Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Cell ; 173(1): 196-207.e14, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29502970

RESUMO

Microbial populations can maximize fitness in dynamic environments through bet hedging, a process wherein a subpopulation assumes a phenotype not optimally adapted to the present environment but well adapted to an environment likely to be encountered. Here, we show that oxygen induces fluctuating expression of the trimethylamine oxide (TMAO) respiratory system of Escherichia coli, diversifying the cell population and enabling a bet-hedging strategy that permits growth following oxygen loss. This regulation by oxygen affects the variance in gene expression but leaves the mean unchanged. We show that the oxygen-sensitive transcription factor IscR is the key regulator of variability. Oxygen causes IscR to repress expression of a TMAO-responsive signaling system, allowing stochastic effects to have a strong effect on the output of the system and resulting in heterogeneous expression of the TMAO reduction machinery. This work reveals a mechanism through which cells regulate molecular noise to enhance fitness.


Assuntos
Escherichia coli/metabolismo , Transdução de Sinais , Aerobiose , Anaerobiose , Sequência de Bases , Sítios de Ligação , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Metilaminas/metabolismo , Metilaminas/farmacologia , Oxigênio/metabolismo , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Fosfotransferases/química , Fosfotransferases/genética , Fosfotransferases/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Regulação para Cima
2.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35017303

RESUMO

Anaerobic microbial respiration in suboxic and anoxic environments often involves particulate ferric iron (oxyhydr-)oxides as terminal electron acceptors. To ensure efficient respiration, a widespread strategy among iron-reducing microorganisms is the use of extracellular electron shuttles (EES) that transfer two electrons from the microbial cell to the iron oxide surface. Yet, a fundamental understanding of how EES-oxide redox thermodynamics affect rates of iron oxide reduction remains elusive. Attempts to rationalize these rates for different EES, solution pH, and iron oxides on the basis of the underlying reaction free energy of the two-electron transfer were unsuccessful. Here, we demonstrate that broadly varying reduction rates determined in this work for different iron oxides and EES at varying solution chemistry as well as previously published data can be reconciled when these rates are instead related to the free energy of the less exergonic (or even endergonic) first of the two electron transfers from the fully, two-electron reduced EES to ferric iron oxide. We show how free energy relationships aid in identifying controls on microbial iron oxide reduction by EES, thereby advancing a more fundamental understanding of anaerobic respiration using iron oxides.


Assuntos
Elétrons , Espaço Extracelular/química , Compostos Férricos/química , Bases de Dados como Assunto , Compostos de Ferro/química , Minerais/química , Termodinâmica
3.
Appl Environ Microbiol ; 90(3): e0172923, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38411083

RESUMO

Geobacter sp. strain SVR uses antimonate [Sb(V)] as a terminal electron acceptor for anaerobic respiration. Here, we visualized a possible key enzyme, periplasmic Sb(V) reductase (Anr), via active staining and non-denaturing gel electrophoresis. Liquid chromatography-tandem mass spectrometry analysis revealed that a novel dimethyl sulfoxide (DMSO) reductase family protein, WP_173201954.1, is involved in Anr. This protein was closely related with AnrA, a protein suggested to be the catalytic subunit of a respiratory Sb(V) reductase in Desulfuribacillus stibiiarsenatis. The anr genes of strain SVR (anrXSRBAD) formed an operon-like structure, and their transcription was upregulated under Sb(V)-respiring conditions. The expression of anrA gene was induced by more than 1 µM of antimonite [Sb(III)]; however, arsenite [As(III)] did not induce the expression of anrA gene. Tandem mass tag-based proteomic analysis revealed that, in addition to Anr proteins, proteins in the following categories were upregulated under Sb(V)-respiring conditions: (i) Sb(III) efflux systems such as Ant and Ars; (ii) antioxidizing proteins such as ferritin, rubredoxin, and thioredoxin; (iii) protein quality control systems such as HspA, HslO, and DnaK; and (iv) DNA repair proteins such as UspA and UvrB. These results suggest that strain SVR copes with antimony stress by modulating pleiotropic processes to resist and actively metabolize antimony. To the best of our knowledge, this is the first report to demonstrate the involvement of AnrA in Sb(V) respiration at the protein level. Furthermore, this is the first example to show high expression of the Ant system proteins in the Sb(V)-respiring bacterium.IMPORTANCEAntimony (Sb) exists mainly as antimonite [Sb(III)] or antimonate [Sb(V)] in the environment, and Sb(III) is more toxic than Sb(V). Recently, microbial involvement in Sb redox reactions has received attention. Although more than 90 Sb(III)-oxidizing bacteria have been reported, information on Sb(V)-reducing bacteria is limited. Especially, the enzyme involved in dissimilatory Sb(V) reduction, or Sb(V) respiration, is unclear, despite this pathway being very important for the circulation of Sb in nature. In this study, we demonstrated that the Sb(V) reductase (Anr) of an Sb(V)-respiring bacterium (Geobacter sp. SVR) is a novel member of the dimethyl sulfoxide (DMSO) reductase family. In addition, we found that strain SVR copes with Sb stress by modulating pleiotropic processes, including the Ant and Ars systems, and upregulating the antioxidant and quality control protein levels. Considering the abundance and diversity of putative anr genes in the environment, Anr may play a significant role in global Sb cycling in both marine and terrestrial environments.


Assuntos
Antimônio , Geobacter , Antimônio/farmacologia , Geobacter/genética , Geobacter/metabolismo , Dimetil Sulfóxido/metabolismo , Proteômica , Bactérias/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredução , Respiração
4.
Appl Environ Microbiol ; 90(1): e0174123, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38078768

RESUMO

Denitrification is a form of anaerobic respiration wherein nitrate (NO3-) is sequentially reduced via nitrite (NO2-), nitric oxide, and nitrous oxide (N2O) to dinitrogen gas (N2) by four reductase enzymes. Partial denitrifying bacteria possess only one or some of these four reductases and use them as independent respiratory modules. However, it is unclear if partial denitrifiers sense and respond to denitrification intermediates outside of their reductase repertoire. Here, we tested the denitrifying capabilities of two purple nonsulfur bacteria, Rhodopseudomonas palustris CGA0092 and Rhodobacter capsulatus SB1003. Each had denitrifying capabilities that matched their genome annotation; CGA0092 reduced NO2- to N2, and SB1003 reduced N2O to N2. For each bacterium, N2O reduction could be used both for electron balance during growth on electron-rich organic compounds in light and for energy transformation via respiration in darkness. However, N2O reduction required supplementation with a denitrification intermediate, including those for which there was no associated denitrification enzyme. For CGA0092, NO3- served as a stable, non-catalyzable molecule that was sufficient to activate N2O reduction. Using a ß-galactosidase reporter, we found that NO3- acted, at least in part, by stimulating N2O reductase gene expression. In SB1003, NO2- but not NO3- activated N2O reduction, but NO2- was slowly removed, likely by a promiscuous enzyme activity. Our findings reveal that partial denitrifiers can still be subject to regulation by denitrification intermediates that they cannot use.IMPORTANCEDenitrification is a form of microbial respiration wherein nitrate is converted via several nitrogen oxide intermediates into harmless dinitrogen gas. Partial denitrifying bacteria, which individually have some but not all denitrifying enzymes, can achieve complete denitrification as a community by cross-feeding nitrogen oxide intermediates. However, the last intermediate, nitrous oxide (N2O), is a potent greenhouse gas that often escapes, motivating efforts to understand and improve the efficiency of denitrification. Here, we found that at least some partial denitrifying N2O reducers can sense and respond to nitrogen oxide intermediates that they cannot otherwise use. The regulatory effects of nitrogen oxides on partial denitrifiers are thus an important consideration in understanding and applying denitrifying bacterial communities to combat greenhouse gas emissions.


Assuntos
Gases de Efeito Estufa , Óxido Nitroso , Óxido Nitroso/metabolismo , Desnitrificação , Nitratos/metabolismo , Gases de Efeito Estufa/metabolismo , Dióxido de Nitrogênio/metabolismo , Dióxido de Nitrogênio/farmacologia , Bactérias/genética , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo
5.
Biochemistry (Mosc) ; 89(4): 701-710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38831506

RESUMO

Many microorganisms are capable of anaerobic respiration in the absence of oxygen, by using different organic compounds as terminal acceptors in electron transport chain. We identify here an anaerobic respiratory chain protein responsible for acrylate reduction in the marine bacterium Shewanella woodyi. When the periplasmic proteins of S. woodyi were separated by ion exchange chromatography, acrylate reductase activity copurified with an ArdA protein (Swoo_0275). Heterologous expression of S. woodyi ardA gene (swoo_0275) in Shewanella oneidensis MR-1 cells did not result in the appearance in them of periplasmic acrylate reductase activity, but such activity was detected when the ardA gene was co-expressed with an ardB gene (swoo_0276). Together, these genes encode flavocytochrome c ArdAB, which is thus responsible for acrylate reduction in S. woodyi cells. ArdAB was highly specific for acrylate as substrate and reduced only methacrylate (at a 22-fold lower rate) among a series of other tested 2-enoates. In line with these findings, acrylate and methacrylate induced ardA gene expression in S. woodyi under anaerobic conditions, which was accompanied by the appearance of periplasmic acrylate reductase activity. ArdAB-linked acrylate reduction supports dimethylsulfoniopropionate-dependent anaerobic respiration in S. woodyi and, possibly, other marine bacteria.


Assuntos
Acrilatos , Shewanella , Shewanella/enzimologia , Shewanella/genética , Shewanella/metabolismo , Transporte de Elétrons , Acrilatos/metabolismo , Anaerobiose , Oxirredutases/metabolismo , Oxirredutases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
6.
Biochemistry (Mosc) ; 89(2): 241-256, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622093

RESUMO

Genes of putative reductases of α,ß-unsaturated carboxylic acids are abundant among anaerobic and facultatively anaerobic microorganisms, yet substrate specificity has been experimentally verified for few encoded proteins. Here, we co-produced in Escherichia coli a heterodimeric protein of the facultatively anaerobic marine bacterium Vibrio ruber (GenBank SJN56019 and SJN56021; annotated as NADPH azoreductase and urocanate reductase, respectively) with Vibrio cholerae flavin transferase. The isolated protein (named Crd) consists of the sjn56021-encoded subunit CrdB (NADH:flavin, FAD binding 2, and FMN bind domains) and an additional subunit CrdA (SJN56019, a single NADH:flavin domain) that interact via their NADH:flavin domains (Alphafold2 prediction). Each domain contains a flavin group (three FMNs and one FAD in total), one of the FMN groups being linked covalently by the flavin transferase. Crd readily reduces cinnamate, p-coumarate, caffeate, and ferulate under anaerobic conditions with NADH or methyl viologen as the electron donor, is moderately active against acrylate and practically inactive against urocanate and fumarate. Cinnamates induced Crd synthesis in V. ruber cells grown aerobically or anaerobically. The Crd-catalyzed reduction started by NADH demonstrated a time lag of several minutes, suggesting a redox regulation of the enzyme activity. The oxidized enzyme is inactive, which apparently prevents production of reactive oxygen species under aerobic conditions. Our findings identify Crd as a regulated NADH-dependent cinnamate reductase, apparently protecting V. ruber from (hydroxy)cinnamate poisoning.


Assuntos
Oxirredutases , Vibrio , Oxirredutases/metabolismo , NAD/metabolismo , Cinamatos , Oxirredução , Vibrio/genética , Vibrio/metabolismo , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADH Desidrogenase/metabolismo , Flavinas/química , Transferases , Flavina-Adenina Dinucleotídeo/metabolismo
7.
Microb Pathog ; 176: 106022, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36739100

RESUMO

OBJECTIVE: This study is an investigation of anaerobic nitrite and fumarate reduction/respiration abilities of two characterised Prevotella species namely Prevotella nigrescens (SS6B) and Prevotella buccae (GS6B) isolated from the periodontal pockets of chronic periodontitis (ChP) patients. METHODS: Isolation and identification of the periodontal bacteria from 20 patients showing clinical symptoms of ChP. Characterisation of anaerobic nitrite and fumarate reduction was done in P. nigrescens (SS6B) and P. buccae (GS6B) using reduction assays, inhibition assays with use of specific inhibitors, growth assays and enzyme activity assays. Degenerate PCR was used to detect and amplify nitrite reductase (nrfA) and fumarate reductase (frdA) gene sequences in these Prevotella isolates. In addition, molecular and in silico analysis of the amplified anaerobic reductase gene sequences was performed using NCBI conserved domain analysis, Interpro database and MegaX. RESULTS: We provided experimental evidence for presence of active nitrite and fumarate reductase activities through enzyme activity, reduction, inhibitor and growth assays. Moreover, we were able to detect presence of 505 bps nrfA gene fragment and 400 bps frdA gene fragment in these Prevotella spp. These fragments show similarity to multiheme ammonia forming cytochrome c nitrite reductases and fumarate reductases flavoprotein subunit, respectively. CONCLUSION: Anaerobic nitrite and fumarate respiration abilities in P. nigrescens and P. buccae isolates appear to be important for detoxification process and growth, respectively.


Assuntos
Periodontite Crônica , Humanos , Prevotella nigrescens/genética , Prevotella nigrescens/metabolismo , Nitritos , Succinato Desidrogenase
8.
Artigo em Inglês | MEDLINE | ID: mdl-37477965

RESUMO

A polyphasic taxonomic study was carried out on a Gram-stain-negative and rod-shaped strain, ER-Te-42B-LightT, isolated from the tissue of a tube worm, Riftia pachyptila, collected near a deep-sea hydrothermal vent of the Juan de Fuca Ridge in the Pacific Ocean. This bacterium was capable of performing anaerobic respiration using tellurite, tellurate, selenite and orthovanadate as terminal electron acceptors. While facultatively anaerobic, it could aerobically resist tellurite, selenite and orthovanadate up to 2000, 7000 and 10000 µg ml-1, respectively, reducing each oxide to elemental forms. Nearly complete 16S rRNA gene sequence similarity related the strain to Shewanella, with 98.8 and 98.7 % similarity to Shewanella basaltis and Shewanella algicola, respectively. The dominant fatty acids were C16 : 0 and C16 : 1. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol and MK-7 was the predominant quinone. DNA G+C content was 42.5 mol%. Computation of average nucleotide identity and digital DNA-DNA hybridization values with the closest phylogenetic neighbours of ER-Te-42B-LightT revealed genetic divergence at the species level, which was further substantiated by differences in several physiological characteristics. Based on the obtained results, this bacterium was assigned to the genus Shewanella as a new species with the name Shewanella metallivivens sp. nov., type strain ER-Te-42B-LightT (=VKM B-3580T=DSM 113370T).


Assuntos
Fontes Hidrotermais , Metaloides , Shewanella , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Fontes Hidrotermais/microbiologia , Anaerobiose , Vanadatos , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Ácido Selenioso
9.
Environ Sci Technol ; 57(49): 20605-20614, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38038997

RESUMO

Methane (CH4) is the second most important greenhouse gas, 27 times as potent as CO2 and responsible for >30% of the current anthropogenic warming. Globally, more than half of CH4 is produced microbially through methanogenesis. Pyrogenic black carbon possesses a considerable electron storage capacity (ESC) and can be an electron donor or acceptor for abiotic and microbial redox transformation. Using wood-derived biochar as a model black carbon, we demonstrated that air-oxidized black carbon served as an electron acceptor to support anaerobic oxidation of organic substrates, thereby suppressing CH4 production. Black carbon-respiring bacteria were immediately active and outcompeted methanogens. Significant CH4 did not form until the bioavailable electron-accepting capacity of the biochar was exhausted. An experiment with labeled acetate (13CH3COO-) yielded 1:1 13CH4 and 12CO2 without biochar and predominantly 13CO2 with biochar, indicating that biochar enabled anaerobic acetate oxidation at the expense of methanogenesis. Methanogens were enriched following acetate fermentation but only in the absence of biochar. The electron balance shows that approximately half (∼2.4 mmol/g) of biochar's ESC was utilized by the culture, corresponding to the portion of the ESC > +0.173 V (vs SHE). These results provide a mechanistic basis for quantifying the climate impact of black carbon and developing ESC-based applications to reduce CH4 emissions from biogenic sources.


Assuntos
Dióxido de Carbono , Elétrons , Carvão Vegetal , Oxidantes , Metano , Acetatos , Solo
10.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373316

RESUMO

Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, their role in insects is not fully understood; thus, more indepth studies of insect cell apoptosis are necessary. The present study investigates mitochondrial involvement during Conidiobolus coronatus-induced apoptosis in Galleria mellonella hemocytes. Previous research has shown that fungal infection could induce apoptosis in insect hemocytes. Our findings indicate that mitochondria undergo several morphological and physiological changes during fungal infection, e.g., loss of mitochondrial membrane potential, megachannel formation, disturbances in intracellular respiration, increased nonrespiratory oxygen consumption in mitochondria, decreased ATP-coupled oxygen consumption and increased non-ATP-coupled oxygen consumption, decreased extracellular and intracellular oxygen consumption, and increased extracellular pH. Our findings confirm that G. mellonella immunocompetent cells demonstrate Ca2+ overload in mitochondria, translocation of cytochrome c-like protein from mitochondrial to cytosol fraction, and higher activation of caspase-9-like protein after C. coronatus infection. Most importantly, several of the changes observed in insect mitochondria are similar to those accompanying apoptosis in mammalian cells, suggesting that the process is evolutionarily conserved.


Assuntos
Entomophthorales , Mariposas , Animais , Larva/microbiologia , Mariposas/microbiologia , Insetos , Apoptose , Mitocôndrias , Mamíferos
11.
Microb Pathog ; 171: 105725, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007847

RESUMO

Among the important recent observations involving anaerobic respiration was that an electron acceptor produced as a result of an inflammatory response to Salmonella Typhimurium generates a growth advantage over the competing microbiota in the lumen. In this regard, anaerobically, salmonellae can oxidize thiosulphate (S2O32-) converting it into tetrathionate (S4O62-), the process by which it is encoded by ttr gene cluster (ttrSRttrBCA). Another important pathway under aerobic or anaerobic conditions is the 1,2-propanediol-utilization mediated by the pdu gene cluster that promotes Salmonella expansion during colitis. Therefore, we sought to compare in this study, whether Salmonella Heidelberg strains lacking the ttrA, ttrApduA, and ttrACBSR genes experience a disadvantage during cecal colonization in broiler chicks. In contrast to expectations, we found that the gene loss in S. Heidelberg potentially confers an increase in fitness in the chicken infection model. These data argue that S. Heidelberg may trigger an alternative pathway involving the use of an alternative electron acceptor, conferring a growth advantage for S. Heidelberg in chicks.


Assuntos
Galinhas , Salmonelose Animal , Animais , Galinhas/metabolismo , Propilenoglicol/metabolismo , Salmonella , Salmonella typhimurium , Tiossulfatos
12.
Extremophiles ; 26(2): 23, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35802188

RESUMO

A few members of the bacterial genus Thermus have been shown to be incomplete denitrifiers, terminating with nitrite (NO2-) or nitrous oxide (N2O). However, the denitrification abilities of the genus as a whole remain poorly characterized. Here, we describe diverse denitrification phenotypes and genotypes of a collection of 24 strains representing ten species, all isolated from a variety of geothermal systems in China. Confirmed terminal products of nitrate reduction were nitrite or N2O, while nitric oxide (NO) was inferred as the terminal product in some strains. Most strains produced N2O; complete denitrification was not observed. Denitrification phenotypes were largely consistent with the presence of denitrification genes, and strains of the same species often had the same denitrification phenotypes and largely syntenous denitrification gene clusters. Genes for nirS and nirK coexisted in three Thermus brockianus and three Thermus oshimai genomes, which is a unique hallmark of some denitrifying Thermus strains and may be ecologically important. These results show that incomplete denitrification phenotypes are prominent, but variable, within and between Thermus species. The incomplete denitrification phenotypes described here suggest Thermus species may play important roles in consortial denitrification in high-temperature terrestrial biotopes where sufficient supply of oxidized inorganic nitrogen exists.


Assuntos
Fontes Termais , Solo , Nitritos , Fenótipo , Thermus/genética
13.
Appl Microbiol Biotechnol ; 106(21): 7209-7221, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36178515

RESUMO

As a facultative anaerobe, Escherichia coli can activate various respiratory chains during anaerobic growth, among which the mode of anaerobic respiration with nitrate allows good energy conservation. NarL is one of the regulatory proteins in the Nar two-component system that regulates anaerobic respiration in E. coli. Previous studies have shown that NarL activates downstream gene regulation through phosphorylation. However, there are few studies on other protein translational modifications that influence the regulatory function of NarL. Herein, we demonstrate that acetylation modification exists on K188 and K192, the two lysine residues involved in contacting to DNA, and the degree of acetylation has significant effects on DNA-binding abilities, thus affecting the anaerobic growth of E. coli. In addition, NarL is mainly regulated by acetyl phosphate, but not by peptidyl-lysine N-acetyltransferase. These results indicate that non-enzymatic acetylation of NarL by AcP is one of the important mechanisms for the nitrate anaerobic respiratory pathway in response to environmental changes, which extends the idea of the mechanism underlying the response of intestinal flora to changes in the intestinal environment. KEY POINTS: • Acetylation was found in NarL, which was mainly mediated by AcP. • Non-enzymatic acetylation at K188 and K192 affects NarL binding ability. • Acetylation of NarL K188 and K192 regulates anaerobic nitrate growth of E. coli.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Acetilação , Acetiltransferases/genética , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Lisina/metabolismo , Nitratos/metabolismo
14.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269716

RESUMO

Adaptive mechanisms that facilitate intestinal colonization by the human microbiota, including Escherichia coli, may be better understood by analyzing the physiology and gene expression of bacteria in low-oxygen environments. We used high-throughput transcriptomics and proteomics to compare the expression profiles of E. coli grown under aerobic versus microaerobic conditions. Clustering of high-abundance transcripts under microaerobiosis highlighted genes controlling acid-stress adaptation (gadAXW, gadAB, hdeAB-yhiD and hdeD operons), cell adhesion/biofilm formation (pgaABCD and csgDEFG operons), electron transport (cydAB), oligopeptide transport (oppABCDF), and anaerobic respiration/fermentation (hyaABCDEF and hycABCDEFGHI operons). In contrast, downregulated genes were involved in iron transport (fhuABCD, feoABC and fepA-entD operons), iron-sulfur cluster assembly (iscRSUA and sufABCDSE operons), aerobic respiration (sdhDAB and sucABCDSE operons), and de novo nucleotide synthesis (nrdHIEF). Additionally, quantitative proteomics showed that the products (proteins) of these high- or low-abundance transcripts were expressed consistently. Our findings highlight interrelationships among energy production, carbon metabolism, and iron homeostasis. Moreover, we have identified and validated a subset of differentially expressed noncoding small RNAs (i.e., CsrC, RyhB, RprA and GcvB), and we discuss their regulatory functions during microaerobic growth. Collectively, we reveal key changes in gene expression at the transcriptional and post-transcriptional levels that sustain E. coli growth when oxygen levels are low.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Anaerobiose , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Humanos , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Oxigênio/metabolismo , Proteômica , RNA não Traduzido/metabolismo , Transcriptoma
15.
J Bacteriol ; 203(22): e0036321, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34516284

RESUMO

One of the first environmental cues sensed by a microbe as it enters a human host is an upshift in temperature to 37°C. In this dynamic time point analysis, we demonstrate that this environmental transition rapidly signals a multitude of gene expression changes in Escherichia coli. Bacteria grown at 23°C under aerobic conditions were shifted to 37°C, and mRNA expression was measured at time points after the shift to 37°C (t = 0.5, 1, and 4 h). The first hour is characterized by a transient shift to anaerobic respiration strategies and stress responses, particularly acid resistance, indicating that temperature serves as a sentinel cue to predict and prepare for various niches within the host. The temperature effects on a subset of stress response genes were shown to be mediated by RpoS and directly correlated with RpoS, DsrA, and RprA levels, and increased acid resistance was observed that was dependent on 23°C growth and RpoS. By 4 h, gene expression shifted to aerobic respiration pathways and decreased stress responses, coupled with increases in genes associated with biosynthesis (amino acid and nucleotides), iron uptake, and host defense. ompT, a gene that confers resistance to antimicrobial peptides, was highly thermoregulated, with a pattern conserved in enteropathogenic and uropathogenic E. coli strains. An immediate decrease in curli gene expression concomitant with an increase in flagellar gene expression implicates temperature in this developmental decision. Together, our studies demonstrate that temperature signals a reprogramming of gene expression immediately upon an upshift that may predict, prepare, and benefit the survival of the bacterium within the host. IMPORTANCE As one of the first cues sensed by the microbe upon entry into a human host, understanding how bacteria like E. coli modulate gene expression in response to temperature improves our understanding of how bacteria immediately initiate responses beneficial for survival and colonization. For pathogens, understanding the various pathways of thermal regulation could yield valuable targets for anti-infective chemotherapeutic drugs or disinfection measures. In addition, our data provide a dynamic examination of the RpoS stress response, providing genome-wide support for how temperature impacts RpoS through changes in RpoS stability and modulation by small regulatory RNAs.


Assuntos
Temperatura Corporal , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Portador Sadio , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Humanos , Análise Serial de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Temperatura
16.
J Biol Chem ; 295(12): 3851-3864, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32047111

RESUMO

The stringent response (SR) is a highly conserved stress response in bacteria. It is composed of two factors, (i) a nucleotide alarmone, guanosine tetra- and pentaphosphate ((p)ppGpp), and (ii) an RNA polymerase-binding protein, DksA, that regulates various phenotypes, including bacterial virulence. The clinically significant opportunistic bacterial pathogen Pseudomonas aeruginosa possesses two genes, dksA1 and dksA2, that encode DksA proteins. It remains elusive, however, which of these two genes plays a more important role in SR regulation. In this work, we compared genome-wide, RNA-Seq-based transcriptome profiles of ΔdksA1, ΔdksA2, and ΔdksA1ΔdksA2 mutants to globally assess the effects of these gene deletions on transcript levels coupled with phenotypic analyses. The ΔdksA1 mutant exhibited substantial defects in a wide range of phenotypes, including quorum sensing (QS), anaerobiosis, and motility, whereas the ΔdksA2 mutant exhibited no significant phenotypic changes, suggesting that the dksA2 gene may not have an essential function in P. aeruginosa under the conditions used here. Of note, the ΔdksA1 mutants displayed substantially increased transcription of genes involved in polyamine biosynthesis, and we also detected increased polyamine levels in these mutants. Because SAM is a shared precursor for the production of both QS autoinducers and polyamines, these findings suggest that DksA1 deficiency skews the flow of SAM toward polyamine production rather than to QS signaling. Together, our results indicate that DksA1, but not DksA2, controls many important phenotypes in P. aeruginosa We conclude that DksA1 may represent a potential target whose inhibition may help manage recalcitrant P. aeruginosa infections.


Assuntos
Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica/métodos , Pseudomonas aeruginosa/metabolismo , Transativadores/metabolismo , Transcriptoma , Anaerobiose , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , RNA Polimerases Dirigidas por DNA/metabolismo , Mutagênese , Fenótipo , Poliaminas/metabolismo , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum/genética , Transativadores/genética , Virulência/genética
17.
J Biol Chem ; 295(27): 9021-9032, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32409583

RESUMO

Many proteobacteria, such as Escherichia coli, contain two main types of quinones: benzoquinones, represented by ubiquinone (UQ) and naphthoquinones, such as menaquinone (MK), and dimethyl-menaquinone (DMK). MK and DMK function predominantly in anaerobic respiratory chains, whereas UQ is the major electron carrier in the reduction of dioxygen. However, this division of labor is probably not very strict. Indeed, a pathway that produces UQ under anaerobic conditions in an UbiU-, UbiV-, and UbiT-dependent manner has been discovered recently in E. coli Its physiological relevance is not yet understood, because MK and DMK are also present in E. coli Here, we established that UQ9 is the major quinone of Pseudomonas aeruginosa and is required for growth under anaerobic respiration (i.e. denitrification). We demonstrate that the ORFs PA3911, PA3912, and PA3913, which are homologs of the E. coli ubiT, ubiV, and ubiU genes, respectively, are essential for UQ9 biosynthesis and, thus, for denitrification in P. aeruginosa These three genes here are called ubiTPa , ubiVPa , and ubiUPa We show that UbiVPa accommodates an iron-sulfur [4Fe-4S] cluster. Moreover, we report that UbiUPa and UbiTPa can bind UQ and that the isoprenoid tail of UQ is the structural determinant required for recognition by these two Ubi proteins. Since the denitrification metabolism of P. aeruginosa is believed to be important for the pathogenicity of this bacterium in individuals with cystic fibrosis, our results highlight that the O2-independent UQ biosynthetic pathway may represent a target for antibiotics development to manage P. aeruginosa infections.


Assuntos
Desnitrificação/fisiologia , Pseudomonas aeruginosa/metabolismo , Ubiquinona/biossíntese , Vias Biossintéticas , Respiração Celular , Transporte de Elétrons , Oxigênio/metabolismo , Quinonas/metabolismo , Ubiquinona/metabolismo , Vitamina K 2/metabolismo
18.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33771781

RESUMO

Over the past century, microbiologists have studied organisms in pure culture, yet it is becoming increasingly apparent that the majority of biological processes rely on multispecies cooperation and interaction. While little is known about how such interactions permit cooperation, even less is known about how cooperation arises. To study the emergence of cooperation in the laboratory, we constructed both a commensal community and an obligate mutualism using the previously noninteracting bacteria Shewanella oneidensis and Geobacter sulfurreducens Incorporation of a glycerol utilization plasmid (pGUT2) enabled S. oneidensis to metabolize glycerol and produce acetate as a carbon source for G. sulfurreducens, establishing a cross-feeding, commensal coculture. In the commensal coculture, both species coupled oxidative metabolism to the respiration of fumarate as the terminal electron acceptor. Deletion of the gene encoding fumarate reductase in the S. oneidensis/pGUT2 strain shifted the coculture with G. sulfurreducens to an obligate mutualism where neither species could grow in the absence of the other. A shift in metabolic strategy from glycerol catabolism to malate metabolism was associated with obligate coculture growth. Further targeted deletions in malate uptake and acetate generation pathways in S. oneidensis significantly inhibited coculture growth with G. sulfurreducens The engineered coculture between S. oneidensis and G. sulfurreducens provides a model laboratory system to study the emergence of cooperation in bacterial communities, and the shift in metabolic strategy observed in the obligate coculture highlights the importance of genetic change in shaping microbial interactions in the environment.IMPORTANCE Microbes seldom live alone in the environment, yet this scenario is approximated in the vast majority of pure-culture laboratory experiments. Here, we develop an anaerobic coculture system to begin understanding microbial physiology in a more complex setting but also to determine how anaerobic microbial communities can form. Using synthetic biology, we generated a coculture system where the facultative anaerobe Shewanella oneidensis consumes glycerol and provides acetate to the strict anaerobe Geobacter sulfurreducens In the commensal system, growth of G. sulfurreducens is dependent on the presence of S. oneidensis To generate an obligate coculture, where each organism requires the other, we eliminated the ability of S. oneidensis to respire fumarate. An unexpected shift in metabolic strategy from glycerol catabolism to malate metabolism was observed in the obligate coculture. Our work highlights how metabolic landscapes can be expanded in multispecies communities and provides a system to evaluate the evolution of cooperation under anaerobic conditions.


Assuntos
Geobacter/fisiologia , Interações Microbianas , Shewanella/fisiologia , Simbiose , Anaerobiose , Técnicas de Cocultura , Biologia Sintética
19.
Appl Environ Microbiol ; 87(21): e0121121, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34469197

RESUMO

Ruminants such as cattle and sheep depend on the breakdown of carbohydrates from plant-based feedstuff, which is accomplished by the microbial community in the rumen. Roughly 40% of the members of the rumen microbiota belong to the family Prevotellaceae, which ferments sugars to organic acids such as acetate, propionate, and succinate. These substrates are important nutrients for the ruminant. In a metaproteome analysis of the rumen of cattle, proteins that are homologous to the Na+-translocating NADH:quinone oxidoreductase (NQR) and the quinone:fumarate reductase (QFR) were identified in different Prevotella species. Here, we show that fumarate reduction to succinate in anaerobically growing Prevotella bryantii is coupled to chemiosmotic energy conservation by a supercomplex composed of NQR and QFR. This sodium-translocating NADH:fumarate oxidoreductase (SNFR) supercomplex was enriched by blue native PAGE (BN-PAGE) and characterized by in-gel enzyme activity staining and mass spectrometry. High NADH oxidation (850 nmol min-1 mg-1), quinone reduction (490 nmol min-1 mg-1), and fumarate reduction (1,200 nmol min-1 mg-1) activities, together with high expression levels, demonstrate that SNFR represents a charge-separating unit in P. bryantii. Absorption spectroscopy of SNFR exposed to different substrates revealed intramolecular electron transfer from the flavin adenine dinucleotide (FAD) cofactor in NQR to heme b cofactors in QFR. SNFR catalyzed the stoichiometric conversion of NADH and fumarate to NAD+ and succinate. We propose that the regeneration of NAD+ in P. bryantii is intimately linked to the buildup of an electrochemical gradient which powers ATP synthesis by electron transport phosphorylation. IMPORTANCE Feeding strategies for ruminants are designed to optimize nutrient efficiency for animals and to prevent energy losses like enhanced methane production. Key to this are the fermentative reactions of the rumen microbiota, dominated by Prevotella spp. We show that succinate formation by P. bryantii is coupled to NADH oxidation and sodium gradient formation by a newly described supercomplex consisting of Na+-translocating NADH:quinone oxidoreductase (NQR) and fumarate reductase (QFR), representing the sodium-translocating NADH:fumarate oxidoreductase (SNFR) supercomplex. SNFR is the major charge-separating module, generating an electrochemical sodium gradient in P. bryantii. Our findings offer clues to the observation that use of fumarate as feed additive does not significantly increase succinate production, or decrease methanogenesis, by the microbial community in the rumen.


Assuntos
Potenciais da Membrana , Prevotella/enzimologia , Sódio/metabolismo , Succinatos/metabolismo , Animais , Bovinos , Fumaratos/metabolismo , NAD , Ovinos , Succinato Desidrogenase
20.
Appl Environ Microbiol ; 87(13): e0073121, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33931421

RESUMO

It is known that the physiology of Methanosarcina species can differ significantly, but the ecological impact of these differences is unclear. We recovered two strains of Methanosarcina from two different ecosystems with a similar enrichment and isolation method. Both strains had the same ability to metabolize organic substrates and participate in direct interspecies electron transfer but also had major physiological differences. Strain DH-1, which was isolated from an anaerobic digester, used H2 as an electron donor. Genome analysis indicated that it lacks an Rnf complex and conserves energy from acetate metabolism via intracellular H2 cycling. In contrast, strain DH-2, a subsurface isolate, lacks hydrogenases required for H2 uptake and cycling and has an Rnf complex for energy conservation when growing on acetate. Further analysis of the genomes of previously described isolates, as well as phylogenetic and metagenomic data on uncultured Methanosarcina in anaerobic digesters and diverse soils and sediments, revealed a physiological dichotomy that corresponded with environment of origin. The physiology of type I Methanosarcina revolves around H2 production and consumption. In contrast, type II Methanosarcina species eschew H2 and have genes for an Rnf complex and the multiheme, membrane-bound c-type cytochrome MmcA, shown to be essential for extracellular electron transfer. The distribution of Methanosarcina species in diverse environments suggests that the type I H2-based physiology is well suited for high-energy environments, like anaerobic digesters, whereas type II Rnf/cytochrome-based physiology is an adaptation to the slower, steady-state carbon and electron fluxes common in organic-poor anaerobic soils and sediments. IMPORTANCE Biogenic methane is a significant greenhouse gas, and the conversion of organic wastes to methane is an important bioenergy process. Methanosarcina species play an important role in methane production in many methanogenic soils and sediments as well as anaerobic waste digesters. The studies reported here emphasize that the genus Methanosarcina is composed of two physiologically distinct groups. This is important to recognize when interpreting the role of Methanosarcina in methanogenic environments, especially regarding H2 metabolism. Furthermore, the finding that type I Methanosarcina species predominate in environments with high rates of carbon and electron flux and that type II Methanosarcina species predominate in lower-energy environments suggests that evaluating the relative abundance of type I and type II Methanosarcina may provide further insights into rates of carbon and electron flux in methanogenic environments.


Assuntos
Methanosarcina , Acetatos/metabolismo , Anaerobiose , Reatores Biológicos , Ecossistema , Transporte de Elétrons , Etanol/metabolismo , Genoma Arqueal , Hidrogênio/metabolismo , Metano/metabolismo , Methanosarcina/genética , Methanosarcina/isolamento & purificação , Methanosarcina/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA