masculino , Interleucina-10 , Antioxidantes , Miostatina , Fator de Necrose Tumoral alfa , Hipóxia , Inflamação , Biomarcadores , Músculos , Anti-Inflamatórios , Atrofia Muscular
20.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L496-L507, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349115

RESUMO

The utility of cell-free (cf) DNA has extended as a surrogate or clinical biomarker for various diseases. However, a more profound and expanded understanding of the diverse cfDNA population and its correlation with physiological phenotypes and environmental factors is imperative for using its full potential. The high-altitude (HA; altitude > 2,500 m above sea level) environment characterized by hypobaric hypoxia offers an observational case-control design to study the differential cfDNA profile in patients with high-altitude pulmonary edema (HAPE) (number of subjects, n = 112) and healthy HA sojourners (n = 111). The present study investigated cfDNA characteristics such as concentration, fragment length size, degree of integrity, and subfractions reflecting mitochondrial-cfDNA copies in the two groups. The total cfDNA level was significantly higher in patients with HAPE, and the level increased with increasing HAPE severity (P = 0.0036). A lower degree of cfDNA integrity of 0.346 in patients with HAPE (P = 0.001) indicated the prevalence of shorter cfDNA fragments in circulation in patients compared with the healthy HA sojourners. A significant correlation of cfDNA characteristics with the peripheral oxygen saturation levels in the patient group demonstrated the translational relevance of cfDNA molecules. The correlation was further supported by multivariate logistic regression and receiver operating characteristic curve. To our knowledge, our study is the first to highlight the association of higher cfDNA concentration, a lower degree of cfDNA integrity, and increased mitochondrial-derived cfDNA population with HAPE disease severity. Further deep profiling of cfDNA fragments, which preserves cell-type specific genetic and epigenetic features, can provide dynamic physiological responses to hypoxia.NEW & NOTEWORTHY This study observed altered cell-free (cf) DNA fragment patterns in patients with high-altitude pulmonary edema and the significant correlation of these patterns with peripheral oxygen saturation levels. This suggests deep profiling of cfDNA fragments in the future may identify genetic and epigenetic mechanisms underlying physiological and pathophysiological responses to hypoxia.


Assuntos
Doença da Altitude , Ácidos Nucleicos Livres , Hipertensão Pulmonar , Edema Pulmonar , Humanos , Altitude , Edema Pulmonar/genética , Doença da Altitude/genética , Hipóxia/genética , Ácidos Nucleicos Livres/genética , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA