RESUMO
Recent studies have begun to reveal critical roles for the brain's professional phagocytes, microglia, and their receptors in the control of neurotoxic amyloid beta (Aß) and myelin debris accumulation in neurodegenerative disease. However, the critical intracellular molecules that orchestrate neuroprotective functions of microglia remain poorly understood. In our studies, we find that targeted deletion of SYK in microglia leads to exacerbated Aß deposition, aggravated neuropathology, and cognitive defects in the 5xFAD mouse model of Alzheimer's disease (AD). Disruption of SYK signaling in this AD model was further shown to impede the development of disease-associated microglia (DAM), alter AKT/GSK3ß-signaling, and restrict Aß phagocytosis by microglia. Conversely, receptor-mediated activation of SYK limits Aß load. We also found that SYK critically regulates microglial phagocytosis and DAM acquisition in demyelinating disease. Collectively, these results broaden our understanding of the key innate immune signaling molecules that instruct beneficial microglial functions in response to neurotoxic material.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia/patologia , FagocitoseRESUMO
Alzheimer's disease (AD)-linked mutations in Presenilins (PSEN) and the amyloid precursor protein (APP) lead to production of longer amyloidogenic Aß peptides. The shift in Aß length is fundamental to the disease; however, the underlying mechanism remains elusive. Here, we show that substrate shortening progressively destabilizes the consecutive enzyme-substrate (E-S) complexes that characterize the sequential γ-secretase processing of APP. Remarkably, pathogenic PSEN or APP mutations further destabilize labile E-S complexes and thereby promote generation of longer Aß peptides. Similarly, destabilization of wild-type E-S complexes by temperature, compounds, or detergent promotes release of amyloidogenic Aß. In contrast, E-Aßn stabilizers increase γ-secretase processivity. Our work presents a unifying model for how PSEN or APP mutations enhance amyloidogenic Aß production, suggests that environmental factors may increase AD risk, and provides the theoretical basis for the development of γ-secretase/substrate stabilizing compounds for the prevention of AD.
Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Membrana/metabolismo , Peptídeo Hidrolases/metabolismo , Presenilina-1/metabolismo , Precursor de Proteína beta-Amiloide/química , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Endopeptidases , Estabilidade Enzimática , Feminino , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Modelos Moleculares , Mutação , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Presenilina-1/química , Presenilina-1/genéticaRESUMO
Proteinaceous brain inclusions, neuroinflammation, and vascular dysfunction are common pathologies in Alzheimer's disease (AD). Vascular deficits include a compromised blood-brain barrier, which can lead to extravasation of blood proteins like fibrinogen into the brain. Fibrinogen's interaction with the amyloid-beta (Aß) peptide is known to worsen thrombotic and cerebrovascular pathways in AD. Lecanemab, an FDA-approved antibody therapy for AD, clears Aß plaque from the brain and slows cognitive decline. Here, we show that lecanemab blocks fibrinogen's binding to Aß protofibrils, preventing Aß/fibrinogen-mediated delayed fibrinolysis and clot abnormalities in vitro and in human plasma. Additionally, we show that lecanemab dissociates the Aß/fibrinogen complex and prevents fibrinogen from exacerbating Aß-induced synaptotoxicity in mouse organotypic hippocampal cultures. These findings reveal a possible protective mechanism by which lecanemab may slow disease progression in AD.
Assuntos
Doença de Alzheimer , Anticorpos Monoclonais Humanizados , Trombose , Camundongos , Humanos , Animais , Fibrinogênio/metabolismo , Sistemas Microfisiológicos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismoRESUMO
Shear forces affect self-assembly processes ranging from crystallization to fiber formation. Here, the effect of mild agitation on amyloid fibril formation was explored for four peptides and investigated in detail for A[Formula: see text]42, which is associated with Alzheimer's disease. To gain mechanistic insights into the effect of mild agitation, nonseeded and seeded aggregation reactions were set up at various peptide concentrations with and without an inhibitor. First, an effect on fibril fragmentation was excluded by comparing the monomer-concentration dependence of aggregation kinetics under idle and agitated conditions. Second, using a secondary nucleation inhibitor, Brichos, the agitation effect on primary nucleation was decoupled from secondary nucleation. Third, an effect on secondary nucleation was established in the absence of inhibitor. Fourth, an effect on elongation was excluded by comparing the seeding potency of fibrils formed under idle or agitated conditions. We find that both primary and secondary nucleation steps are accelerated by gentle agitation. The increased shear forces facilitate both the detachment of newly formed aggregates from catalytic surfaces and the rate at which molecules are transported in the bulk solution to encounter nucleation sites on the fibril and other surfaces. Ultrastructural evidence obtained with cryogenic transmission electron microscopy and free-flow electrophoresis in microfluidics devices imply that agitation speeds up the detachment of nucleated species from the fibril surface. Our findings shed light on the aggregation mechanism and the role of detachment for efficient secondary nucleation. The results inform on how to modulate the relative importance of different microscopic steps in drug discovery and investigations.
Assuntos
Amiloide , Amiloide/metabolismo , Amiloide/química , Cinética , Humanos , Resistência ao Cisalhamento , Agregados Proteicos , Peptídeos/química , Peptídeos/metabolismo , Doença de Alzheimer/metabolismoRESUMO
Alzheimer's disease is associated with increased levels of amyloid beta (Aß) generated by sequential intracellular cleavage of amyloid precursor protein (APP) by membrane-bound secretases. However, the spatial and temporal APP cleavage events along the trafficking pathways are poorly defined. Here, we use the Retention Using Selective Hooks (RUSH) to compare in real time the anterograde trafficking and temporal cleavage events of wild-type APP (APPwt) with the pathogenic Swedish APP (APPswe) and the disease-protective Icelandic APP (APPice). The analyses revealed differences in the trafficking profiles and processing between APPwt and the APP familial mutations. While APPwt was predominantly processed by the ß-secretase, BACE1, following Golgi transport to the early endosomes, the transit of APPswe through the Golgi was prolonged and associated with enhanced amyloidogenic APP processing and Aß secretion. A 20°C block in cargo exit from the Golgi confirmed ß- and γ-secretase processing of APPswe in the Golgi. Inhibition of the ß-secretase, BACE1, restored APPswe anterograde trafficking profile to that of APPwt. APPice was transported rapidly through the Golgi to the early endosomes with low levels of Aß production. This study has revealed different intracellular locations for the preferential cleavage of APPwt and APPswe and Aß production, and the Golgi as the major processing site for APPswe, findings relevant to understand the molecular basis of Alzheimer's disease.
Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Suécia , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , MutaçãoRESUMO
Fluorescence correlation spectroscopy (FCS) is a well-known and established non-invasive method for quantification of physical parameters that preside over molecular mechanisms and dynamics. It combines maximum sensitivity and statistical confidence for the analysis of speed, size, and number of fluorescent molecules and interactions with surrounding molecules by time-averaging fluctuation analysis in a well-defined volume element. The narrow compass of this study is to acquaint the basic principle of diffusion and the FCS method in general regarding variable magnitudes and standardization adjustment. In this review, we give a theoretical introduction, examples of experimental applications, and utensils in solution systems with future perspectives.
Assuntos
Soluções , Espectrometria de Fluorescência , Espectrometria de Fluorescência/métodos , Difusão , HumanosRESUMO
It is still unclear why pathological amyloid deposition initiates in specific brain regions or why some cells or tissues are more susceptible than others. Amyloid deposition is determined by the self-assembly of short protein segments called aggregation-prone regions (APRs) that favour cross-ß structure. Here, we investigated whether Aß amyloid assembly can be modified by heterotypic interactions between Aß APRs and short homologous segments in otherwise unrelated human proteins. Mining existing proteomics data of Aß plaques from AD patients revealed an enrichment in proteins that harbour such homologous sequences to the Aß APRs, suggesting heterotypic amyloid interactions may occur in patients. We identified homologous APRs from such proteins and show that they can modify Aß assembly kinetics, fibril morphology and deposition pattern in vitro. Moreover, we found three of these proteins upon transient expression in an Aß reporter cell line promote Aß amyloid aggregation. Strikingly, we did not find a bias towards heterotypic interactions in plaques from AD mouse models where Aß self-aggregation is observed. Based on these data, we propose that heterotypic APR interactions may play a hitherto unrealized role in amyloid-deposition diseases.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Mapas de Interação de Proteínas , Proteoma/metabolismo , Peptídeos beta-Amiloides/química , Células HEK293 , Humanos , Ligação Proteica , Multimerização Proteica , Proteoma/químicaRESUMO
Recent advances have highlighted the importance of several innate immune receptors expressed by microglia in Alzheimer's disease (AD). In particular, mounting evidence from AD patients and experimental models indicates pivotal roles for TREM2, CD33, and CD22 in neurodegenerative disease progression. While there is growing interest in targeting these microglial receptors to treat AD, we still lack knowledge of the downstream signaling molecules used by these receptors to orchestrate immune responses in AD. Notably, TREM2, CD33, and CD22 have been described to influence signaling associated with the intracellular adaptor molecule CARD9 to mount downstream immune responses outside of the brain. However, the role of CARD9 in AD remains poorly understood. Here, we show that genetic ablation of CARD9 in the 5xFAD mouse model of AD results in exacerbated amyloid beta (Aß) deposition, increased neuronal loss, worsened cognitive deficits, and alterations in microglial responses. We further show that pharmacological activation of CARD9 promotes improved clearance of Aß deposits from the brains of 5xFAD mice. These results help to establish CARD9 as a key intracellular innate immune signaling molecule that regulates Aß-mediated disease and microglial responses. Moreover, these findings suggest that targeting CARD9 might offer a strategy to improve Aß clearance in AD.
Assuntos
Doença de Alzheimer , Amiloidose , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Microglia/metabolismo , Doenças Neurodegenerativas/patologia , Modelos Animais de Doenças , Amiloidose/patologia , Camundongos Transgênicos , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética , Proteínas Adaptadoras de Sinalização CARD/genéticaRESUMO
Optical three-dimensional (3D) molecular imaging is highly desirable for providing precise distribution of the target-of-interest in disease models. However, such 3D imaging is still far from wide applications in biomedical research; 3D brain optical molecular imaging, in particular, has rarely been reported. In this report, we designed chemiluminescence probes with high quantum yields, relatively long emission wavelengths, and high signal-to-noise ratios to fulfill the requirements for 3D brain imaging in vivo. With assistance from density-function theory (DFT) computation, we designed ADLumin-Xs by locking up the rotation of the double bond via fusing the furan ring to the phenyl ring. Our results showed that ADLumin-5 had a high quantum yield of chemiluminescence and could bind to amyloid beta (Aß). Remarkably, ADLumin-5's radiance intensity in brain areas could reach 4 × 107 photon/s/cm2/sr, which is probably 100-fold higher than most chemiluminescence probes for in vivo imaging. Because of its strong emission, we demonstrated that ADLumin-5 could be used for in vivo 3D brain imaging in transgenic mouse models of Alzheimer's disease.
Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Luminescência , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Camundongos Transgênicos , Neuroimagem/métodos , Placa Amiloide/metabolismo , Modelos Animais de DoençasRESUMO
Endocytosis is the fundamental uptake process through which cells internalize extracellular materials and species. Neurodegenerative diseases (NDs) are characterized by a progressive accumulation of intrinsically disordered protein species, leading to neuronal death. Misfolding in many proteins leads to various NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other disorders. Despite the significance of disordered protein species in neurodegeneration, their spread between cells and the cellular uptake of extracellular species is not entirely understood. This review discusses the major internalization mechanisms of the different conformer species of these proteins and their endocytic mechanisms. We briefly introduce the broad types of endocytic mechanisms found in cells and then summarize what is known about the endocytosis of monomeric, oligomeric and aggregated conformations of tau, Aß, α-Syn, Huntingtin, Prions, SOD1, TDP-43 and other proteins associated with neurodegeneration. We also highlight the key players involved in internalizing these disordered proteins and the several techniques and approaches to identify their endocytic mechanisms. Finally, we discuss the obstacles involved in studying the endocytosis of these protein species and the need to develop better techniques to elucidate the uptake mechanisms of a particular disordered protein species.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/metabolismo , Agregados Proteicos , Doença de Alzheimer/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismoRESUMO
Soluble amyloid precursor protein-alpha (sAPPα) is a multi-functional brain-derived protein that has neuroprotective, neurogenic and neurotropic properties. Moreover, it is known to facilitate synaptic function and promote neural repair. These properties suggest sAPPα may be useful as a therapeutic agent for the treatment of neurological diseases characterized by synaptic failure and neuronal loss, such as occurs in Alzheimer's disease, and for neural repair following traumatic brain injury and stroke. However, sAPPα's relatively large size and the difficulty of ongoing delivery of therapeutics to the brain mean this is not currently practicable. Importantly, however, sAPPα is composed of several neuroactive domains that each possess properties that collectively are remarkably similar to those of sAPPα itself. Here, we review the molecular structure of sAPPα and identify the domains that contribute to its overall functionality. Four peptide motifs present as possible targets for therapeutic development. We review their physiochemical and neuroactive properties, both within sAPPα and as isolated peptides, and discuss their potential for future development as multipurpose therapeutic agents for the treatment of Alzheimer's disease and other disorders of neuronal function. Further, we discuss the role of heparin binding sites, found within sAPPα's structure and overlapping with the neuroactive domains, as sites for interactions with effector proteins and synaptic receptors. The potential role of the neuroactive peptides known as Cationic Arginine-Rich Peptides (CARPs) as neuroprotective motifs is also reviewed. Mechanisms of peptide delivery to the brain are briefly discussed. Finally, we summarise the potential benefits and pitfalls of using the isolated peptides, either individually or in combination, for the treatment of neurological diseases.
Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , NeuroproteçãoRESUMO
Metabotropic glutamate receptor 5 (mGluR5) is ubiquitously expressed in brain regions responsible for memory and learning. It plays a key role in modulating rapid changes in synaptic transmission and plasticity. mGluR5 supports long-term changes in synaptic strength by regulating the transcription and translation of essential synaptic proteins. ß-Amyloid 42 (Aß42) oligomers interact with a mGluR5/cellular prion protein (PrPC) complex to disrupt physiological mGluR5 signal transduction. Aberrant mGluR5 signaling and associated synaptic failure are considered an emerging pathophysiological mechanism of Alzheimer's disease (AD). Therefore, mGluR5 represents an attractive therapeutic target for AD, and recent studies continue to validate the efficacy of various mGluR5 allosteric modulators in improving memory deficits and mitigating disease pathology. However, sex-specific differences in the pharmacology of mGluR5 and activation of noncanonical signaling downstream of the receptor suggest that its utility as a therapeutic target in female AD patients needs to be reconsidered.
Assuntos
Doença de Alzheimer , Receptor de Glutamato Metabotrópico 5 , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/uso terapêutico , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/uso terapêutico , Transdução de SinaisRESUMO
Misfolded Aß is involved in the progression of Alzheimer's disease (AD). However, the role of its polymorphic variants or conformational strains in AD pathogenesis is not fully understood. Here, we study the seeding properties of two structurally defined synthetic misfolded Aß strains (termed 2F and 3F) using in vitro and in vivo assays. We show that 2F and 3F strains differ in their biochemical properties, including resistance to proteolysis, binding to strain-specific dyes, and in vitro seeding. Injection of these strains into a transgenic mouse model produces different pathological features, namely different rates of aggregation, formation of different plaque types, tropism to specific brain regions, differential recruitment of Aß40 /Aß42 peptides, and induction of microglial and astroglial responses. Importantly, the aggregates induced by 2F and 3F are structurally different as determined by ssNMR. Our study analyzes the biological properties of purified Aß polymorphs that have been characterized at the atomic resolution level and provides relevant information on the pathological significance of misfolded Aß strains.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , ProteóliseRESUMO
Mitochondrial dysfunction is an early pathological feature of Alzheimer disease and plays a crucial role in the development and progression of Alzheimer's disease. Strategies to rescue mitochondrial function and cognition remain to be explored. Cyclophilin D (CypD), the peptidylprolyl isomerase F (PPIase), is a key component in opening the mitochondrial membrane permeability transition pore, leading to mitochondrial dysfunction and cell death. Blocking membrane permeability transition pore opening by inhibiting CypD activity is a promising therapeutic approach for Alzheimer's disease. However, there is currently no effective CypD inhibitor for Alzheimer's disease, with previous candidates demonstrating high toxicity, poor ability to cross the blood-brain barrier, compromised biocompatibility and low selectivity. Here, we report a new class of non-toxic and biocompatible CypD inhibitor, ebselen, using a conventional PPIase assay to screen a library of â¼2000 FDA-approved drugs with crystallographic analysis of the CypD-ebselen crystal structure (PDB code: 8EJX). More importantly, we assessed the effects of genetic and pharmacological blockade of CypD on Alzheimer's disease mitochondrial and glycolytic bioenergetics in Alzheimer's disease-derived mitochondrial cybrid cells, an ex vivo human sporadic Alzheimer's disease mitochondrial model, and on synaptic function, inflammatory response and learning and memory in Alzheimer's disease mouse models. Inhibition of CypD by ebselen protects against sporadic Alzheimer's disease- and amyloid-ß-induced mitochondrial and glycolytic perturbation, synaptic and cognitive dysfunction, together with suppressing neuroinflammation in the brain of Alzheimer's disease mouse models, which is linked to CypD-related membrane permeability transition pore formation. Thus, CypD inhibitors have the potential to slow the progression of neurodegenerative diseases, including Alzheimer's disease, by boosting mitochondrial bioenergetics and improving synaptic and cognitive function.
Assuntos
Doença de Alzheimer , Isoindóis , Mitocôndrias , Compostos Organosselênicos , Peptidil-Prolil Isomerase F , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptidil-Prolil Isomerase F/metabolismo , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Camundongos , Humanos , Cognição/efeitos dos fármacos , Azóis/farmacologia , Azóis/uso terapêutico , Ciclofilinas/metabolismo , Ciclofilinas/antagonistas & inibidores , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Masculino , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêuticoRESUMO
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta plaques initiated approximately 2 decades before the symptom onset followed by build-up and spreading of neurofibrillary tau aggregates. Although it has been suggested that the amyloid-beta amplifies tau spreading the observed spatial disparity called it into question. Yet, it is unclear how neocortical amyloid-beta remotely affects early pathological tau, triggering it to leave the early formation area, and how amyloid-beta facilitates tau aggregate spreading throughout cortical regions. I aimed to investigate how amyloid-beta can facilitate tau spreading through neuronal connections in the Alzheimer's disease pathological process by combining functional magnetic resonance imaging normative connectomes and longitudinal in vivo molecular imaging data. In total, the imaging data of 317 participants, including 173 amyloid-beta-negative non-demented and 144 amyloid-beta -positive non-demented participants, have entered the study from Alzheimer's Disease Neuroimaging Initiative. Furthermore, normative resting-state functional magnetic resonance imaging connectomes were used to model tau spreading through functional connections. It was observed that the amyloid-beta in regions with the highest deposition (amyloid-beta epicenter) is remotely associated with connectivity-based spreading of tau pathology. Moreover, amyloid-beta in regions that exhibit the highest tau pathology (tau epicenter) is associated with increased connectivity-based tau spreading to non-epicenter regions. The findings provide a further explanation for a long-standing question of how amyloid-beta can affect tau aggregate spreading through neuronal connections despite spatial incongruity. The results suggest that amyloid-beta pathology can remotely and locally facilitate connectivity-based spreading of tau aggregates.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Imageamento por Ressonância Magnética , Proteínas tau , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Feminino , Masculino , Idoso , Peptídeos beta-Amiloides/metabolismo , Imageamento por Ressonância Magnética/métodos , Conectoma , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Pessoa de Meia-IdadeRESUMO
Clinical improvement following neurosurgical cerebrospinal fluid shunting for presumed idiopathic normal pressure hydrocephalus is variable. Idiopathic normal pressure hydrocephalus patients may have undetected Alzheimer's disease-related cortical pathology that confounds diagnosis and clinical outcomes. In this study, we sought to determine the utility of cortical tissue immuno-analysis in predicting shunting outcomes in idiopathic normal pressure hydrocephalus patients. We performed a pooled analysis using a systematic review as well as analysis of a new, original patient cohort. Of the 2707 screened studies, 3 studies with a total of 229 idiopathic normal pressure hydrocephalus patients were selected for inclusion in this meta-analysis alongside our original cohort. Pooled statistics of shunting outcomes for the 229 idiopathic normal pressure hydrocephalus patients and our new cohort of 36 idiopathic normal pressure hydrocephalus patients revealed that patients with Aß + pathology were significantly more likely to exhibit shunt nonresponsiveness than patients with negative pathology. Idiopathic normal pressure hydrocephalus patients with Alzheimer's disease -related cortical pathology may be at a higher risk of treatment facing unfavorable outcomes following cerebrospinal fluid shunting. Thus, cortical tissue analysis from living patients may be a useful diagnostic and prognostic adjunct for patients with presumed idiopathic normal pressure hydrocephalus and potentially other neurodegenerative conditions affecting the cerebral cortex.
Assuntos
Doença de Alzheimer , Hidrocefalia de Pressão Normal , Humanos , Hidrocefalia de Pressão Normal/cirurgia , Hidrocefalia de Pressão Normal/patologia , Córtex Cerebral/patologiaRESUMO
Recent advances in immunotherapeutic approaches to the treatment of Alzheimer's disease (AD) have increased the importance of understanding the exact binding preference of each amyloid-beta (Aß) antibody employed, since this determines both efficacy and risk for potentially serious adverse events known as amyloid-related imaging abnormalities. Lecanemab is a humanized IgG1 antibody that was developed to target the soluble Aß protofibril conformation. The present study prepared extracts of post mortem brain samples from AD patients and non-demented elderly controls, characterized the forms of Aß present, and investigated their interactions with lecanemab. Brain tissue samples were homogenized and extracted using tris-buffered saline. Aß levels and aggregation states in soluble and insoluble extracts, and in fractions prepared using size-exclusion chromatography or density gradient ultracentrifugation, were analyzed using combinations of immunoassay, immunoprecipitation (IP), and mass spectrometry. Lecanemab immunohistochemistry was also conducted in temporal cortex. The majority of temporal cortex Aß (98 %) was in the insoluble extract. Aß42 was the most abundant form present, particularly in AD subjects, and most soluble Aß42 was in soluble aggregated protofibrillar structures. Aß protofibril levels were much higher in AD subjects than in controls. Protofibrils captured by lecanemab-IP contained high levels of Aß42 and lecanemab bound to large, medium, and small Aß42 protofibrils in a concentration-dependent manner. Competitive IP showed that neither Aß40 monomers nor Aß40-enriched fibrils isolated from cerebral amyloid angiopathy reduced lecanemab's binding to Aß42 protofibrils. Immunohistochemistry showed that lecanemab bound readily to Aß plaques (diffuse and compact) and to intraneuronal Aß in AD temporal cortex. Taken together, these findings indicate that while lecanemab binds to Aß plaques, it preferentially targets soluble aggregated Aß protofibrils. These are largely composed of Aß42, and lecanemab binds less readily to the Aß40-enriched fibrils found in the cerebral vasculature. This is a promising binding profile because Aß42 protofibrils represent a key therapeutic target in AD, while a lack of binding to monomeric Aß and cerebral amyloid deposits should reduce peripheral antibody sequestration and minimize risk for adverse events.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Encéfalo , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Idoso , Masculino , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Idoso de 80 Anos ou mais , Ligação Proteica , Anticorpos Monoclonais Humanizados/uso terapêutico , Fragmentos de Peptídeos/metabolismoRESUMO
Neurodegenerative diseases are characterized by the pathologic accumulation of aggregated proteins. Known as amyloid, these fibrillar aggregates include proteins such as tau and amyloid-ß (Aß) in Alzheimer's disease (AD) and alpha-synuclein (αSyn) in Parkinson's disease (PD). The development and spread of amyloid fibrils within the brain correlates with disease onset and progression, and inhibiting amyloid formation is a possible route toward therapeutic development. Recent advances have enabled the determination of amyloid fibril structures to atomic-level resolution, improving the possibility of structure-based inhibitor design. In this work, we use these amyloid structures to design inhibitors that bind to the ends of fibrils, "capping" them so as to prevent further growth. Using de novo protein design, we develop a library of miniprotein inhibitors of 35 to 48 residues that target the amyloid structures of tau, Aß, and αSyn. Biophysical characterization of top in silico designed inhibitors shows they form stable folds, have no sequence similarity to naturally occurring proteins, and specifically prevent the aggregation of their targeted amyloid-prone proteins in vitro. The inhibitors also prevent the seeded aggregation and toxicity of fibrils in cells. In vivo evaluation reveals their ability to reduce aggregation and rescue motor deficits in Caenorhabditis elegans models of PD and AD.
Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Agregação Patológica de Proteínas/tratamento farmacológico , alfa-Sinucleína/antagonistas & inibidores , Proteínas tau/antagonistas & inibidores , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Amiloide/química , Peptídeos beta-Amiloides/metabolismo , Amiloidose , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/químicaRESUMO
Amyloid-beta (Aß42) aggregates are characteristic Alzheimer's disease signatures, but probing how their nanoscale architectures influence their growth and decay remains challenging using current technologies. Here, we apply time-lapse single-molecule orientation-localization microscopy (SMOLM) to measure the orientations and rotational "wobble" of Nile blue (NB) molecules transiently binding to Aß42 fibrils. We correlate fibril architectures measured by SMOLM with their growth and decay over the course of 5 to 20 min visualized by single-molecule localization microscopy (SMLM). We discover that stable Aß42 fibrils tend to be well-ordered and signified by well-aligned NB orientations and small wobble. SMOLM also shows that increasing order and disorder are signatures of growing and decaying fibrils, respectively. We also observe SMLM-invisible fibril remodeling, including steady growth and decay patterns that conserve ß-sheet organization. SMOLM reveals that increased fibril architectural heterogeneity is correlated with dynamic remodeling and that large-scale fibril remodeling tends to originate from strongly heterogeneous local regions.
RESUMO
The DNAJB6 chaperone inhibits fibril formation of aggregation-prone client peptides through interaction with aggregated and oligomeric forms of the amyloid peptides. Here, we studied the role of its C-terminal domain (CTD) using constructs comprising either the entire CTD or the first two or all four of the CTD ß-strands grafted onto a scaffold protein. Each construct was expressed as WT and as a variant with alanines replacing five highly conserved and functionally important serine and threonine residues in the first ß-strand. We investigated the stability, oligomerization, antiamyloid activity, and affinity for amyloid-ß (Aß42) species using optical spectroscopy, native mass spectrometry, chemical crosslinking, and surface plasmon resonance technology. While DNAJB6 forms large and polydisperse oligomers, CTD was found to form only monomers, dimers, and tetramers of low affinity. Kinetic analyses showed a shift in inhibition mechanism. Whereas full-length DNAJB6 activity is dependent on the serine and threonine residues and efficiently inhibits primary and secondary nucleation, all CTD constructs inhibit secondary nucleation only, independently of the serine and threonine residues, although their dimerization and thermal stabilities are reduced by alanine substitution. While the full-length DNAJB6 inhibition of primary nucleation is related to its propensity to form coaggregates with Aß, the CTD constructs instead bind to Aß42 fibrils, which affects the nucleation events at the fibril surface. The retardation of secondary nucleation by DNAJB6 can thus be ascribed to the first two ß-strands of its CTD, whereas the inhibition of primary nucleation is dependent on the entire protein or regions outside the CTD.