RESUMO
Acute pancreatitis (AP) is a common gastrointestinal disease with high morbidity and mortality rate. Unfortunately, neither the etiology nor the pathophysiology of AP are fully understood and causal treatment options are not available. Recently we demonstrated that heparanase (Hpa) is adversely involved in the pathogenesis of AP and inhibition of this enzyme ameliorates the manifestation of the disease. Moreover, a pioneer study demonstrated that Aspirin has partial inhibitory effect on Hpa. Another compound, which possesses a mild pancreato-protective effect against AP, is Trehalose, a common disaccharide. We hypothesized that combination of Aspirin, Trehalose, PG545 (Pixatimod) and SST0001 (Roneparstat), specific inhibitors of Hpa, may exert pancreato-protective effect better than each drug alone. Thus, the current study examines the pancreato-protective effects of Aspirin, Trehalose, PG545 and SST0001 in experimental model of AP induced by cerulein in wild-type (WT) and Hpa over-expressing (Hpa-Tg) mice. Cerulein-induced AP in WT mice was associated with significant rises in the serum levels of lipase (X4) and amylase (X3) with enhancement of pancreatic edema index, inflammatory response, and autophagy. Responses to cerulein were all more profound in Hpa-Tg mice versus WT mice, evident by X7 and X5 folds increase in lipase and amylase levels, respectively. Treatment with Aspirin or Trehalose alone and even more so in combination with PG545 or SST0001 were highly effective, restoring the serum level of lipase back to the basal level. Importantly, a novel newly synthesized compound termed Aspirlose effectively ameliorated the pathogenesis of AP as a single agent. Collectively, the results strongly indicate that targeting Hpa by using anti-Hpa drug combinations constitute a novel therapy for this common orphan disease.
Assuntos
Glucuronidase , Pancreatite , Animais , Pancreatite/tratamento farmacológico , Pancreatite/patologia , Camundongos , Glucuronidase/metabolismo , Glucuronidase/antagonistas & inibidores , Trealose/farmacologia , Trealose/uso terapêutico , Ceruletídeo , Aspirina/farmacologia , Aspirina/uso terapêutico , Modelos Animais de Doenças , Doença Aguda , Autofagia/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pâncreas/enzimologia , Masculino , Camundongos Transgênicos , Lipase/metabolismo , Lipase/antagonistas & inibidores , Amilases/sangue , Camundongos Endogâmicos C57BL , SaponinasRESUMO
In the current study, new pyrazolo[3,4-b]pyridine esters, hydrazides, and Schiff bases have been synthesized starting from 3-methyl-1-phenyl-1H-pyrazol-5-amine. The first step involved solvent-free synthesis of pyrazolo[3,4-b]pyridine-6-carboxylate derivatives (2a-d) with 55%-70% yield in the minimum time frame compared with the conventional refluxing method, which was followed by the synthesis of corresponding hydrazides (3a-d) and hydrazones (4a-e). The structures of the synthesized derivatives were confirmed using element analysis, FT-IR, 1H NMR, 13C NMR, and LC-MS techniques. Synthesized hydrazides (3a-d) and hydrazones (4a-e) were also tested for their in-vitro antidiabetic activity and found that all the compounds exhibited significant antidiabetic activity, while 3c (IC50 = 9.6 ± 0.5 µM) among the hydrazides and 4c (IC50 = 13.9 ± 0.7 µM) among the hydrazones were found to be more active in comparison to other synthesized derivatives. These in-vitro results were further validated via docking studies against the α-amylase enzyme using the reference drug acarbose (200.1 ± 10.0 µM). The results were greatly in agreement with their in-vitro studies and these derivatives can be encouraging candidates for further in-vivo studies in mice models.
Assuntos
Hipoglicemiantes , Simulação de Acoplamento Molecular , Pirazóis , Piridinas , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Piridinas/química , Piridinas/síntese química , Piridinas/farmacologia , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Relação Estrutura-Atividade , Animais , Humanos , Hidrazonas/química , Hidrazonas/síntese química , Hidrazonas/farmacologia , Simulação por ComputadorRESUMO
Activin A belongs to the transforming growth factor (TGF) family member, which exhibits a wide range of biological activities, including the regulation of cellular proliferation and differentiation and the promotion of neuronal survival. The isolation of AA from natural sources can only produce limited quantities of this bioactive protein. In this study, the whole gene of the precursor form of recombinant human activin A (rhAA) contains a signal peptide, and a pro-region and a mature region were cloned into an expression vector under the control of the rice α-amylase 3D (RAmy3D) promoter. To obtain the mature (active) form of rhAA, an enterokinase cleavage site was inserted between the pro-region and mature region of rhAA. The rice seed (Oryza sativa L. cv. Dongjin) was transformed with recombinant vectors by the Agrobacterium-mediated method, and the integration of the target gene into the plant genome was confirmed by genomic PCR. The transcript expression of rhAA in transgenic rice calli was confirmed by a Northern blot analysis of mRNA. The production of rhAA was verified by Western blot analysis and ELISA. The accumulation of secreted rhAA in the culture medium was purified by Ni2+-NTA. The mature form of AA was released from the precursor form of rhAA after proteolytically processing with enterokinase. Western blot shows that the mature AA was split into monomer and homodimer with molecular weights of 14 kDa and 28 kDa under reducing and non-reducing conditions, respectively. These results suggest that the mature form of rhAA could be produced and purified using transgenic rice cell suspension culture.
RESUMO
The chromatin structure is generally regulated by chromatin remodelers and histone modifiers, which affect DNA replication, repair, and levels of transcription. The first identified histone acetyltransferase was Hat1/KAT1, which belongs to lysine (K) acetyltransferases. The catalytic subunit Hat1 and the regulatory subunit Hat2 make up the core HAT1 complex. In this study, the results of tandem affinity purification and mass spectrometry and bimolecular fluorescence complementation proved that the Penicillium oxalicum PoHat1-Hat2 is the transcriptional cofactor of the sequence-specific transcription factor PoAmyR, a transcription activator essential for the transcription of amylase gene. ChIP-qPCR results demonstrated that the complex PoHat1-Hat2 is recruited by PoAmyR to the promoters of prominent amylase genes Poamy13A and Poamy15A and performs histone H4 lysine12 acetylation. The result of the yeast two-hybrid test indicated that PoHat2 is the subunit that directly interacts with PoAmyR. PoHat1-Hat2 acts as the molecular brake of the PoAmyR-regulating transcription of amylase genes. A putative model for amylase gene regulation by PoAmyR-Hat2-Hat1 was constructed. Our paper is the first report that the Hat1-Hat2 complex acts as a cofactor for sequence-specific TF to regulate gene expression and explains the mechanism of TF AmyR regulating amylase genes expression.
Assuntos
Proteínas Fúngicas , Histona Acetiltransferases , Penicillium , Fatores de Transcrição , Acetilação , Cromatina , Expressão Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Penicillium/metabolismo , Proteínas Fúngicas/metabolismoRESUMO
BACKGROUND/AIMS: The objectives of our study were to determine salivary α-amylase activity (stress biomarker) and its association with psychological status and quality of life (QoL), disease duration and intensity of symptoms (pain/burning) in patients with OLP. METHODS: A total of 50 subjects participated in this case-control study: 30 patients with oral lichen planus (OLP); 20 control subjects. Unstimulated whole saliva (UWS) was collected between 9 and 10 am to avoid diurnal fluctuations. Psychological status was assessed using the Croatian validated version of the original Depression, Anxiety and Stress Scale (DASS-21). The impact of oral health on QoL was assessed using the Croatian version of the Oral Health Impact Profile Questionnaire (OHIP-CRO14). RESULTS: There was no statistically significant difference in salivary α-amylase activity between patients with OLP (N=30) and control subjects (N=20) (133813.3 vs. 166815.5 U/L, p=0.314; t-test). Depression, anxiety and stress showed no statistically significant difference between patients with OLP and control subjects (p=0.076, p=0.111, p=0.209; t-test). The patients with OLP had statistically significantly poorer QoL (total) compared to control subjects (p=0.004, t-test). There was a moderate positive correlation between symptom intensity (pain/burning) and poor QoL (total) (r=0.584, p<0.001), the OHIP-CRO14 dimension "physical pain" (r=0.661, p<0.001), "psychological impossibility" (r=0.555, p<0.01), "handicap" (r=0.546, p<0.01). CONCLUSION: Although salivary α-amylase showed no statistically significant difference between patients with OLP and control subjects, the patients with OLP had poorer psychological status (three times higher scores for depression and two times higher scores for anxiety) and poorer QoL compared to the control subjects. Recognising and treating mental disorders in patients with OLP is important in order to break the "vicious circle" and achieve a better QoL in these patients.
Assuntos
Ansiedade , Líquen Plano Bucal , Qualidade de Vida , Saliva , alfa-Amilases Salivares , Humanos , Estudos de Casos e Controles , Feminino , Masculino , Pessoa de Meia-Idade , Líquen Plano Bucal/psicologia , Líquen Plano Bucal/metabolismo , alfa-Amilases Salivares/metabolismo , alfa-Amilases Salivares/análise , Adulto , Saliva/metabolismo , Saliva/química , Saliva/enzimologia , Inquéritos e Questionários , Depressão , Idoso , Biomarcadores/metabolismoRESUMO
ß-Amylase, which catalyses the release of ß-anomeric maltose from the non-reducing end of starch, is widely used in the food industry. Increasing its enzyme activity through protein engineering might improve the efficiency of food processing. To obtain detailed structural information to assist rationale design, here the crystal structure of Bacillus cereus ß-amylase (BCB) complexed with maltose was determined by molecular replacement and refined using anisotropic temperature factors to 1.26 Å resolution with Rwork/Rfree factors of 12.4/15.7 %. The structure contains six maltose and one glucose molecules, of which two maltose and one glucose are bound at sites not previously observed in BCB structures. These three new sugar-binding sites are located on the surface and likely to be important in enhancing the degradation of raw-starch granules. In the active site of BCB, two maltose molecules are bound in tandem at subsites -2 â¼ -1 and +1 â¼ +2. Notably, the conformation of the glucose moiety bound at subsite -1 is a mixture of α-anomeric distorted 1,4B boat and 4C1 chair forms, while those at subsites -2, +1 â¼ +2 are all in the 4C1 chair forms. The O1 of the distorted α-glucose residue at subsite -1 occupies the position of the putative catalytic water, forming a hydrogen bond with OE1 of Glu367 (base catalyst), suggesting that this distorted sugar is not involved in catalysis. Together, these findings pave the way for further improving the functionality of microbial ß-amylase enzymes.
Assuntos
Maltose , Modelos Moleculares , beta-Amilase , beta-Amilase/metabolismo , beta-Amilase/química , Maltose/metabolismo , Maltose/química , Sítios de Ligação , Cristalografia por Raios X , Bacillus cereus/enzimologia , Ligação Proteica , Glucose/metabolismo , Glucose/química , Conformação Proteica , Domínio Catalítico , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genéticaRESUMO
Barley ranks fourth in global cereal production and is primarily grown for animal feed and malt. Hordeins, the principal barley seed storage proteins, are homologous to wheat gluten and when ingested elicit an immune response in people with Coeliac disease. Risø 1508 is a chemically induced barley mutant with low hordein levels imparted by the lys3.a locus that is reported to be caused by an SNP in the barley prolamin-box binding factor gene (BPBF). Reports suggest the lys3.a locus prevents CG DNA demethylation at the Hor2 (B-hordein) promoter during grain development subsequently causing hypermethylation and inhibiting gene expression. In lys3.a mutants, endosperm-specific ß-amylase (Bmy1) and Hor2 are similarly downregulated during grain development and thus we hypothesize that the inability to demethylate the Bmy1 promoter CG islands is also causing Bmy1 downregulation. We use whole-genome bisulfite sequencing and mRNA-seq on developing endosperms from two lys3.a mutants and a lys3.b mutant to determine all downstream genes affected by lys3 mutations. RNAseq analysis identified 306 differentially expressed genes (DEGs) shared between all mutants and their parents and 185 DEGs shared between both lys3.a mutants and their parents. Global DNA methylation levels and promoter CG DNA methylation levels were not significantly different between the mutants and their parents and thus refute the hypothesis that the lys3.a mutant's phenotype is caused by dysregulation of demethylation during grain development. The majority of DEGs were downregulated (e.g., B- and C-hordeins and Bmy1), but some DEGs were upregulated (e.g., ß-glucosidase, D-hordein) suggesting compensatory effects and potentially explaining the low ß-glucan phenotype observed in lys3.a germplasm. These findings have implications on human health and provide novel insight to barley breeders regarding the use of BPBF transcription factor mutants to create gluten-free barley varieties.
Assuntos
Hordeum , Fatores de Transcrição , Animais , Humanos , Prolaminas , Hordeum/genética , Endosperma/genética , Grão Comestível/genética , Metilação de DNA/genética , GlutensRESUMO
MAIN CONCLUSION: Genetic loci, particularly those with an effect in the independent panel, could be utilised to further reduce LMA expression when used with favourable combinations of genes known to affect LMA. Late maturity α-amylase (LMA) is a grain quality defect involving elevated α-amylase within the aleurone of wheat (Triticum aestivum L.) grains. The genes known to affect expression are the reduced height genes Rht-B1 (chromosome 4B) and Rht-D1 (chromosome 4D), and an ent-copalyl diphosphate synthase gene (LMA-1) on chromosome 7B. Other minor effect loci have been reported, but these are poorly characterised and further genetic understanding is needed. In this study, twelve F4-derived populations were created through single seed descent, genotyped and evaluated for LMA. LMA-1 haplotype C and the Rht-D1b allele substantially reduced LMA expression. The alternative dwarfing genes Rht13 and Rht18 had no significant effect on LMA expression. Additional quantitative trait loci (QTL) were mapped at 16 positions in the wheat genome. Effects on LMA expression were detected for four of these QTL in a large independent panel of Australian wheat lines. The QTL detected in mapping populations and confirmed in the large independent panel provide further opportunity for selection against LMA, especially if combined with Rht-D1b and/or favourable haplotypes of LMA-1.
Assuntos
Triticum , alfa-Amilases , Austrália , Locos de Características Quantitativas , AlelosRESUMO
Cyclodextrinases are carbohydrate-active enzymes involved in the linearization of circular amylose oligosaccharides. Primarily thought to function as part of starch metabolism, there have been previous reports of bacterial cyclodextrinases also having additional enzymatic activities on linear malto-oligosaccharides. This substrate class also includes environmentally rare α-diglucosides such as kojibiose (α-1,2), nigerose (α-1,3), and isomaltose (α-1,6), all of which have valuable properties as prebiotics or low-glycemic index sweeteners. Previous genome sequencing of three Cellvibrio japonicus strains adapted to utilize these α-diglucosides identified multiple, but uncharacterized, mutations in each strain. One of the mutations identified was in the amy13E gene, which was annotated to encode a neopullulanase. In this report, we functionally characterized this gene and determined that it in fact encodes a cyclodextrinase with additional activities on α-diglucosides. Deletion analysis of amy13E found that this gene was essential for kojibiose and isomaltose metabolism in C. japonicus. Interestingly, a Δamy13E mutant was not deficient for cyclodextrin or pullulan utilization in C. japonicus; however, heterologous expression of the gene in E. coli was sufficient for cyclodextrin-dependent growth. Biochemical analyses found that CjAmy13E cleaved multiple substrates but preferred cyclodextrins and maltose, but had no activity on pullulan. Our characterization of the CjAmy13E cyclodextrinase is useful for refining functional enzyme predictions in related bacteria and for engineering enzymes for biotechnology or biomedical applications.IMPORTANCEUnderstanding the bacterial metabolism of cyclodextrins and rare α-diglucosides is increasingly important, as these sugars are becoming prevalent in the foods, supplements, and medicines humans consume that subsequently feed the human gut microbiome. Our analysis of a cyclomaltodextrinase with an expanded substrate range is significant because it broadens the potential applications of the GH13 family of carbohydrate active enzymes (CAZymes) in biotechnology and biomedicine. Specifically, this study provides a workflow for the discovery and characterization of novel activities in bacteria that possess a high number of CAZymes that otherwise would be missed due to complications with functional redundancy. Furthermore, this study provides a model from which predictions can be made why certain bacteria in crowded niches are able to robustly utilize rare carbon sources, possibly to gain a competitive growth advantage.
Assuntos
Cellvibrio , Ciclodextrinas , Humanos , Isomaltose/metabolismo , Escherichia coli/genética , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/metabolismo , Ciclodextrinas/metabolismoRESUMO
Bacterial leaf spot of pepper (BSP), primarily caused by Xanthomonas euvesicatoria (Xe), poses a significant challenge to pepper production worldwide. Despite its impact, the genetic diversity of this pathogen remains underexplored, which limits our understanding of its population structure. To bridge this knowledge gap, we conducted a comprehensive analysis using 103 Xe strains isolated from pepper in southwest Florida to characterize genomic and type III effector (T3E) variation in this population. Phylogenetic analysis of core genomes revealed a major distinct genetic lineage associated with amylolytic activity. This amylolytic lineage was represented in Xe strains globally. Molecular clock analysis dated the emergence of amylolytic strains in Xe to around 1972. Notably, non-amylolytic strains possessed a single base pair frameshift deletion in the âº-amylase gene yet retained a conserved C-terminus. GUS assay revealed the expression of two open reading frames in non-amylolytic strains, one at the N-terminus and another that starts 136 base pairs upstream of the âº-amylase gene. Analysis of T3Es in the Florida Xe population identified variation in 12 effectors, including two classes of mutations in avrBs2 that prevent AvrBs2 from triggering a hypersensitive response in Bs2-resistant pepper plants. Knowledge of T3E variation could be used for effector-targeted disease management. This study revealed previously undescribed population structure in this economically important pathogen.IMPORTANCEBacterial leaf spot (BSP), a significant threat to pepper production globally, is primarily caused by Xanthomonas euvesicatoria (Xe). Limited genomic data has hindered detailed studies on its population diversity. This study analyzed the whole-genome sequences of 103 Xe strains from peppers in southwest Florida, along with additional global strains, to explore the pathogen's diversity. The study revealed two major distinct genetic groups based on their amylolytic activity, the ability to break down starch, with non-amylolytic strains having a mutation in the âº-amylase gene. Additionally, two classes of mutations in the avrBs2 gene were found, leading to susceptibility in pepper plants with the Bs2 resistance gene, a commercially available resistance gene for BSP. These findings highlight the need to forecast the emergence of such strains, identify genetic factors for innovative disease management, and understand how this pathogen evolves and spreads.
Assuntos
Capsicum , Filogenia , Doenças das Plantas , Xanthomonas , Capsicum/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas/genética , Xanthomonas/enzimologia , Xanthomonas/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Amilases/genética , Amilases/metabolismo , Variação Genética , FloridaRESUMO
In contemporary medicinal chemistry, employing a singular small molecule to concurrently multi-target disparate molecular entities is emerging as a potent strategy in the ongoing battle against metabolic disease. In this study, we present the meticulous design, synthesis, and comprehensive biological evaluation of a novel series of 1,2,3-triazolylmethylthio-1,3,4-oxadiazolylbenzenesulfonamide derivatives (8a-m) as potential multi-target inhibitors against human carbonic anhydrase (EC.4.2.1.1, hCA I/II), α-glycosidase (EC.3.2.1.20, α-GLY), and α-amylase (EC.3.2.1.1, α-AMY). Each synthesized sulfonamide underwent rigorous assessment for inhibitory effects against four distinct enzymes, revealing varying degrees of hCA I/II, a-GLY, and a-AMY inhibition across the tested compounds. hCA I was notably susceptible to inhibition by all compounds, demonstrating remarkably low inhibition constants (KI) ranging from 42.20 ± 3.90 nM to 217.90 ± 11.81 nM compared to the reference standard AAZ (KI of 439.17 ± 9.30 nM). The evaluation against hCA II showed that most of the synthesized compounds exhibited potent inhibition effects with KI values spanning the nanomolar range 16.44 ± 1.53-70.82 ± 4.51 nM, while three specific compounds, namely 8a-b and 8d, showcased lower inhibitory potency than other derivatives that did not exceed that of the reference drug AAZ (with a KI of 98.28 ± 1.69 nM). Moreover, across the spectrum of synthesized compounds, potent inhibition profiles were observed against diabetes mellitus-associated α-GLY (KI values spanning from 0.54 ± 0.06 µM to 5.48 ± 0.50 µM), while significant inhibition effects were noted against α-AMY, with IC50 values ranging between 0.16 ± 0.04 µM and 7.81 ± 0.51 µM) compared to reference standard ACR (KI of 23.53 ± 2.72 µM and IC50 of 48.17 ± 2.34 µM, respectively). Subsequently, these inhibitors were evaluated for their DPPH· and ABTS+· radical scavenging activity. Moreover, molecular docking investigations were meticulously conducted within the active sites of hCA I/II, α-GLY, and α-AMY to provide comprehensive elucidation and rationale for the observed inhibitory outcomes.
Assuntos
Benzenossulfonamidas , Inibidores da Anidrase Carbônica , Sulfonamidas , Sulfonamidas/química , Sulfonamidas/farmacologia , Humanos , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Simulação de Acoplamento Molecular , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química , alfa-Amilases/metabolismo , Anidrase Carbônica I/antagonistas & inibidores , Anidrase Carbônica I/metabolismo , Anidrase Carbônica I/química , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/metabolismo , Anidrase Carbônica II/química , Relação Estrutura-AtividadeRESUMO
Ingestion of L-theanine and L-tyrosine has been shown to reduce salivary stress biomarkers and improve aspects of cognitive performance in response to stress. However, there have been no studies to concurrently examine the impact of both L-theanine and L-tyrosine ingestion during a mental stress challenge (MSC) involving a brief cognitive challenge and a virtual reality based active shooter training drill. Thus, the purpose of this study was to determine the impact of ingestion of L-theanine and L-tyrosine on markers of stress and cognitive performance in response to a virtual reality active shooter drill and cognitive challenge. The cognitive challenge involved a Stroop challenge and mental arithmetic. Eighty subjects (age = 21 ± 2.6 yrs; male = 46; female = 34) were randomly assigned L-tyrosine (n = 28; 2000 mg), L-theanine (n = 25; 200 mg), or placebo (n = 27) prior to MSC exposure. Saliva samples, state-anxiety inventory (SAI) scales, and heart rate (HR) were collected before and after exposure to the MSC. Saliva was analyzed for stress markers α-amylase (sAA) and secretory immunoglobulin A (SIgA). The MSC resulted in significant increases in sAA, SIgA, HR, and SAI. Ingestion of L-theanine and L-tyrosine did not impact markers of stress. However, the L-tyrosine treatment demonstrated significantly lower missed responses compared to the placebo treatment group during the Stroop challenge. These data demonstrate that ingestion of L-theanine or L-tyrosine does not impact markers of stress in response to a MSC but may impact cognitive performance. This study was pre-registered as a clinical trial ("Impact of supplements on stress markers": NCT05592561).
Assuntos
Biomarcadores , Cognição , Glutamatos , Saliva , Estresse Psicológico , Tirosina , Realidade Virtual , Humanos , Masculino , Feminino , Cognição/efeitos dos fármacos , Adulto Jovem , Saliva/química , Adulto , Frequência Cardíaca/efeitos dos fármacos , alfa-Amilases/metabolismo , alfa-Amilases/análise , Imunoglobulina A Secretora/metabolismoRESUMO
The influence of light regulation on fungal growth and enzyme production was tested on endophytic isolates of Fusarium proliferatum (CCH), Colletotrichum boninense (PL1, PL9, OL2), Colletotrichum gloeosporiodes (OL3) and Colletotrichum siamense (PL3). The isolates were treated with blue, red, green, and yellow light, while white fluorescent light (12 h light/12 h dark photoperiod) and 24 h dark conditions were applied as control. Results revealed that coloured light treatments induced formation of circadian rings, while exposure to white light and dark conditions showed less pronounced circadian rings. Growth and sporulation of endophytes were not significantly influenced by light. By contrast, enzyme production was affected by coloured light treatments, notably with red (amylase), blue (cellulase) and yellow (cellulase, xylanase, L-asparaginase) light, resulting in lower enzyme levels for certain isolates. Under control conditions, enzyme production was relatively higher for amylase, cellulase, xylanase (for cultures incubated in the dark), and for L-asparaginase (for cultures incubated in white fluorescent light). Among the endophytic isolates, F. proliferatum (CCH) showed better response to coloured light treatment as higher sporulation and enzyme production was detected, although growth was significantly suppressed. On the contrary, C. gloeosporiodes (OL3) showed better growth but significantly lower enzyme production and sporulation when treated with the various coloured light. This study revealed that coloured light may have the potential to manipulate growth, sporulation and enzyme production in certain fungal species as strategies for fungal control or for harnessing of valuable enzymes.
Assuntos
Amilases , Colletotrichum , Endófitos , Fusarium , Luz , Endófitos/enzimologia , Endófitos/metabolismo , Endófitos/efeitos da radiação , Fusarium/crescimento & desenvolvimento , Fusarium/efeitos da radiação , Amilases/metabolismo , Colletotrichum/crescimento & desenvolvimento , Colletotrichum/efeitos da radiação , Cor , Celulase/metabolismo , Celulase/biossíntese , Asparaginase/metabolismo , Proteínas Fúngicas/metabolismoRESUMO
According to the arousal model of vigilance, the locus coeruleus-norepinephrine (LC-NE) system modulates sustained attention over long periods by regulating physiological arousal. Recent research has proposed that transcutaneous auricular vagus nerve stimulation (taVNS) modulates indirect physiological markers of LC-NE activity, although its effects on vigilance have not yet been examined. Aiming to develop a safe and noninvasive procedure to prevent vigilance failures in prolonged tasks, the present study examined whether taVNS can mitigate vigilance loss while modulating indirect markers of LC-NE activity. Following a preregistered protocol (https://osf.io/tu2xy/), 50 participants completed three repeated sessions in a randomized order, in which either active taVNS at individualized intensity set by participant, active taVNS set at 0.5 mA for all participants, or sham taVNS, was delivered while performing an attentional and vigilance task (i.e., ANTI-Vea). Changes in salivary alpha-amylase and cortisol concentrations were measured as markers of LC-NE activity. Self-reports of feelings associated with stimulation and guessing rate of active/sham conditions supported the efficacy of the single-blind procedure. Contrary to our predictions, the observed vigilance decrement was not modulated by active taVNS. Pairwise comparisons showed a mitigation by active taVNS on cortisol reduction across time. Interestingly, Spearman's correlational analyses showed some interindividual effects of taVNS on indirect markers of LC-NE, evidenced by positive associations between changes in salivary alpha-amylase and cortisol in active but not sham taVNS. We highlight the relevance of replicating and extending the present outcomes, investigating further parameters of stimulation and its effects on other indirect markers of LC-NE activity.
RESUMO
An eco-friendly facile synthesis of a series of twenty 1-(4/6-substitutedbenzo[d]thiazol-2-yl)-3-(phenyl/substitutedphenyl)indeno[1,2-c]pyrazol-4(1H)-ones 7a-t was achieved by the reaction of 2-(benzoyl/substitutedbenzoyl)-(1H)-indene-1,3(2H)-dione 3a-t and 2-hydrazinyl-4/6-substitutedbenzo[d]thiazole 6a-t in presence of freshly dried ethanol and glacial acetic acid under reflux conditions in good yields. The newly synthesized derivatives were well characterized using different physical and spectral techniques (FTIR, 1H NMR & 13C NMR, and HRMS). All the compounds were subjected to assess their in vitro α-amylase and glucose diffusion inhibitory activity. Amongst them, the compounds 7i and 7l showed better α-amylase inhibitory activity demonstrating IC50 values of 92.99±1.94 µg/mL and 95.41±3.92 µg/mL, respectively in comparison to the standard drug acarbose (IC50 value of 103.60±2.15 µg/mL). The derivatives 7d and 7k exhibited good glucose diffusion inhibition with values of 2.25±1.16 µg/mL and 2.63±1.45 µg/mL, respectively with standard reference acarbose (2.76±0.55 µg/mL). The observed α-amylase inhibitory activity findings were corroborated through molecular docking investigations, particularly for the highly active compounds 7i (binding energy -8.0 kcal/mol) and 7l (binding energy -8.2 kcal/mol) respectively, in comparison to acarbose with a value of binding energy -6.9 kcal/mol for α-amylase.
Assuntos
Acarbose , Glucose , Relação Estrutura-Atividade , Estrutura Molecular , Simulação de Acoplamento Molecular , alfa-Amilases/metabolismo , Benzotiazóis/farmacologia , alfa-Glucosidases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologiaRESUMO
An efficient microbial conversion for simultaneous synthesis of multiple high-value compounds, such as biosurfactants and enzymes, is one of the most promising aspects for an economical bioprocess leading to a marked reduction in production cost. Although biosurfactant and enzyme production separately have been much explored, there are limited reports on the predictions and optimization studies on simultaneous production of biosurfactants and other industrially important enzymes, including lipase, protease, and amylase. Enzymes are suited for an integrated production process with biosurfactants as multiple common industrial processes and applications are catalysed by these molecules. However, the complexity in microbial metabolism complicates the production process. This study details the work done on biosurfactant and enzyme co-production and explores the application and scope of various statistical tools and methodologies in this area of research. The use of advanced computational tools is yet to be explored for the optimization of downstream strategies in the co-production process. Given the complexity of the co-production process and with various new methodologies based on artificial intelligence (AI) being invented, the scope of AI in shaping the biosurfactant-enzyme co-production process is immense and would lead to not only efficient and rapid optimization, but economical extraction of multiple biomolecules as well.
Assuntos
Inteligência Artificial , Tensoativos , Tensoativos/metabolismo , Fermentação , Lipase/metabolismo , EndopeptidasesRESUMO
In this study, Bacillus tequilensis TB5 α-amylase from rice-milled by-products (rice bran and de-oiled rice bran) was successfully immobilized onto biologically synthesized magnetic nanoparticles fabricated with chitosan (MNP-Ch) and characterized via different biophysical techniques. Furthermore, the study emphasized incorporating this nanostructure framework (MNP@2mgchitosan_DORB-amy and MNP@3mgchitosan_RB-amy) to offer diverse applications, including enzymatic desizing, cleaning starchy stains, and treating synthetic starchy wastewater. An enzyme loading of > 90 % for both enzymes indicated increased binding sites due to the functional moieties of chitosan on the MNP. The Km was 0.28 and 0.31 mg/mL for the immobilized and free forms of DORB-amy, respectively, and 0.18 and 0.27 mg/mL for the immobilized and free forms of RB-amy, respectively. A low Km indicated an increased affinity of MNP-Ch-immobilized forms of enzymes toward the substrate. The performance of both immobilized enzymes improved at a wide range of pH and temperature, which may be attributed to the covalent binding of the enzyme on to the MNP-Ch. The nanobiocatalysts in the detergent act synergistically to fade the starchy stains. Furthermore, an 8-9 TEGEWA scale rating with > 11 % of starch removal was obtained through the biodesizing of starch-sized cotton fabric. The nanobiocatalyst efficiently decomposed starch and liberated 650-670 mg/L of reducing sugar from the synthetic wastewater, therefore offering promising opportunities for its exploration in a wastewater treatment plant. Thus, the study recommends the potential exploration of sturdy matrices like MNP to offer remarkable applications with maximum operational stability, easier recovery, and higher efficiency.
Assuntos
Bacillus , Biocatálise , Quitosana , Detergentes , Enzimas Imobilizadas , Amido , Águas Residuárias , alfa-Amilases , alfa-Amilases/metabolismo , alfa-Amilases/química , Quitosana/química , Águas Residuárias/química , Amido/química , Amido/metabolismo , Bacillus/enzimologia , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Detergentes/química , Nanopartículas de Magnetita/química , Têxteis , Estrutura Molecular , Purificação da Água/métodos , Concentração de Íons de HidrogênioRESUMO
A green catalyst WELPSA-catalyzed three-component condensation (Biginelli) process involving an aldehyde, barbituric/thiobarbituric/1,3-dimethylbarbituric acid, and urea/thiourea/guanidine hydrochloride in a single pot in presence of a green solvent for the production of DHPM have been presented. The catalyst is reusable and this methodology is scalable. By using the in vitro experiments, the antidiabetic potentiality of synthesized compounds that inhibit α-amylase along with α-glucosidase efficiencies was assessed. All the synthesized compounds except for 4a and 4e, showed the most significant inhibition for α-amylase and α-glucosidase activities. Among the synthesized DHPM compounds, 4c and 4b exhibited significant inhibition profiles compared to the standard antidiabetic drug acarbose. Furthermore, synthesized substances' energy-minimized structures, 3D structures, and DFT calculations were performed using Gaussian 09 software, hybrid models, and MM2 force approaches. Strong hydrogen bonds with amino acid residues Arg-672, Arg-600, Trp-613, Asp-404, Asp-282, and Asp-616 indicate that an α-glucosidase-inhibitory peptide may have hypoglycemic efficacy confirmed by the molecular docking study of the synthesized DHPM.
Assuntos
Inibidores de Glicosídeo Hidrolases , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , alfa-Amilases/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , CatáliseRESUMO
Environment-benign, multicomponent synthetic methodologies are vital in modern pharmaceutical research and facilitates multi-targeted drug development via synergistic approach. Herein, we reported green and efficient synthesis of pyrano[2,3-c]pyrazole fused spirooxindole linked 1,2,3-triazoles using a tea waste supported copper catalyst (TWCu). The synthetic approach involves a one-pot, five-component reaction using N-propargylated isatin, hydrazine hydrate, ethyl acetoacetate, malononitrile/ethyl cyanoacetate and aryl azides as model substrates. Mechanistically, the reaction was found to proceed via in situ pyrazolone formation followed by Knoevenagel condensation, azide alkyne cycloaddition and Michael's addition reactions. The molecules were developed using structure-based drug design. The primary goal is to identifying anti-oxidant molecules with potential ability to modulate α-amylase and DPP4 (dipeptidyl-peptidase 4) activity. The anti-oxidant analysis, as determined via DPPH, suggested that the synthesized compounds, A6 and A10 possessed excellent anti-oxidant potential compared to butylated hydroxytoluene (BHT). In contrast, compounds A3, A5, A8, A9, A13, A15, and A18 were found to possess comparable anti-oxidant potential. Among these, A3 and A13 possessed potential α-amylase inhibitory activity compared to the acarbose, and A3 further emerged as dual inhibitors of both DPP4 and α-amylase with anti-oxidant potential. The relationship of functionalities on their anti-oxidant and enzymatic inhibition was explored in context to their SAR that was further corroborated using in silico techniques and enzyme kinetics.
Assuntos
Antioxidantes , Dipeptidil Peptidase 4 , Hipoglicemiantes , Pirazóis , Triazóis , alfa-Amilases , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/síntese química , Relação Estrutura-Atividade , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Dipeptidil Peptidase 4/metabolismo , Estrutura Molecular , Humanos , Relação Dose-Resposta a Droga , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/síntese química , Simulação de Acoplamento Molecular , Picratos/antagonistas & inibidores , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Compostos de Espiro/síntese química , Oxindóis/farmacologia , Oxindóis/química , Oxindóis/síntese química , Benzopiranos , NitrilasRESUMO
In this study, eleven novel acyl hydrazides derivative of polyhydroquinoline were synthesized, characterized and screened for their in vitro anti-diabetic and anti-glycating activities. Seven compounds 2a, 2d, 2i, 2 h, 2j, 2f, and 2 g exhibited notable α-amylase inhibitory activity having IC50 values from 3.51 ± 2.13 to 11.92 ± 2.30 µM. Similarly, six compounds 2d, 2f, 2 h, 2i, 2j, and 2 g displayed potent α-glucosidase inhibitory activity compared to the standard acarbose. Moreover, eight derivatives 2d, 2 g, 2f, 2j, 2a, 2i, 2 g, and 2e showed excellent anti-glycating activity with IC50 values from 6.91 ± 2.66 to 15.80 ± 1.87 µM when compared them with the standard rutin (IC50 = 22.5 ± 0.90 µM). Molecular docking was carried out to predict the binding modes of all the compounds with α-amylase and α-glucosidase. The docking analysis revealed that most of the compounds established strong interactions with α-amylase and α-glucosidase. All compounds fitted well into the binding pockets of α-amylase and α-glucosidase. Among all compounds 2a and 2f were most potent based on docking score -8.2515 and -7.3949 against α-amylase and α-glucosidase respectively. These results hold promise for the development of novel candidates targeted at controlling postprandial glucose levels in individuals with diabetes.