Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Circulation ; 149(5): 343-353, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-37860863

RESUMO

BACKGROUND: Homozygous familial hypercholesterolemia (HoFH) is a rare genetic disorder characterized by severely elevated low-density lipoprotein cholesterol (LDL-C) levels due to profoundly defective LDL receptor (LDLR) function. Given that severely elevated LDL-C starts in utero, atherosclerosis often presents during childhood or adolescence, creating a largely unmet need for aggressive LDLR-independent lipid-lowering therapies in young patients with HoFH. Here we present the first evaluation of the efficacy and safety of evinacumab, a novel LDLR-independent lipid-lowering therapy, in pediatric patients with HoFH from parts A and B of a 3-part study. METHODS: The phase 3, part B, open-label study treated 14 patients 5 to 11 years of age with genetically proven HoFH (true homozygotes and compound heterozygotes) with LDL-C >130 mg/dL, despite optimized lipid-lowering therapy (including LDLR-independent apheresis and lomitapide), with intravenous evinacumab 15 mg/kg every 4 weeks. RESULTS: Evinacumab treatment rapidly and durably (through week 24) decreased LDL-C with profound reduction in the first week, with a mean (SE) LDL-C reduction of -48.3% (10.4%) from baseline to week 24. ApoB (mean [SE], -41.3% [9.0%]), non-high-density lipoprotein cholesterol (-48.9% [9.8%]), and total cholesterol (-49.1% [8.1%]) were similarly decreased. Treatment-emergent adverse events were reported in 10 (71.4%) patients; however, only 2 (14.3%) reported events that were considered to be treatment-related (nausea and abdominal pain). One serious treatment-emergent adverse event of tonsillitis occurred (n=1), but this was not considered treatment-related. CONCLUSIONS: Evinacumab constitutes a new treatment for pediatric patients with HoFH and inadequately controlled LDL-C despite optimized lipid-lowering therapy, lowering LDL-C levels by nearly half in these extremely high-risk and difficult-to-treat individuals. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04233918.


Assuntos
Anticorpos Monoclonais , Anticolesterolemiantes , Hipercolesterolemia Familiar Homozigota , Hiperlipoproteinemia Tipo II , Adolescente , Humanos , Criança , LDL-Colesterol/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/genética , Anticolesterolemiantes/efeitos adversos , Homozigoto
2.
Subcell Biochem ; 104: 139-179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963487

RESUMO

Lipoprotein lipase (LPL) is a critical enzyme in humans that provides fuel to peripheral tissues. LPL hydrolyzes triglycerides from the cores of lipoproteins that are circulating in plasma and interacts with receptors to mediate lipoprotein uptake, thus directing lipid distribution via catalytic and non-catalytic functions. Functional losses in LPL or any of its myriad of regulators alter lipid homeostasis and potentially affect the risk of developing cardiovascular disease-either increasing or decreasing the risk depending on the mutated protein. The extensive LPL regulatory network tunes LPL activity to allocate fatty acids according to the energetic needs of the organism and thus is nutritionally responsive and tissue dependent. Multiple pharmaceuticals in development manipulate or mimic these regulators, demonstrating their translational importance. Another facet of LPL biology is that the oligomeric state of the enzyme is also central to its regulation. Recent structural studies have solidified the idea that LPL is regulated not only by interactions with other binding partners but also by self-associations. Here, we review the complexities of the protein-protein and protein-lipid interactions that govern LPL structure and function.


Assuntos
Lipase Lipoproteica , Lipase Lipoproteica/metabolismo , Lipase Lipoproteica/química , Lipase Lipoproteica/genética , Humanos , Animais , Ligação Proteica , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos
3.
Eur Heart J ; 45(9): 707-721, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38243829

RESUMO

BACKGROUND AND AIMS: RNA-based, antibody-based, and genome editing-based therapies are currently under investigation to determine if the inhibition of angiopoietin-like protein-3 (ANGPTL3) could reduce lipoprotein-lipid levels and atherosclerotic cardiovascular disease (ASCVD) risk. Mendelian randomisation (MR) was used to determine whether genetic variations influencing ANGPTL3 liver gene expression, blood levels, and protein structure could causally influence triglyceride and apolipoprotein B (apoB) levels as well as coronary artery disease (CAD), ischaemic stroke (IS), and other cardiometabolic diseases. METHODS: RNA sequencing of 246 explanted liver samples and genome-wide genotyping was performed to identify single-nucleotide polymorphisms (SNPs) associated with liver expression of ANGPTL3. Genome-wide summary statistics of plasma protein levels of ANGPTL3 from the deCODE study (n = 35 359) were used. A total of 647 carriers of ANGPTL3 protein-truncating variants (PTVs) associated with lower plasma triglyceride levels were identified in the UK Biobank. Two-sample MR using SNPs that influence ANGPTL3 liver expression or ANGPTL3 plasma protein levels as exposure and cardiometabolic diseases as outcomes was performed (CAD, IS, heart failure, non-alcoholic fatty liver disease, acute pancreatitis, and type 2 diabetes). The impact of rare PTVs influencing plasma triglyceride levels on apoB levels and CAD was also investigated in the UK Biobank. RESULTS: In two-sample MR studies, common genetic variants influencing ANGPTL3 hepatic or blood expression levels of ANGPTL3 had a very strong effect on plasma triglyceride levels, a more modest effect on low-density lipoprotein cholesterol, a weaker effect on apoB levels, and no effect on CAD or other cardiometabolic diseases. In the UK Biobank, the carriers of rare ANGPTL3 PTVs providing lifelong reductions in median plasma triglyceride levels [-0.37 (interquartile range 0.41) mmol/L] had slightly lower apoB levels (-0.06 ± 0.32 g/L) and similar CAD event rates compared with non-carriers (10.2% vs. 10.9% in carriers vs. non-carriers, P = .60). CONCLUSIONS: PTVs influencing ANGPTL3 protein structure as well as common genetic variants influencing ANGPTL3 hepatic expression and/or blood protein levels exhibit a strong effect on circulating plasma triglyceride levels, a weak effect on circulating apoB levels, and no effect on ASCVD. Near-complete inhibition of ANGPTL3 function in patients with very elevated apoB levels may be required to reduce ASCVD risk.


Assuntos
Aterosclerose , Isquemia Encefálica , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Pancreatite , Acidente Vascular Cerebral , Humanos , Doença Aguda , Doença da Artéria Coronariana/genética , Proteína 3 Semelhante a Angiopoietina , Anticorpos , Apolipoproteínas B/genética , Triglicerídeos
4.
Circulation ; 148(19): 1479-1489, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37712257

RESUMO

BACKGROUND: ANGPTL3 (angiopoietin-like 3) is a therapeutic target for reducing plasma levels of triglycerides and low-density lipoprotein cholesterol. A recent trial with vupanorsen, an antisense oligonucleotide targeting hepatic production of ANGPTL3, reported a dose-dependent increase in hepatic fat. It is unclear whether this adverse effect is due to an on-target effect of inhibiting hepatic ANGPTL3. METHODS: We recruited participants with ANGPTL3 deficiency related to ANGPTL3 loss-of-function (LoF) mutations, along with wild-type (WT) participants from 2 previously characterized cohorts located in Campodimele, Italy, and St. Louis, MO. Magnetic resonance spectroscopy and magnetic resonance proton density fat fraction were performed to measure hepatic fat fraction and the distribution of extrahepatic fat. To estimate the causal relationship between ANGPTL3 and hepatic fat, we generated a genetic instrument of plasma ANGPTL3 levels as a surrogate for hepatic protein synthesis and performed Mendelian randomization analyses with hepatic fat in the UK Biobank study. RESULTS: We recruited participants with complete (n=6) or partial (n=32) ANGPTL3 deficiency related to ANGPTL3 LoF mutations, as well as WT participants (n=92) without LoF mutations. Participants with ANGPTL3 deficiency exhibited significantly lower total cholesterol (complete deficiency, 78.5 mg/dL; partial deficiency, 172 mg/dL; WT, 188 mg/dL; P<0.05 for both deficiency groups compared with WT), along with plasma triglycerides (complete deficiency, 26 mg/dL; partial deficiency, 79 mg/dL; WT, 88 mg/dL; P<0.05 for both deficiency groups compared with WT) without any significant difference in hepatic fat (complete deficiency, 9.8%; partial deficiency, 10.1%; WT, 9.9%; P>0.05 for both deficiency groups compared with WT) or severity of hepatic steatosis as assessed by magnetic resonance imaging. In addition, ANGPTL3 deficiency did not alter the distribution of extrahepatic fat. Results from Mendelian randomization analyses in 36 703 participants from the UK Biobank demonstrated that genetically determined ANGPTL3 plasma protein levels were causally associated with low-density lipoprotein cholesterol (P=1.7×10-17) and triglycerides (P=3.2×10-18) but not with hepatic fat (P=0.22). CONCLUSIONS: ANGPTL3 deficiency related to LoF mutations in ANGPTL3, as well as genetically determined reduction of plasma ANGPTL3 levels, is not associated with hepatic steatosis. Therapeutic approaches to inhibit ANGPTL3 production in hepatocytes are not necessarily expected to result in the increased risk for hepatic steatosis that was observed with vupanorsen.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Humanos , Proteínas Semelhantes a Angiopoietina/genética , Triglicerídeos , LDL-Colesterol
5.
Curr Issues Mol Biol ; 46(5): 4924-4934, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38785563

RESUMO

Humans are persistently exposed to massive amounts of blue light via sunlight, computers, smartphones, and similar devices. Although the positive and negative effects of blue light on living organisms have been reported, its impact on learning and memory remains unknown. Herein, we examined the effects of widespread blue light exposure on the learning and memory abilities of blue light-exposed mice. Ten-week-old male ICR mice were divided into five groups (five mice/group) and irradiated with blue light from a light-emitting diode daily for 6 months. After 6 months of blue light irradiation, mice exhibited a decline in memory and learning abilities, assessed using the Morris water maze and step-through passive avoidance paradigms. Blue light-irradiated mice exhibited a decreased expression of the clock gene brain and muscle arnt-like 1 (Bmal1). The number of microglia and levels of M1 macrophage CC-chemokine receptor 7 and inducible nitric oxide synthase were increased, accompanied by a decrease in M2 macrophage arginase-1 levels. Levels of angiopoietin-like protein 2 and inflammatory cytokines interleukin-6, tumor necrosis factor-α, and interleukin-1ß were elevated. Our findings suggest that long-term blue light exposure could reduce Bmal1 expression, activate the M1 macrophage/Angptl2/inflammatory cytokine pathway, induce neurodegeneration, and lead to a decline in memory.

6.
J Neuroinflammation ; 21(1): 192, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095838

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2D) is associated with an increased risk of cognitive dysfunction. Angiopoietin-like protein 8 (ANGPTL8) is an important regulator in T2D, but the role of ANGPTL8 in diabetes-associated cognitive dysfunction remains unknown. Here, we explored the role of ANGPTL8 in diabetes-associated cognitive dysfunction through its interaction with paired immunoglobulin-like receptor B (PirB) in the central nervous system. METHODS: The levels of ANGPTL8 in type 2 diabetic patients with cognitive dysfunction and control individuals were measured. Mouse models of diabetes-associated cognitive dysfunction were constructed to investigate the role of ANGPTL8 in cognitive function. The cognitive function of the mice was assessed by the Barnes Maze test and the novel object recognition test, and levels of ANGPTL8, synaptic and axonal markers, and pro-inflammatory cytokines were measured. Primary neurons and microglia were treated with recombinant ANGPTL8 protein (rA8), and subsequent changes were examined. In addition, the changes induced by ANGPTL8 were validated after blocking PirB and its downstream pathways. Finally, mice with central nervous system-specific knockout of Angptl8 and PirB-/- mice were generated, and relevant in vivo experiments were performed. RESULTS: Here, we demonstrated that in the diabetic brain, ANGPTL8 was secreted by neurons into the hippocampus, resulting in neuroinflammation and impairment of synaptic plasticity. Moreover, neuron-specific Angptl8 knockout prevented diabetes-associated cognitive dysfunction and neuroinflammation. Mechanistically, ANGPTL8 acted in parallel to neurons and microglia via its receptor PirB, manifesting as downregulation of synaptic and axonal markers in neurons and upregulation of proinflammatory cytokine expression in microglia. In vivo, PirB-/- mice exhibited resistance to ANGPTL8-induced neuroinflammation and synaptic damage. CONCLUSION: Taken together, our findings reveal the role of ANGPTL8 in the pathogenesis of diabetes-associated cognitive dysfunction and identify the ANGPTL8-PirB signaling pathway as a potential target for the management of this condition.


Assuntos
Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Camundongos Knockout , Receptores Imunológicos , Transdução de Sinais , Animais , Camundongos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/etiologia , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Humanos , Masculino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Camundongos Endogâmicos C57BL , Sinapses/metabolismo , Sinapses/patologia , Sinapses/efeitos dos fármacos , Hormônios Peptídicos/metabolismo , Pessoa de Meia-Idade , Feminino
7.
J Transl Med ; 22(1): 263, 2024 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462608

RESUMO

BACKGROUND: Angiopoietin-like protein 3 (ANGPTL3) is secreted by hepatocytes and inhibits lipoprotein lipase and endothelial lipase activity. Previous studies reported the correlation between plasma ANGPTL3 levels and high-density lipoprotein (HDL). Recently ANGPTL3 was found to preferentially bind to HDL in healthy human circulation. Here, we examined whether ANGPTL3, as a component of HDL, modulates HDL function and affects HDL other components in human and mice with non-diabetes or type 2 diabetes mellitus. METHODS: HDL was isolated from the plasma of female non-diabetic subjects and type-2 diabetic mellitus (T2DM) patients. Immunoprecipitation, western blot, and ELISA assays were used to examine ANGPTL3 levels in HDL. Db/m and db/db mice, AAV virus mediated ANGPTL3 overexpression and knockdown models and ANGPTL3 knockout mice were used. The cholesterol efflux capacity induced by HDL was analyzed in macrophages preloaded with fluorescent cholesterol. The anti-inflammation capacity of HDL was assessed using flow cytometry to measure VCAM-1 and ICAM-1 expression levels in TNF-α-stimulated endothelial cells pretreated with HDL. RESULTS: ANGPTL3 was found to bind to HDL and be a component of HDL in both non-diabetic subjects and T2DM patients. Flag-ANGPTL3 was found in the HDL of transgenic mice overexpressing Flag-ANGPTL3. ANGPLT3 of HDL was positively associated with cholesterol efflux in female non-diabetic controls (r = 0.4102, p = 0.0117) but not in female T2DM patients (r = - 0.1725, p = 0.3224). Lower ANGPTL3 levels of HDL were found in diabetic (db/db) mice compared to control (db/m) mice and were associated with reduced cholesterol efflux and inhibition of VCAM-1 and ICAM-1 expression in endothelial cells (p < 0.05 for all). Following AAV-mediated ANGPTL3 cDNA transfer in db/db mice, ANGPTL3 levels were found to be increased in HDL, and corresponded to increased cholesterol efflux and decreased ICAM-1 expression. In contrast, knockdown of ANGPTL3 levels in HDL by AAV-mediated shRNA transfer led to a reduction in HDL function (p < 0.05 for both). Plasma total cholesterol, total triglycerides, HDL-c, protein components of HDL and the cholesterol efflux function of HDL were lower in ANGPTL3-/- mice than ANGPTL3+/+ mice, suggesting that ANGPTL3 in HDL may regulate HDL function by disrupting the balance of protein components in HDL. CONCLUSION: ANGPTL3 was identified as a component of HDL in humans and mice. ANGPTL3 of HDL regulated cholesterol efflux and the anti-inflammatory functions of HDL in T2DM mice. Both the protein components of HDL and cholesterol efflux capacity of HDL were decreased in ANGPTL3-/- mice. Our findings suggest that ANGPTL3 in HDL may regulate HDL function by disrupting the balance of protein components in HDL. Our study contributes to a more comprehensive understanding of the role of ANGPTL3 in lipid metabolism.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Diabetes Mellitus Tipo 2 , Animais , Feminino , Humanos , Camundongos , Proteínas Semelhantes a Angiopoietina , Colesterol , Células Endoteliais , Molécula 1 de Adesão Intercelular , Lipoproteínas HDL , Triglicerídeos , Molécula 1 de Adesão de Célula Vascular
8.
Ann Surg Oncol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981990

RESUMO

BACKGROUND: Tumor-associated macrophages (TAM), a major component of the tumor microenvironment, play key roles in tumor formation and progression; however, mechanisms underlying TAM-induced tumor progression are complex and not well known. We previously reported that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) functions as a tumor promoter in some cancer contexts. METHODS: We examined ANGPTL2 expression in paraffin-embedded tumor samples from resected specimens of 221 patients with esophageal cancer. Patients were subdivided into four groups based on immunohistochemistry scores described above: ANGPTL2-low/TAM-low, ANGPTL2-low/TAM-high, ANGPTL2-high/TAM-low, and ANGPTL2-high/TAM-high groups. Gene expression datasets of esophageal cancer cell lines were obtained from the cancer cell line encyclopedia public database. RESULTS: In this study, we demonstrate that TAM infiltration is associated with poor prognosis in patients with esophageal cancer whose tumor cells show relatively higher ANGPTL2 expression levels; however, TAM infiltration did not affect prognosis in patients with ANGPTL2-low-expressing esophageal cancer, suggesting that ANGPTL2 expression in esophageal cancer cells is required for TAM-induced tumor progression. Our analysis of public datasets indicates a potential positive correlation of ANGPTL2 expression levels with that of transforming growth factor (TGF)-ß, a TAM-activating factor, in esophageal cancer cell lines. CONCLUSION: We conclude that ANGPTL2 signaling in tumor cells supports TAM-induced tumor progression and contributes to poor prognosis in patients with esophageal cancer. These findings overall provide novel insight into pro-tumor ANGPTL2 functions and illustrate the essential role of cancer cell/TAM crosstalk in cancer progression.

9.
Mol Cell Biochem ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880861

RESUMO

Acute myocardial infarction is mainly caused by a lack of blood flood in the coronary artery. Angiopoietin-like protein 2 (ANGPTL2) induces platelet activation and thrombus formation in vitro through binding with immunoglobulin-like receptor B, an immunoglobulin superfamily receptor. However, the mechanism by which it regulates platelet function in vivo remains unclear. In this study, we investigated the role of ANGPTL2 during thrombosis in relationship with ST-segment elevation myocardial infarction (STEMI) with spontaneous recanalization (SR). In a cohort of 276 male and female patients, we measured plasma ANGPTL2 protein levels. Using male Angptl2-knockout and wild-type mice, we examined the inhibitory effect of Angptl2 on thrombosis and platelet activation both in vivo and ex vivo. We found that plasma and platelet ANGPTL2 levels were elevated in patients with STEMI with SR compared to those in non-SR (NSR) patients, and was an independent predictor of SR. Angptl2 deficiency accelerated mesenteric artery thrombosis induced by FeCl3 in Angptl2-/- compared to WT animals, promoted platelet granule secretion and aggregation induced by thrombin and collogen while purified ANGPTL2 protein supplementation reversed collagen-induced platelet aggregation. Angptl2 deficiency also increased platelet spreading on immobilized fibrinogen and clot contraction. In collagen-stimulated Angptl2-/- platelets, Src homology region 2 domain-containing phosphatase (Shp)1-Y564 and Shp2-Y580 phosphorylation were attenuated while Src, Syk, and Phospholipase Cγ2 (PLCγ2) phosphorylation increased. Our results demonstrate that ANGPTL2 negatively regulated thrombus formation by activating ITIM which can suppress ITAM signaling pathway. This new knowledge provides a new perspective for designing future antiplatelet aggregation therapies.

10.
Arterioscler Thromb Vasc Biol ; 43(3): 388-398, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36579649

RESUMO

The positive relationship between increased levels of circulating triglycerides and cardiovascular events has been observed for decades. Driven by genetic cohort studies, inhibitors of APOC3 (apolipoprotein C3) and ANGPTL (angiopoietin-like protein) 3 that reduce circulating triglycerides are poised to enter clinical practice. We will review the biology of how inhibition of these 2 proteins affects circulating lipoproteins as well as the current state of clinical development of monoclonal antibodies, antisense oligonucleotides, and silencing RNAs targeting APOC3 and ANGPTL3.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Dislipidemias , Humanos , Proteínas Semelhantes a Angiopoietina/genética , Apolipoproteína C-III , Triglicerídeos/metabolismo , Dislipidemias/tratamento farmacológico
11.
J Lipid Res ; 64(10): 100441, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666362

RESUMO

After feeding, adipose tissue lipoprotein lipase (LPL) activity should be maximized, therefore the potent LPL-inhibitory activity of angiopoietin-like protein 4 (ANGPTL4) must be blocked by ANGPTL8 through formation of ANGPTL4/8 complexes. ANGPTL4/8 tightly binds and protects LPL but also partially inhibits its activity. Recently, we demonstrated ANGPTL4/8 also binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin that cleaves ANGPTL4/8 to restore LPL activity. Although fully active LPL in the fat postprandially is desirable, ANGPTL4/8 removal could subject LPL to profound inhibition by ANGPTL3/8 (the most potent circulating LPL inhibitor), inhibition by other LPL inhibitors like ANGPTL4, ANGPTL3, and ApoC3 or interfere with ApoC2-mediated LPL activation. To understand better these potential paradoxes, we examined LPL inhibition by ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 and LPL stimulation by ApoC2 in the presence of ANGPTL4/8 + tPA + plasminogen. Remarkably, ANGPTL3/8-mediated LPL inhibition was almost completely blocked, with the mechanism being cleavage of fibrinogen-like domain-containing ANGPTL3 present in the ANGPTL3/8 complex. The LPL-inhibitory effects of ANGPTL4, ANGPTL3, and ApoC3 were also largely reduced in the presence of ANGPTL4/8 + tPA + plasminogen. In contrast, the ability of ApoC2 to stimulate LPL activity was unaffected by ANGPTL4/8-mediated plasmin generation. Together, these results explain how plasmin generated by increased postprandial ANGPTL4/8 levels in adipose tissue enables maximal LPL activity by preventing ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 from inhibiting LPL, while permitting ApoC2-mediated LPL activation to occur.

12.
Cancer Sci ; 114(4): 1410-1422, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36529524

RESUMO

Inflammation is observed in many tumors, which affects metastasis, infiltration, and immune escape and causes poor differentiation of the cancer cells. However, the molecular basis underlying the relationship between inflammation and poor differentiation in tumors has not been identified. In this study, we demonstrate that angiopoietin-like protein-8 (ANGPTL8), which is induced by stress stimuli such as inflammation, is involved in the maintenance of the undifferentiated state of clear cell renal cell carcinoma (ccRCC) cells. ANGPTL8 is also involved in the production of chemokines that attract immune suppressor cells to the tumor microenvironment. ANGPTL8 sustains the continuous production of chemokines by activating the NF-κB signaling pathway and maintains the undifferentiated state of ccRCC cells. Finally, ANGPTL8 is induced by STAT3 signaling, which is activated by immune cells in the tumor microenvironment. These results support a role for ANGPTL8 in determining the properties of ccRCC by hampering tumor cell differentiation and establishing the tumor microenvironment.


Assuntos
Proteína 8 Semelhante a Angiopoietina , Carcinoma de Células Renais , Neoplasias Renais , Hormônios Peptídicos , Humanos , Proteína 8 Semelhante a Angiopoietina/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Diferenciação Celular , Inflamação , Neoplasias Renais/genética , Hormônios Peptídicos/metabolismo , Microambiente Tumoral
13.
Biochem Biophys Res Commun ; 639: 176-182, 2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36495766

RESUMO

BACKGROUND: lipopolysaccharide (LPS) can induce nephrotic syndrome-like features such as massive proteinuria, hyperlipidemia, and fusion of glomerular podocytes with foot processes (FPs) in mice. Angiopoietin-like protein 4 (ANGPTL4) neutralized the negative charge of glomerular basement membrane charge and aggravated renal injury. The mechanism of ANGPTL4 aggravating podocyte injury has not been well clarified. In this study, we aimed to investigate the potential role of ANGPTL4 on podocyte FPs fusion and podocyte signal molecules. METHODS: We built angptl4 gene knocked out in C57BL6 mice using CRISPR/Cas9 technique. Nephrotic model was built by LPS in wild type and angptl4-/- mice. Expression of ACTN4, podocin and TRPC6 in the glomerulus were determined by immunohistochemistry. RESULTS: In physical condition, the wild type and angptl4-/- mice showed no significant differences in biochemical indicators and kidney pathology. But in nephrotic condition, compared with wild type mice hyperlipidemia and proteinuria with the angptl4-/- mice was significantly relieved. Moreover, the degree of FPs fusion was notably improved in the nephrotic mice knocked out angptl4 gene. Expression of ACTN4 and podocin decreased drastically in the glomerulus of wild-type nephrotic mice. Different from wild-type, the ACTN4 and podocin expression showed slight weakening in angptl4-/- nephrotic mice. As transient receptor potential cation channel subfamily member, TRPC6 expression had no visible change in glomerulus of each group. CONCLUSIONS: ANGPTL4 induces hyperlipidemia and podocyte injury in nephrotic mice, thereby promoting the formation of proteinuria. Its molecular mechanism may be related to ANGPTL4 down-regulating actin cytoskeletal regulatory signals ACTN4 and podocin.


Assuntos
Síndrome Nefrótica , Podócitos , Animais , Camundongos , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos Endogâmicos C57BL , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Podócitos/metabolismo , Proteinúria/patologia , Canal de Cátion TRPC6/metabolismo
14.
Diabetes Metab Res Rev ; 39(4): e3612, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36656279

RESUMO

AIMS: This systematic review and meta-analysis examined maternal and cord blood betatrophin levels in pregnant women with gestational diabetes mellitus (GDM) and normoglycemic controls. MATERIAL AND METHODS: PubMed, Cochrane Library, Embase, LILACS, WangFang, and China National Knowledge Infrastructure were searched for literature from inception until May 2022. The primary outcomes were maternal and cord blood betatrophin levels. A random-effect meta-analysis was used to estimate the pooled results. The mean differences (MDs) or standardised MDs (SMD) and their 95% confidence intervals (CIs) were calculated. I2 tests were used to evaluate the heterogeneity. The quality of studies was evaluated using the Newcastle-Ottawa Scale. RESULTS: Betatrophin levels were reported in 22 studies with a total of 3034 pregnant women, and in seven studies including cord blood from 456 infants. Women with GDM display higher betatrophin levels than the normoglycemic controls (SMD = 0.85, 95% CI: 0.38-1.31) during the second half of the pregnancy. The sensitivity analysis indicated that no single study had significantly influenced the betatrophin overall outcomes. There was heterogeneity between the studies as evidenced by high I2 values. Meta-regression analysis indicated a significant regression coefficient for maternal betatrophin and glycosilated haemoglobin. There was no significant difference in cord blood betatrophin in infants from women with and without GDM (SMD = 0.34, 95% CI: -0.15-0.83). Women with GDM also had significantly higher insulin, glucose, glycosylated haemoglobin, HOMA-IR, LDL-cholesterol, HDL-cholesterol, triglycerides, and body mass index compared with the normoglycemic controls. CONCLUSIONS: Maternal betatrophin levels were higher in women with GDM than in the normoglycemic controls. There was no difference in cord blood betatrophin. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42022311372.


Assuntos
Diabetes Gestacional , Gravidez , Feminino , Humanos , Proteína 8 Semelhante a Angiopoietina , Gestantes , Sangue Fetal/metabolismo , Proteínas Semelhantes a Angiopoietina , Insulina/metabolismo
15.
Clin Sci (Lond) ; 137(12): 979-993, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37294581

RESUMO

Angiopoietin-like protein 8 (ANGPTL8) plays important roles in lipid metabolism, glucose metabolism, inflammation, and cell proliferation and migration. Clinical studies have indicated that circulating ANGPTL8 levels are increased in patients with thoracic aortic dissection (TAD). TAD shares several risk factors with abdominal aortic aneurysm (AAA). However, the role of ANGPTL8 in AAA pathogenesis has never been investigated. Here, we investigated the effect of ANGPTL8 knockout on AAA in ApoE-/- mice. ApoE-/-ANGPTL8-/- mice were generated by crossing ANGPTL8-/- and ApoE-/- mice. AAA was induced in ApoE-/- using perfusion of angiotensin II (AngII). ANGPTL8 was significantly up-regulated in AAA tissues of human and experimental mice. Knockout of ANGPTL8 significantly reduced AngII-induced AAA formation, elastin breaks, aortic inflammatory cytokines, matrix metalloproteinase expression, and smooth muscle cell apoptosis in ApoE-/- mice. Similarly, ANGPTL8 sh-RNA significantly reduced AngII-induced AAA formation in ApoE-/- mice. ANGPTL8 deficiency inhibited AAA formation, and ANGPTL8 may therefore be a potential therapeutic target for AAA.


Assuntos
Aneurisma da Aorta Abdominal , Hormônios Peptídicos , Humanos , Camundongos , Animais , Proteína 8 Semelhante a Angiopoietina , Camundongos Knockout para ApoE , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controle , Aorta/patologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Angiotensina II/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Aorta Abdominal/patologia , Hormônios Peptídicos/genética , Hormônios Peptídicos/efeitos adversos , Hormônios Peptídicos/metabolismo
16.
Int J Mol Sci ; 24(22)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38003693

RESUMO

Betatrophin, also known as angiopoietin-like protein 8 (ANGPTL8), mainly plays a role in lipid metabolism. To date, associations between betatrophin and lipoprotein subfractions are poorly investigated. For this study, 50 obese patients with type 2 diabetes (T2D) and 70 nondiabetic obese (NDO) subjects matched in gender, age, and body mass index (BMI) as well as 49 gender- and age-matched healthy, normal-weight controls were enrolled. Serum betatrophin levels were measured with ELISA, and lipoprotein subfractions were analyzed using Lipoprint gel electrophoresis. Betatrophin concentrations were found to be significantly higher in the T2D and NDO groups compared to the controls in all subjects and in females, but not in males. We found significant positive correlations between triglyceride, very low density lipoprotein (VLDL), large LDL (low density lipoprotein), small LDL, high density lipoprotein (HDL) -6-10 subfractions, and betatrophin, while negative correlations were detected between betatrophin and IDL, mean LDL size, and HDL-1-5. Proportion of small HDL was the best predictor of betatrophin in all subjects. Small LDL and large HDL subfractions were found to be the best predictors in females, while in males, VLDL was found to be the best predictor of betatrophin. Our results underline the significance of serum betatrophin measurement in the cardiovascular risk assessment of obese patients with and without T2D, but gender differences might be taken into consideration.


Assuntos
Diabetes Mellitus Tipo 2 , Hormônios Peptídicos , Masculino , Feminino , Humanos , Proteína 8 Semelhante a Angiopoietina , Diabetes Mellitus Tipo 2/complicações , Lipoproteínas , Lipoproteínas LDL , Obesidade/complicações , Lipoproteínas VLDL
17.
Mol Biol (Mosk) ; 57(3): 501-502, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37326053

RESUMO

Angiopoietin-like protein 4 (ANGPTL4) is considered to be one of the important circulating mediators linking intestinal microorganisms and host lipid metabolism. The objective of this study was to assess the effects of peroxisome proliferator-activated receptor у (PPARγ) on modulating ANGPTL4 synthesis in Caco-2 cells exposed to Clostridium butyricum. The viability of Caco-2 cells and the expression of PPARγ and ANGPTL4 in Caco-2 cells were detected after the Caco-2 cells were co-cultured with C. butyricum at the concentration of 1 x 10^(6), 1 x 10^(7) and 1 x 10^(8) CFU/mL. The results showed that cell viability was enhanced by C. butyricum. Besides, PPARγ and ANGPTL4 expression and secretion in Caco-2 cells was significantly increased by 1 x 10^(7) and 1 x 10^(8) CFU/mL of C. butyricum. Furthermore, the effects of PPARγ on modulating ANGPTL4 synthesis in Caco-2 cells regulated by 1 x 10^(8) CFU/mL of C. butyricum was also be expounded in PPARγ activation/inhibition model based on Caco-2 cells and via ChIP technique. It was found that C. butyricum promoted the binding of PPARγ to the PPAR binding site (chr19: 8362157-8362357, located upstream of the transcriptional start site of angptl4) of the angptl4 gene in Caco-2 cells. However, the PPARγ was not the only way for C. butyricum to stimulate ANGPTL4 production. Taken together, PPARγ played a role in the regulation of ANGPTL4 synthesis by C. butyricum in Caco-2 cells.


Assuntos
Clostridium butyricum , PPAR gama , Humanos , PPAR gama/genética , Células CACO-2 , Proteína 4 Semelhante a Angiopoietina/genética , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , Sobrevivência Celular
18.
J Lipid Res ; 63(5): 100198, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35307397

RESUMO

Triglycerides (TG) are required for fatty acid transport and storage and are essential for human health. Angiopoietin-like-protein 8 (ANGPTL8) has previously been shown to form a complex with ANGPTL3 that increases circulating TG by potently inhibiting LPL. We also recently showed that the TG-lowering apolipoprotein A5 (ApoA5) decreases TG levels by suppressing ANGPTL3/8-mediated LPL inhibition. To understand how LPL binds ANGPTL3/8 and ApoA5 blocks this interaction, we used hydrogen-deuterium exchange mass-spectrometry and molecular modeling to map binding sites of LPL and ApoA5 on ANGPTL3/8. Remarkably, we found that LPL and ApoA5 both bound a unique ANGPTL3/8 epitope consisting of N-terminal regions of ANGPTL3 and ANGPTL8 that are unmasked upon formation of the ANGPTL3/8 complex. We further used ANGPTL3/8 as an immunogen to develop an antibody targeting this same epitope. After refocusing on antibodies that bound ANGPTL3/8, as opposed to ANGPTL3 or ANGPTL8 alone, we utilized bio-layer interferometry to select an antibody exhibiting high-affinity binding to the desired epitope. We revealed an ANGPTL3/8 leucine zipper-like motif within the anti-ANGPTL3/8 epitope, the LPL-inhibitory region, and the ApoA5-interacting region, suggesting the mechanism by which ApoA5 lowers TG is via competition with LPL for the same ANGPTL3/8-binding site. Supporting this hypothesis, we demonstrate that the anti-ANGPTL3/8 antibody potently blocked ANGPTL3/8-mediated LPL inhibition in vitro and dramatically lowered TG levels in vivo. Together, these data show that an anti-ANGPTL3/8 antibody targeting the same leucine zipper-containing epitope recognized by LPL and ApoA5 markedly decreases TG by suppressing ANGPTL3/8-mediated LPL inhibition.


Assuntos
Lipase Lipoproteica , Hormônios Peptídicos , Proteína 3 Semelhante a Angiopoietina , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/metabolismo , Apolipoproteína A-V , Epitopos , Humanos , Zíper de Leucina , Lipase Lipoproteica/metabolismo , Hormônios Peptídicos/metabolismo , Triglicerídeos/metabolismo
19.
Biochem Biophys Res Commun ; 617(Pt 1): 42-47, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35675737

RESUMO

Hematopoietic stem cell (HSC) transplantation represents an important curative therapy for numerous hematological and immune diseases. Many efforts have been applied to achieve attainable ex vivo HSC expansion. We previously showed that angiopoietin-like proteins 2 (Angptl2) binds and activates the immune inhibitory receptor human leukocyte immunoglobulin (Ig)-like receptor B2 (LILRB2) to support the expansion of HSC. However, soluble Angptl2 is unstable and the downstream signaling would be attenuated by ligand-binding triggered receptor endocytosis, compromising the potential of Angptl2 to expand HSCs. We proposed that membrane anchored Angptl2 will overcome these limitations. In this study, we constructed the C-terminal and N-terminal anchored membrane Angptl2 (Cm-Angptl2 and Nm-Angptl2) by adding a transmembrane domain at the C-terminal or an anchor sequence at the N-terminal respectively. Both forms of Angptl2 showed efficient expression on the surface of feeder cells. Nm-Angptl2, but not Cm-Angptl2, induces a potent activation of LILRB2 reporter, indicating the fibronectin (FBN) domain at the C-terminus of Angptl2 is essential to stimulate LILRB2 signaling. Compared to soluble Angptl2, Nm-Angptl2 displays higher activities to activate LILRB2 reporter, and to promote the expansion of mouse HSCs as determined by transplantation and limiting dilution assay. Our study revealed the importance of FBN domain for Angptl2 to activate LILRB2 and demonstrated that Nm-Angptl2 have enhanced activities than the soluble protein in LILRB2 activation and HSC expansion, providing a strategy to explore the mode of ligand induced receptor signaling, and an optimized approach to expand HSCs ex vivo.


Assuntos
Proteína 2 Semelhante a Angiopoietina , Transplante de Células-Tronco Hematopoéticas , Proteínas Semelhantes a Angiopoietina/metabolismo , Angiopoietinas/metabolismo , Animais , Células-Tronco Hematopoéticas/metabolismo , Ligantes , Camundongos , Receptores Imunológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA