Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Glob Chang Biol ; 30(7): e17427, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39021313

RESUMO

Atmospheric nitrogen (N) deposition in forests can affect soil microbial growth and turnover directly through increasing N availability and indirectly through altering plant-derived carbon (C) availability for microbes. This impacts microbial residues (i.e., amino sugars), a major component of soil organic carbon (SOC). Previous studies in forests have so far focused on the impact of understory N addition on microbes and microbial residues, but the effect of N deposition through plant canopy, the major pathway of N deposition in nature, has not been explicitly explored. In this study, we investigated whether and how the quantities (25 and 50 kg N ha-1 year-1) and modes (canopy and understory) of N addition affect soil microbial residues in a temperate broadleaf forest under 10-year N additions. Our results showed that N addition enhanced the concentrations of soil amino sugars and microbial residual C (MRC) but not their relative contributions to SOC, and this effect on amino sugars and MRC was closely related to the quantities and modes of N addition. In the topsoil, high-N addition significantly increased the concentrations of amino sugars and MRC, regardless of the N addition mode. In the subsoil, only canopy N addition positively affected amino sugars and MRC, implying that the indirect pathway via plants plays a more important role. Neither canopy nor understory N addition significantly affected soil microbial biomass (as represented by phospholipid fatty acids), community composition and activity, suggesting that enhanced microbial residues under N deposition likely stem from increased microbial turnover. These findings indicate that understory N addition may underestimate the impact of N deposition on microbial residues and SOC, highlighting that the processes of canopy N uptake and plant-derived C availability to microbes should be taken into consideration when predicting the impact of N deposition on the C sequestration in temperate forests.


Assuntos
Carbono , Florestas , Nitrogênio , Microbiologia do Solo , Solo , Nitrogênio/metabolismo , Carbono/metabolismo , Carbono/análise , Solo/química , Amino Açúcares/metabolismo , Amino Açúcares/análise , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
2.
Environ Sci Technol ; 58(4): 1966-1975, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38153028

RESUMO

Polysaccharides in extracellular polymeric substances (EPS) can form a hybrid matrix network with proteins, impeding waste-activated sludge (WAS) fermentation. Amino sugars, such as N-acetyl-d-glucosamine (GlcNAc) polymers and sialic acid, are the non-negligible components in the EPS of aerobic granules or biofilm. However, the occurrence of amino sugars in WAS and their degradation remains unclear. Thus, amino sugars (∼6.0%) in WAS were revealed, and the genera of Lactococcus and Zoogloea were identified for the first time. Chitin was used as the substrate to enrich a chitin-degrading consortium (CDC). The COD balances for methane production ranged from 83.3 and 95.1%. Chitin was gradually converted to oligosaccharides and GlcNAc after dosing with the extracellular enzyme. After doing enriched CDC in WAS, the final methane production markedly increased to 60.4 ± 0.6 mL, reflecting an increase of ∼62%. Four model substrates of amino sugars (GlcNAc and sialic acid) and polysaccharides (cellulose and dextran) could be used by CDC. Treponema (34.3%) was identified as the core bacterium via excreting chitinases (EC 3.2.1.14) and N-acetyl-glucosaminidases (EC 3.2.1.52), especially the genetic abundance of chitinases in CDC was 2.5 times higher than that of WAS. Thus, this study provides an elegant method for the utilization of amino sugar-enriched organics.


Assuntos
Quitinases , Esgotos , Amino Açúcares , Fermentação , Ácido N-Acetilneuramínico , Quitina/química , Quitina/metabolismo , Polissacarídeos , Quitinases/química , Quitinases/metabolismo , Metano
3.
Environ Sci Technol ; 58(1): 468-479, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38141044

RESUMO

Coastal wetlands contribute to the mitigation of climate change through the sequestration of "blue carbon". Microbial necromass, lignin, and glycoproteins (i.e., glomalin-related soil proteins (GRSP)), as important components of soil organic carbon (SOC), are sensitive to environmental change. However, their contributions to blue carbon formation and the underlying factors remain largely unresolved. To address this paucity of knowledge, we investigated their contributions to blue carbon formation along a salinity gradient in coastal marshes. Our results revealed decreasing contributions of microbial necromass and lignin to blue carbon as the salinity increased, while GRSP showed an opposite trend. Using random forest models, we showed that their contributions to SOC were dependent on microbial biomass and resource stoichiometry. In N-limited saline soils, contributions of microbial necromass to SOC decreased due to increased N-acquisition enzyme activity. Decreases in lignin contributions were linked to reduced mineral protection offered by short-range-ordered Fe (FeSRO). Partial least-squares path modeling (PLS-PM) further indicated that GRSP could increase microbial necromass and lignin formation by enhancing mineral protection. Our findings have implications for improving the accumulation of refractory and mineral-bound organic matter in coastal wetlands, considering the current scenario of heightened nutrient discharge and sea-level rise.


Assuntos
Carbono , Solo , Lignina , Glicoproteínas , Proteínas Fúngicas , Minerais
4.
J Environ Manage ; 357: 120765, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579467

RESUMO

Livestock grazing strongly influences the accumulation of soil organic carbon (SOC) in grasslands. However, whether the changes occurring in SOC content under different intensities of continuous summer long grazing are associated with the changes in microbially-derived necromass C remains unclear. Here, we established a sheep grazing experiment in northern China in 2004 with four different stocking rates. Soil samples were collected after 17 years of grazing and analyzed for physical, chemical, and microbial characteristics. Grazing decreased SOC and microbial necromass carbon (MNC). Notably, grazing also diminished contributions of MNC to SOC. MNC declined with decreasing plant carbon inputs with degradation of the soil environment. Direct reductions in microbial necromass C, which indirectly reduced SOC, resulted from reduced in plant C inputs and microbial abundance and diversity. Our study highlights the key role of stocking rate in governing microbial necromass C and SOC and the complex relationships these variables.


Assuntos
Pradaria , Solo , Animais , Ovinos , Solo/química , Carbono/análise , Estações do Ano , Nitrogênio/análise , Plantas , China , Microbiologia do Solo
5.
Molecules ; 29(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38611734

RESUMO

Intracellular protein complexes, known as inflammasomes, activate caspase-1 and induce the secretion of pro-inflammatory cytokines, namely interleukin (IL)-1ß and -18. Korean Red Ginseng extract (RGE) is a known immunomodulator and a potential candidate for the regulation of inflammasomes. The saponins, such as ginsenosides, of RGE inhibit inflammasome signaling, while non-saponin substances containing amino sugars promote the priming step, up-regulating inflammasome components (pro-IL-1ß, NLRP3, caspase-1, and Asc). In this study, the amino sugar-enriched fraction (ASEF), which increases only non-saponin components, including amino sugars, without changing the concentration of saponin substances, was used to investigate whether saponin or non-saponin components of RGE would have a greater impact on the priming step. When murine macrophages were treated with ASEF, the gene expression of inflammatory cytokines (IL-1α, TNFα, IL-6, and IL-10) increased. Additionally, ASEF induced the priming step but did not affect the inflammasome activation step, such as the secretion of IL-1ß, cleavage of caspase-1, and formation of Asc pyroptosome. Furthermore, the upregulation of gene expression of inflammasome components by ASEF was blocked by inhibitors of Toll-like receptor 4 signaling. Maltol, the main constituent of ASEF, promoted the priming step but inhibited the activation step of the inflammasome, while arginine, sugars, arginine-fructose-glucose, and fructose-arginine, the other main constituents of ASEF, had no effect on either step. Thus, certain amino sugars in RGE, excluding maltol, are believed to be the components that induce the priming step. The priming step that prepares the NLRP3 inflammasome for activation appears to be induced by amino sugars in RGE, thereby contributing to the immune-boosting effects of RGE.


Assuntos
Ginsenosídeos , Inflamassomos , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Amino Açúcares , Arginina , Caspase 1 , Frutose , Interleucina-1alfa , Interleucina-1beta , Extratos Vegetais/farmacologia
6.
J Biol Chem ; 298(4): 101809, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35271853

RESUMO

Nucleotide sugar (NS) dehydratases play a central role in the biosynthesis of deoxy and amino sugars, which are involved in a variety of biological functions in all domains of life. Bacteria are true masters of deoxy sugar biosynthesis as they can produce a wide range of highly specialized monosaccharides. Indeed, deoxy and amino sugars play important roles in the virulence of gram-positive and gram-negative pathogenic species and are additionally involved in the biosynthesis of diverse macrolide antibiotics. The biosynthesis of deoxy sugars relies on the activity of NS dehydratases, which can be subdivided into three groups based on their structure and reaction mechanism. The best-characterized NS dehydratases are the 4,6-dehydratases that, together with the 5,6-dehydratases, belong to the NS-short-chain dehydrogenase/reductase superfamily. The other two groups are the less abundant 2,3-dehydratases that belong to the Nudix hydrolase superfamily and 3-dehydratases, which are related to aspartame aminotransferases. 4,6-Dehydratases catalyze the first step in all deoxy sugar biosynthesis pathways, converting nucleoside diphosphate hexoses to nucleoside diphosphate-4-keto-6-deoxy hexoses, which in turn are further deoxygenated by the 2,3- and 3-dehydratases to form dideoxy and trideoxy sugars. In this review, we give an overview of the NS dehydratases focusing on the comparison of their structure and reaction mechanisms, thereby highlighting common features, and investigating differences between closely related members of the same superfamilies.


Assuntos
Hidroliases , Nucleotídeos , Açúcares , Hidroliases/química , Hidroliases/metabolismo , Nucleosídeos/química , Nucleotídeos/química , Especificidade por Substrato , Açúcares/química , Açúcares/metabolismo
7.
Glob Chang Biol ; 29(14): 3854-3856, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37310165

RESUMO

Microbe-mediated carbon transformation plays an important role in soil carbon sequestration, which is considered to be one of the key strategies to achieve carbon neutrality in the long term. Assessing the efficiency of microbial necromass accumulation relative to plant carbon input or microbial respiration will help to identify ways to promote soil carbon sequestration from an ecosystem perspective.


Assuntos
Ecossistema , Microbiologia do Solo , Carbono , Sequestro de Carbono , Solo
8.
Glob Chang Biol ; 29(2): 533-546, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36251710

RESUMO

Microbial metabolic products play a vital role in maintaining ecosystem multifunctionality, such as soil physical structure and soil organic carbon (SOC) preservation. Afforestation is an effective strategy to restore degraded land. Glomalin-related soil proteins (GRSP) and amino sugars are regarded as stable microbial-derived C, and their distribution within soil aggregates affects soil structure stability and SOC sequestration. However, the information about how afforestation affects the microbial contribution to SOC pools within aggregates is poorly understood. We assessed the accumulation and contribution of GRSP and amino sugars within soil aggregates along a restoration chronosequence (Bare land, Eucalyptus exserta plantation, native species mixed forest, and native forest) in tropical coastal terraces. Amino sugars and GRSP concentrations increased, whereas their contributions to the SOC pool decreased along the restoration chronosequence. Although microaggregates harbored greater microbial abundances, amino sugars and GRSP concentrations were not significantly affected by aggregate sizes. Interestingly, the contributions of amino sugars and GRSP to SOC pools decreased with decreasing aggregate size which might be associated with increased accumulation of plant-derived C. However, the relative change rate of GRSP was consistently greater in all restoration chronosequences than that of amino sugars. The accumulation of GRSP and amino sugars in SOC pools was closely associated with the dynamics of soil fertility and the microbial community. Our findings suggest that GRSP accumulates faster and contributes more to SOC pools during restoration than amino sugars did which was greatly affected by aggregate sizes. Afforestation substantially enhanced soil quality with native forest comprising species sequestering more SOC than the monoculture plantation did. Such information is invaluable for improving our mechanistic understanding of microbial control over SOC preservation during degraded ecosystem restoration. Our findings also show that plantations using arbuscular mycorrhizal plants can be an effective practice to sequester more soil carbon during restoration.


Assuntos
Carbono , Solo , Solo/química , Carbono/análise , Ecossistema , Amino Açúcares , Proteínas Fúngicas/metabolismo , Sequestro de Carbono , China
9.
Glob Chang Biol ; 29(7): 1998-2014, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36751727

RESUMO

Microbial necromass is a large and persistent component of soil organic carbon (SOC), especially under croplands. The effects of cropland management on microbial necromass accumulation and its contribution to SOC have been measured in individual studies but have not yet been summarized on the global scale. We conducted a meta-analysis of 481-paired measurements from cropland soils to examine the management effects on microbial necromass and identify the optimal conditions for its accumulation. Nitrogen fertilization increased total microbial necromass C by 12%, cover crops by 14%, no or reduced tillage (NT/RT) by 20%, manure by 21%, and straw amendment by 21%. Microbial necromass accumulation was independent of biochar addition. NT/RT and straw amendment increased fungal necromass and its contribution to SOC more than bacterial necromass. Manure increased bacterial necromass higher than fungal, leading to decreased ratio of fungal-to-bacterial necromass. Greater microbial necromass increases after straw amendments were common under semi-arid and in cool climates in soils with pH <8, and were proportional to the amount of straw input. In contrast, NT/RT increased microbial necromass mainly under warm and humid climates. Manure application increased microbial necromass irrespective of soil properties and climate. Management effects were especially strong when applied during medium (3-10 years) to long (10+ years) periods to soils with larger initial SOC contents, but were absent in sandy soils. Close positive links between microbial biomass, necromass and SOC indicate the important role of stabilized microbial products for C accrual. Microbial necromass contribution to SOC increment (accumulation efficiency) under NT/RT, cover crops, manure and straw amendment ranged from 45% to 52%, which was 9%-16% larger than under N fertilization. In summary, long-term cropland management increases SOC by enhancing microbial necromass accumulation, and optimizing microbial necromass accumulation and its contribution to SOC sequestration requires site-specific management.


Assuntos
Carbono , Solo , Solo/química , Esterco , Nitrogênio , Produtos Agrícolas , Agricultura
10.
Environ Sci Technol ; 57(17): 6910-6921, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37074051

RESUMO

Thaw slumps can lead to considerable carbon loss in permafrost regions, while the loss of components from two major origins, i.e., microbial and plant-derived carbon, during this process remains poorly understood. Here, we provide direct evidence that microbial necromass carbon is a major component of lost carbon in a retrogressive permafrost thaw slump by analyzing soil organic carbon (SOC), biomarkers (amino sugars and lignin phenols), and soil environmental variables in a typical permafrost thaw slump in the Tibetan Plateau. The retrogressive thaw slump led to a ∼61% decrease in SOC and a ∼25% SOC stock loss. As evident in the levels of amino sugars (average of 55.92 ± 18.79 mg g-1 of organic carbon, OC) and lignin phenols (average of 15.00 ± 8.05 mg g-1 OC), microbial-derived carbon (microbial necromass carbon) was the major component of the SOC loss, accounting for ∼54% of the SOC loss in the permafrost thaw slump. The variation of amino sugars was mainly related to the changes in soil moisture, pH, and plant input, while changes in lignin phenols were mainly related to the changes in soil moisture and soil bulk density.


Assuntos
Pergelissolo , Solo , Carbono , Tibet , Lignina , Fenóis , Amino Açúcares
11.
Environ Res ; 231(Pt 2): 116081, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37164286

RESUMO

A large amount of stable soil organic matter (SOM) is derived from microbial necromass, which can be assessed by quantifying amino sugar biomarkers. Pinus massoniana Lamb. Plantations are widely distributed in China and play a vital role in forest carbon sequestration. However, the patterns of soil microbial residue remain poorly understood. In this study, amino sugars were used to characterize patterns of soil microbial residues at three soil depths (0-10, 10-20, and 20-30 cm) in P. massoniana plantations of different ages (young, middle-aged, near-mature, mature, and over-mature; denoted as YG, MD, NM, MT, and OM, respectively). In the topsoil (0-10 cm), the total nitrogen (TN) content of the OM forest was the highest, whereas the soil organic carbon (SOC) content of the MT forest was the highest. Consistent with changes in SOC and TN, total microbial residue content decreased with increasing soil depth. However, the total microbial residues C to SOC contribution increased considerably with increasing depth, suggesting that more SOC was derived from microbial residues in the subsoil than that from the topsoil. The fungal residue C to SOC contribution was higher than that of bacterial residue C. Total amino sugar content in the topsoil increased with increasing age, and MT and OM had a significantly higher content than that of other forests. At all soil depths, SOC and TN content predominantly determined microbial necromass, whereas soil microbial biomass content predominantly determined microbial necromass in the topsoil; soil pH predominantly determined microbial necromass in the 10-20 cm soil layer; and soil pH and Ca2+ content were the primary factors in the soil layer below 20 cm. The study provides valuable insights into controls of microbial-derived organic C could be applied in Earth system studies for predicting SOC dynamics in forests.


Assuntos
Pinus , Solo , Solo/química , Carbono/análise , Microbiologia do Solo , Florestas , China , Nitrogênio/análise
12.
J Environ Manage ; 345: 118890, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659374

RESUMO

Mineral-associated organic carbon (MOC) is a stable component of the soil carbon (C) pool, critical to realize carbon sequestration and coping with climate change. Many Moso bamboo (Phyllostachys edulis) forests in subtropical and tropical areas that used to be intensively managed have been left unmanaged. Still, studies on MOC changes occurring during the transition from intensive management to unmanagement are lacking. Besides, the understanding of the role of microorganisms in MOC accumulation is far from satisfactory. Based on the combination of field investigation and laboratory analysis of 40 Moso bamboo forest sampling plots with different unmanaged chronosequence's in southeast China, we observed the MOC content in Moso bamboo forests left unmanaged for 2-5 years had decreased, whereas that in forests left unmanaged for 11-14 years had increased compared with that in intensively managed forests. Specifically, the MOC contents in forests left unmanaged for 11-14 years were significantly higher than in those under intensive management or unmanaged for 2-5 years. Moreover, we found that microorganisms drove MOC change through two different pathways: (i) more microorganisms led to more soil nutrients, which led to more amino sugars, ultimately resulting in the accumulation of MOC, and (ii) microorganisms promoted the accumulation of MOC by influencing the content of metal oxides (poorly crystalline aluminum oxides and free aluminum oxides). We believe that ignoring the interaction between microorganisms and metal oxides may lead to uncertainty in evaluating the relative contribution of microbial residues to MOC.


Assuntos
Alumínio , Carbono , Solo , China , Florestas , Óxidos , Poaceae
13.
Molecules ; 28(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375279

RESUMO

Amino sugars are a kind of carbohydrates with one or more hydroxyl groups replaced by an amino group. They play crucial roles in a broad range of biological activities. Over the past few decades, there have been continuing efforts on the stereoselective glycosylation of amino sugars. However, the introduction of glycoside bearing basic nitrogen is challenging using conventional Lewis acid-promoted pathways owing to competitive coordination of the amine to the Lewis acid promoter. Additionally, diastereomeric mixtures of O-glycoside are often produced if aminoglycoside lack a C2 substituent. This review focuses on the updated overview of the way to stereoselective synthesis of 1,2-cis-aminoglycoside. The scope, mechanism, and the applications in the synthesis of complex glycoconjugates for the representative methodologies were also included.


Assuntos
Amino Açúcares , Glicosídeos Cardíacos , Ácidos de Lewis , Carboidratos , Glicoconjugados , Aminoglicosídeos , Estereoisomerismo
14.
Glob Chang Biol ; 28(13): 4194-4210, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35445477

RESUMO

Increasing phosphorus (P) inputs induced by anthropogenic activities have increased P availability in soils considerably, with dramatic effects on carbon (C) cycling and storage. However, the underlying mechanisms via which P drives plant and microbial regulation of soil organic C (SOC) formation and stabilization remain unclear, hampering the accurate projection of soil C sequestration under future global change scenarios. Taking the advantage of an 8-year field experiment with increasing P addition levels in a subalpine forest on the eastern Tibetan Plateau, we explored plant C inputs, soil microbial communities, plant and microbial biomarkers, as well as SOC physical and chemical fractions. We found that continuous P addition reduced fine root biomass, but did not affect total SOC content. P addition decreased plant lignin contribution to SOC, primarily from declined vanillyl-type phenols, which was coincided with a reduction in methoxyl/N-alkyl C by 2.1%-5.5%. Despite a decline in lignin decomposition due to suppressed oxidase activity by P addition, the content of lignin-derived compounds decreased because of low C input from fine roots. In contrast, P addition increased microbial (mainly fungal) necromass and its contribution to SOC due to the slower necromass decomposition under reduced N-acquisition enzyme activity. The larger microbial necromass contribution to SOC corresponded with a 9.1%-12.4% increase in carbonyl C abundance. Moreover, P addition had no influence on the slow-cycing mineral-associated organic C pool, and SOC chemical stability indicated by aliphaticity and recalcitrance indices. Overall, P addition in the subalpine forest over 8 years influenced SOC composition through divergent alterations of plant- and microbial-derived C contributions, but did not shape SOC physical and chemical stability. Such findings may aid in accurately forecasting SOC dynamics and their potential feedbacks to climate change with future scenarios of increasing soil P availability in Earth system models.


Assuntos
Carbono , Solo , Florestas , Lignina , Fósforo , Microbiologia do Solo
15.
Glob Chang Biol ; 28(24): 7167-7185, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36043234

RESUMO

Predicting and mitigating changes in soil carbon (C) stocks under global change requires a coherent understanding of the factors regulating soil organic matter (SOM) formation and persistence, including knowledge of the direct sources of SOM (plants vs. microbes). In recent years, conceptual models of SOM formation have emphasized the primacy of microbial-derived organic matter inputs, proposing that microbial physiological traits (e.g., growth efficiency) are dominant controls on SOM quantity. However, recent quantitative studies have challenged this view, suggesting that plants make larger direct contributions to SOM than is currently recognized by this paradigm. In this review, we attempt to reconcile these perspectives by highlighting that variation across estimates of plant- versus microbial-derived SOM may arise in part from methodological limitations. We show that all major methods used to estimate plant versus microbial contributions to SOM have substantial shortcomings, highlighting the uncertainty in our current quantitative estimates. We demonstrate that there is significant overlap in the chemical signatures of compounds produced by microbes, plant roots, and through the extracellular decomposition of plant litter, which introduces uncertainty into the use of common biomarkers for parsing plant- and microbial-derived SOM, especially in the mineral-associated organic matter (MAOM) fraction. Although the studies that we review have contributed to a deeper understanding of microbial contributions to SOM, limitations with current methods constrain quantitative estimates. In light of recent advances, we suggest that now is a critical time to re-evaluate long-standing methods, clearly define their limitations, and develop a strategic plan for improving the quantification of plant- and microbial-derived SOM. From our synthesis, we outline key questions and challenges for future research on the mechanisms of SOM formation and stabilization from plant and microbial pathways.


Assuntos
Carbono , Solo , Solo/química , Carbono/metabolismo , Microbiologia do Solo , Plantas/metabolismo , Minerais/química
16.
J Anim Physiol Anim Nutr (Berl) ; 106(4): 721-732, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34278606

RESUMO

In arid and semi-arid environments, extensively managed ruminants regularly experience drinking water shortage, especially in the dry season. The present study therefore investigated the effects of mild drinking water restriction on feed intake, feed digestibility, solid digesta passage and composition of faeces including faecal microbial biomass. A feeding trial was conducted in Oman, during the dry summer months. Nine adult male Batinah goats were subjected to three watering regimes in a 3 × 3 Latin Square design. Treatments were (1) water offered ad libitum (100%, W100); (2) water restricted to 85% ad libitum consumption (W85); and (3) water restricted to 70% ad libitum consumption (W70). Animals were offered Rhodes grass hay and whole barley grains (1:1 ratio) at 1.3 times maintenance energy requirements. Each of the three experimental periods comprised 16 days of adaptation and 8 days of measurements. During the latter, feed offered and refused as well as faeces were sampled and quantified. Gastrointestinal digesta passage was determined using ytterbium-labelled Rhodes grass hay. Ergosterol and amino sugars were used as markers for faecal microbial biomass, that is the sum of fungi and bacteria. Water restriction had no effect on feed intake and digesta passage. However, feed dry matter, organic matter and fibre digestibility increased (p < 0.05) in W70 compared with W85, and the excreted amount of faecal dry matter, organic matter, nitrogen and neutral detergent fibre decreased (p < 0.05) in W70 compared with W85. Even though water restriction did not affect total faecal microbial biomass carbon (C) concentration, that of fungal biomass C increased (p < 0.05) in W70 compared with W85. Therefore, mild water restriction seems unproblematic from a physiological and nutrient utilization perspective as it increases feed digestibility without compromising feed intake.


Assuntos
Água Potável , Cabras , Ração Animal/análise , Animais , Biomassa , Dieta/veterinária , Digestão/fisiologia , Fezes , Cabras/fisiologia , Masculino , Rúmen/fisiologia
17.
Glob Chang Biol ; 27(2): 454-466, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33068453

RESUMO

The soil nitrogen (N) and phosphorus (P) availability often constrains soil carbon (C) pool, and elevated N deposition could further intensify soil P limitation, which may affect soil C cycling in these N-rich and P-poor ecosystems. Soil microbial residues may not only affect soil organic carbon (SOC) pool but also impact SOC stability through soil aggregation. However, how soil nutrient availability and aggregate fractions affect microbial residues and the microbial residue contribution to SOC is still not well understood. We took advantage of a 10-year field fertilization experiment to investigate the effects of nutrient additions, soil aggregate fractions, and their interactions on the concentrations of soil microbial residues and their contribution to SOC accumulation in a tropical coastal forest. We found that continuous P addition greatly decreased the concentrations of microbial residues and their contribution to SOC, whereas N addition had no significant effect. The P-stimulated decreases in microbial residues and their contribution to SOC were presumably due to enhanced recycling of microbial residues via increased activity of residue-decomposing enzymes. The interactive effects between soil aggregate fraction and nutrient addition were not significant, suggesting a weak role of physical protection by soil aggregates in mediating microbial responses to altered soil nutrient availability. Our data suggest that the mechanisms driving microbial residue responses to increased N and P availability might be different, and the P-induced decrease in the contribution of microbial residues might be unfavorable for the stability of SOC in N-rich and P-poor tropical forests. Such information is critical for understanding the role of tropical forests in the global carbon cycle.


Assuntos
Carbono , Solo , Carbono/análise , China , Ecossistema , Florestas , Nitrogênio/análise , Fósforo , Microbiologia do Solo
18.
Bioorg Med Chem Lett ; 47: 128227, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174398

RESUMO

Eighteen amino sugar analogues were screened against Trypanosoma cruzi glucokinase (TcGlcK), a potential drug-target of the protozoan parasite in order to assess for viable enzyme inhibition. The analogues were divided into three amino sugar scaffolds that included d-glucosamine (d-GlcN), d-mannosamine (d-ManN), and d-galactosamine (d-GalN); moreover, all but one of these compounds were novel. TcGlcK is an important metabolic enzyme that has a role in producing G6P for glycolysis and the pentose phosphate pathway (PPP). The inhibition of these pathways via glucose kinases (i.e., glucokinase and hexokinase) appears to be a strategic approach for drug discovery. Glucose kinases phosphorylate d-glucose with co-substrate ATP to yield G6P and the formed G6P enters both pathways for catabolism. The compound screen revealed five on-target confirmed inhibitors that were all from the d-GlcN series, such as compounds 1, 2, 4, 5, and 6. Four of these compounds were strong TcGlcK inhibitors (1, 2, 4, and 6) since they were found to have micromolar inhibitory constant (Ki) values around 20 µM. Three of the on-target confirmed inhibitors (1, 5, and 6) revealed notable in vitro anti-T. cruzi activity with IC50 values being less than 50 µM. Compound 1 was benzoyl glucosamine (BENZ-GlcN), a known TcGlcK inhibitor that was the starting point for the design of the compounds in this study; in addition, TcGlcK - compound 1 inhibition properties were previously determined [D'Antonio, E. L. et al. (2015) Mol. Biochem. Parasitol. 204, 64-76]. As such, compounds 5 and 6 were further evaluated biochemically, where formal Ki values were determined as well as their mode of TcGlcK inhibition. The Ki values determined for compounds 5 and 6 were 107 ± 4 µM and 15.2 ± 3.3 µM, respectively, and both of these compounds exhibited the competitive inhibition mode.


Assuntos
Amino Açúcares/farmacologia , Inibidores Enzimáticos/farmacologia , Glucoquinase/antagonistas & inibidores , Trypanosoma cruzi/enzimologia , Amino Açúcares/síntese química , Amino Açúcares/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glucoquinase/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
19.
Beilstein J Org Chem ; 17: 1086-1095, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093878

RESUMO

Multiple fluorination of glycostructures has emerged as an attractive way of modulating their protein affinity, metabolic stability, and lipophilicity. Here we described the synthesis of a series of mono-, di- and trifluorinated N-acetyl-ᴅ-glucosamine and ᴅ-galactosamine analogs. The key intermediates are the corresponding multiply fluorinated glucosazide and galactosazide thioglycosides prepared from deoxyfluorinated 1,6-anhydro-2-azido-ß-ᴅ-hexopyranose precursors by ring-opening reaction with phenyl trimethylsilyl sulfide. Nucleophilic deoxyfluorination at C4 and C6 by reaction with DAST, thioglycoside hydrolysis and azide/acetamide transformation completed the synthesis.

20.
Glob Chang Biol ; 26(11): 6032-6039, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32844509

RESUMO

The global soil carbon (C) pool is massive, so relatively small changes in soil organic carbon (SOC) stocks can significantly alter atmospheric C and global climate. The recently proposed concept of the soil microbial carbon pump (MCP) emphasizes the active role of soil microbes in SOC storage by integrating the continual microbial transformation of organic C from labile to persistent anabolic forms. However, the concept has not been evaluated with data. Here, we combine datasets, including microbial necromass biomarker amino sugars and SOC, from two long-term agricultural field studies conducted by large United States bioenergy research programs. We interrogate the soil MCP concept by investigating the asynchronous responses of microbial necromass and SOC to land-use change. Microbial necromass appeared to preferentially accumulate in soil and be the dominant contributor to SOC accrual in diversified perennial bioenergy crops. Specifically, ~92% of the additional SOC enhanced by plant diversity was estimated to be microbial necromass C, and >76% of the additional SOC enhanced by land-use transition from annual to perennial crops was estimated to be microbial necromass. This suggests that the soil MCP was stimulated in diversified perennial agroecosystems. We further delineate and suggest two parameters-soil MCP capacity and efficacy-reflecting the conversion of plant C into microbial necromass and the contribution of microbial necromass to SOC, respectively, that should serve as valuable metrics for future studies evaluating SOC storage under alternative management in changing climates.


Assuntos
Carbono , Solo , Agricultura , Produtos Agrícolas , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA