Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Ecol Lett ; 27(3): e14422, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38549235

RESUMO

Understanding how diversity is maintained in plant communities requires that we first understand the mechanisms of competition for limiting resources. In ecology, there is an underappreciated but fundamental distinction between systems in which the depletion of limiting resources reduces the growth rates of competitors and systems in which resource depletion reduces the time available for competitors to grow, a mechanism we call 'competition for time'. Importantly, modern community ecology and our framing of the coexistence problem are built on the implicit assumption that competition reduces the growth rate. However, recent theoretical work suggests competition for time may be the predominant competitive mechanism in a broad array of natural communities, a significant advance given that when species compete for time, diversity-maintaining trade-offs emerge organically. In this study, we first introduce competition for time conceptually using a simple model of interacting species. Then, we perform an experiment in a Mediterranean annual grassland to determine whether competition for time is an important competitive mechanism in a field system. Indeed, we find that species respond to increased competition through reductions in their lifespan rather than their rate of growth. In total, our study suggests competition for time may be overlooked as a mechanism of biodiversity maintenance.


Assuntos
Biodiversidade , Ecologia , Plantas , Ecossistema
2.
Ecol Lett ; 26(2): 323-334, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36592334

RESUMO

Climate change may disrupt plant-pollinator mutualisms by generating phenological asynchronies and by altering traits that shape interaction costs and benefits. Our knowledge is limited to studies that manipulate only one partner or focus on either phenological or trait-based mismatches. We assembled communities of three annual plants and a solitary bee prior to flowering and emergence to test how springtime warming affects phenologies, traits, interactions and reproductive output. Warming advanced community-level flowering onset, peak and end but did not alter bee emergence. Warmed plant communities produced fewer and smaller flowers with less, more-concentrated nectar, reducing attractiveness, and warmed bees were more generalized in their foraging, reducing their effectiveness. Plant-bee interactions were less frequent, shorter and peaked earlier under warming. As a result, warmed plants produced fewer, lighter seeds, indicating pollinator-mediated fitness costs. Climate change will perturb plant-pollinator mutualisms, causing wide-ranging effects on partner species and diminishing the ecosystem service they provide.


Assuntos
Ecossistema , Polinização , Abelhas , Animais , Reprodução , Néctar de Plantas , Flores , Plantas
3.
Ecol Lett ; 25(5): 1110-1125, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35301777

RESUMO

Both competition for water and phenological variation are important determinants of plant community structure, but ecologists lack a synthetic theory for how they affect coexistence outcomes. We developed an analytically tractable model of water competition for Mediterranean annual communities and demonstrated that variation in phenology alone can maintain high diversity in spatially homogenous assemblages of water-limited plants. We modelled a system where all water arrives early in the season and species vary in their ability to grow under drying conditions. As a consequence, species differ in growing season length and compete by shortening the growing season of their competitors. This model replicates and offers mechanistic explanations for patterns observed in empirical studies of how phenology influences coexistence among Mediterranean annuals. Additionally, we found that a decreasing, concave-up trade-off between growth rate and access to water can maintain high diversity under simple but realistic assumptions. High diversity is possible because: (1) later plants escape competition after their earlier season competitors have gone to seed and (2) early-season species are more than compensated for their shortened growing season by a growth rate advantage. Together, these mechanisms provide an explanation for how phenologically variable annual plant species might coexist when competing only for water.


Assuntos
Plantas , Água , Ecossistema , Estações do Ano , Sementes
4.
Ecol Monogr ; 91(3): 1-19, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35309738

RESUMO

Increased nitrogen (N) deposition threatens global biodiversity, but its effects in arid urban ecosystems are not well studied. In addition to altered N availability, urban environments also experience increases in other pollutants, decreased population connectivity, and altered biotic interactions, which can further impact biodiversity. In deserts, annual plant communities make up most of the plant diversity, support wildlife, and contribute to nutrient cycling and ecosystem processes. Functional tradeoffs allowing coexistence of a diversity of annual plant species are well established, but maintenance of diversity in urban conditions and with increased availability of limiting nutrients has not been explored. We conducted a 13-year N and phosphorus (P) addition experiment in Sonoran Desert preserves in and around Phoenix, AZ, to test how nutrient availability interacts with growing season precipitation, urban location, and microhabitat to affect winter annual plant diversity. Using structural equation modeling and generalized linear mixed modeling, we found that annual plant taxonomic diversity was significantly reduced in N-enriched and urban plots. Water availability in both current and previous growing seasons impacted annual plant diversity, with significant interaction effects showing increased diversity in wetter years and greater responsiveness of the community to water following a wet year. However, there were no significant interactions between N enrichment and water availability, urban location, or microhabitat. Lowered diversity in urban preserves may be partly attributable to increased urban N deposition. Changes in biodiversity of showy species like annual wildflowers in urban preserves can have important implications for connections between urban residents and nature, and reduced diversity and community restructuring with N enrichment represents a challenge for future preservation of aridland biodiversity.

5.
Am Nat ; 197(4): 415-433, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33755538

RESUMO

AbstractDirect species interactions are commonly included in individual fitness models used for coexistence and local diversity modeling. Though widely considered important for such models, direct interactions alone are often insufficient for accurately predicting fitness, coexistence, or diversity outcomes. Incorporating higher-order interactions (HOIs) can lead to more accurate individual fitness models but also adds many model terms, which can quickly result in model overfitting. We explore approaches for balancing the trade-off between tractability and model accuracy that occurs when HOIs are added to individual fitness models. To do this, we compare models parameterized with data from annual plant communities in Australia and Spain, varying in the extent of information included about the focal and neighbor species. The best-performing models for both data sets were those that grouped neighbors based on origin status and life form, a grouping approach that reduced the number of model parameters substantially while retaining important ecological information about direct interactions and HOIs. Results suggest that the specific identity of focal or neighbor species is not necessary for building well-performing fitness models that include HOIs. In fact, grouping neighbors by even basic functional information seems sufficient to maximize model accuracy, an important outcome for the practical use of HOI-inclusive fitness models.


Assuntos
Aptidão Genética , Modelos Biológicos , Plantas
6.
Am Nat ; 198(2): E27-E36, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34260874

RESUMO

AbstractLife-history trade-offs among species are major drivers of community assembly. Most studies investigate how trade-offs promote deterministic coexistence of species. It remains unclear how trade-offs may instead promote historically contingent exclusion of species, where species dominance is affected by initial abundances, causing alternative community states via priority effects. Focusing on the establishment-longevity trade-off, in which high longevity is associated with low competitive ability during establishment, we study the transient dynamics and equilibrium outcomes of competitive interactions in a simulation model of plant community assembly. We show that in this model, the establishment-longevity trade-off is a necessary but not sufficient condition for alternative stable equilibria, which also require low fecundity for both species. An analytical approximation of our simulation model demonstrates that alternative stable equilibria are driven by demographic stochasticity in the number of seeds arriving at each establishment site. This site-scale stochasticity is affected only by fecundity and therefore occurs even in infinitely large communities. In many cases where the establishment-longevity trade-off does not cause alternative stable equilibria, the trade-off still decreases the rate of convergence toward the single equilibrium, resulting in decades of transient dynamics that can appear indistinguishable from alternative stable equilibria in empirical studies.


Assuntos
Ecossistema , Fertilidade , Simulação por Computador , Demografia , Modelos Biológicos
7.
Ann Bot ; 127(3): 361-370, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33090204

RESUMO

BACKGROUND AND AIMS: The structure of plant communities, which is based on species abundance ratios, is closely linked to ecosystem functionality. Seed germination niche plays a major role in shaping plant communities, although it has often been neglected when explaining species coexistence. The aim of this work is to link the seed germination niche to community ecology, investigating how functional seed traits contribute to species coexistence. METHODS: Species selection was based on a database of 504 vegetation surveys from the Veneto coast (Italy). Through cluster analysis we identified the foredune community and selected all of its 19 plant species. By using the 'Phi coefficient' and frequency values, species were pooled in different categories (foundation species, accidental species of the semi-fixed dune and aliens), then the 19 species were grouped according to their germination responses to temperature and photoperiod through cluster analyses. For each germination cluster, we investigated germination trends against temperature and photoperiod by using generalized linear mixed models. KEY RESULTS: We identified four germination strategies: (1) high germination under all tested conditions ('high-germinating'); (2) high germination at warm temperatures in the dark ('dark warm-cued'); (3) high germination at warm temperatures in the light ('light warm-cued'); and (4) low germination, regardless of conditions ('low-germinating'). Foredune foundation species showed a narrow germination niche, being 'low-germinating' or 'dark warm-cued'. Annual species of semi-fixed dunes were 'high-germinating', while alien species were the only members of the 'light warm-cued' cluster. CONCLUSIONS: Our research suggests that different categories of species have dissimilar seed germination niches, which contributes to explaining their coexistence. Climatic events, such as rising temperature, could alter germination patterns, favouring seed regeneration of certain categories (i.e. alien and semi-fixed dune species) at the expense of others (i.e. foundation species, pivotal to ecosystem functioning), and hence potentially altering the plant community structure.


Assuntos
Ecossistema , Germinação , Itália , Sementes , Temperatura
8.
Ecol Appl ; 31(6): e02349, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33817888

RESUMO

Political and economic initiatives intended to increase energy production while reducing carbon emissions are driving demand for solar energy. Consequently, desert regions are now targeted for development of large-scale photovoltaic solar energy facilities. Where vegetation communities are left intact or restored within facilities, ground-mounted infrastructure may have negative impacts on desert-adapted plants because it creates novel rainfall runoff and shade conditions. We used experimental solar arrays in the Mojave Desert to test how these altered conditions affect population dynamics for a closely related pair of native annual plants: rare Eriophyllum mohavense and common E. wallacei. We estimated aboveground demographic rates (seedling emergence, survivorship, and fecundity) over 7 yr and used seed bank survival rates from a concurrent study to build matrix models of population growth in three experimental microhabitats. In drier years, shade tended to reduce survival of the common species, but increase survival of the rare species. In a wet year, runoff from panels tended to increase seed output for both species. Population growth projections from microhabitat-specific matrix models showed stronger effects of microhabitat under wetter conditions, and relatively little effect under dry conditions (lack of rainfall was an overwhelming constraint). Performance patterns across microhabitats in the wettest year differed between rare and common species. Projected growth of E. mohavense was substantially reduced in shade, mediated by negative effects on aboveground demographic rates. Hence, the rare species were more susceptible to negative effects of panel infrastructure in wet years that are critical to seed bank replenishment. Our results suggest that altered shade and water runoff regimes associated with energy infrastructure will have differential effects on demographic transitions across annual species and drive population-level processes that determine local abundance, resilience, and persistence.


Assuntos
Asteraceae , Clima Desértico , Ecossistema , Energia Solar , Dinâmica Populacional , Sementes
9.
Proc Natl Acad Sci U S A ; 115(44): 11280-11285, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30322907

RESUMO

Selection and drift are universally accepted as the cornerstones of evolutionary changes. Recent theories extend this view to ecological changes, arguing that any change in species composition is driven by deterministic fitness differences among species (enhancing selection) and/or stochasticity in birth and death rates of individuals within species (enhancing drift). These forces have contrasting effects on the predictability of ecological dynamics, and thus understanding the factors affecting their relative importance is crucial for understanding ecological dynamics. Here we test the hypothesis that dispersal increases the relative importance of ecological selection by increasing the effective size of the community (i.e., the size relevant for competitive interactions and drift). According to our hypothesis, dispersal increases the effective size of the community by mixing individuals from different localities. This effect diminishes the relative importance of demographic stochasticity, thereby reducing drift and increasing the relative importance of selective forces as drivers of species composition. We tested our hypothesis, which we term the "effective community size" hypothesis, using two independent experiments focusing on annual plants: a field experiment in which we manipulated the magnitude of dispersal and a mesocosm experiment in which we directly manipulated the effective size of the communities. Both experiments, as well as related model simulations, were consistent with the hypothesis that increasing dispersal increases the role of selective forces as drivers of species composition. This finding has important implications for our understanding of the fundamental forces affecting community dynamics, as well as the management of species diversity, particularly in patchy and fragmented environments.


Assuntos
Ecologia , Ecossistema , Densidade Demográfica , Dinâmica Populacional/tendências , Biodiversidade , Evolução Biológica , Demografia/estatística & dados numéricos
10.
J Environ Manage ; 288: 112416, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33831641

RESUMO

This study focused on evaluating factors influencing the growth of perennial shrubs by integrating field-based experiments and spatial analysis using unmanned aerial vehicles (UAVs) to identify ecological indicators that can help detect potential locations for restoration and revegetation of native plants. The experiment was implemented in the Al-Abduli protected area in Kuwait, which is mainly dominated by a Rhanterium epapposum community (desert shrub). Aerial imagery of the study site was acquired using UAVs during the growing season to estimate the desert shrub biomass and carbon stock. Then, soil samples were collected based on vegetation density to determine the impact of the soil's physical and chemical properties on vegetation biomass, growth, and distribution. It was found that shrub biomass was significantly correlated with crown area and shrub volume. We also observed that annual plants support the growth of perennial shrubs, as the mean shrub height and crown area (CA) are significantly higher, with averages of 0.7 m and 3 cm, respectively, in the presence of high annual plant density. However, shrubs in plots with low annual density had an average shrub height of 0.5 m and CA of 1.4 cm. Annual plants also enhance the soil by providing approximately 50% higher soil moisture, phosphorous (P), organic matter (OM), and carbon dioxide (CO2) sequestration. In addition, annual plants are mainly supported by loamy soils in the deeper soil layers. We concluded that locations covered with annual plants represent suitable soils and that this can be considered a biological indicator for convenient locations for restoration and revegetation of native perennial shrubs. Remote sensing technologies could be utilized for initial assessments to detect sites that may support annual plant growth over a large scale for classification as potential restoration and revegetation areas.


Assuntos
Ecossistema , Biomarcadores Ambientais , Biomassa , Clima Desértico , Fósforo , Solo
11.
Ecol Lett ; 22(4): 583-592, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30687985

RESUMO

Phylogenetically informed trait comparisons across entire communities show promise in advancing community ecology. We use this approach to better understand the composition of a community of winter annual plants with multiple decades of monitoring and detailed morphological, phenological and physiological measurements. Previous research on this system revealed a physiological trade-off among dominant species that accurately predicts population and community dynamics. Here we expanded our investigation to 51 species, representing 96% of individual plants recorded over 30 years, and analysed trait relationships in the context of species abundance and phylogenetic relationships. We found that the functional-trait trade-off scales to the entire community, albeit with diminished strength. It is strongest for dominant species and weakens as progressively rarer species are included. The trade-off has been consistently expressed over three decades of environmental change despite some turnover in the identity of dominant species.


Assuntos
Fenótipo , Plantas , Filogenia , Estações do Ano
12.
Ecol Lett ; 22(9): 1378-1386, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31207021

RESUMO

Success of alien plants is often attributed to high competitive ability. However, not all aliens become dominant, and not all natives are vulnerable to competitive exclusion. Here, we quantified competitive outcomes and their determinants, using response-surface experiments, in 48 pairs of native and naturalised alien annuals that are common or rare in Germany. Overall, aliens were not more competitive than natives. However, common aliens (invasive) were, despite strong limitation by intraspecific competition, more competitive than rare natives. This is because alien species had higher intrinsic growth rates than natives, and common species had higher intrinsic growth rates than rare ones. Strength of interspecific competition was not related to status or commonness. Our work highlights the importance of including commonness in understanding invasion success. It suggests that variation among species in intrinsic growth rates is more important in competitive outcomes than inter- or intraspecific competition, and thus contributes to invasion success and rarity.


Assuntos
Ecossistema , Espécies Introduzidas , Plantas , Alemanha
13.
Ecol Lett ; 22(1): 181-189, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30467931

RESUMO

The enormous variation in seed mass along gradients of soil resources has fascinated plant ecologists for decades. However, so far, this research has focused on the description of such variation, rather than its underlying mechanisms. Here we experimentally test a recent model relating such variation to two fundamental properties of plant growth: allometry of biomass growth and size-asymmetry of light competition. According to the model, mean seed mass should increase, and the variance of seed mass should show a unimodal response, to increasing soil resource availability (productivity). We test these predictions and their underlying assumptions using a combination of field observations, mesocosm experiments and greenhouse experiments focusing on Mediterranean annual plants. Our results support the predictions and assumptions of the model, and allow us to reject alternative models of seed mass variation. We conclude that growth-allometry and size-asymmetric light competition are key drivers of seed-mass variation along soil resource gradients.


Assuntos
Sementes , Solo , Biomassa , Plantas
14.
Oecologia ; 190(4): 927-940, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31300925

RESUMO

Exotic species are often predicted to successfully invade when their functional traits differ from species in recipient communities. Many studies have related trait differences among natives and invaders to competitive outcomes. Few studies, however, have tested whether functionally similar invaders have similar competitive impacts on natives. We investigated interactions in communities of a native annual forb Waitzia acuminata (Asteraceae) and two invasive annual grasses that are ecologically similar and co-occur in southwestern Australia. Using a combination of field and laboratory experiments and several performance measures, we assessed impacts of these grasses on W. acuminata. We also examined differences among species in their responses to intraspecific versus interspecific competition, including their frequency dependence. The two similar exotic grasses differed in interaction impacts, with one facilitating and the other suppressing the native. In general, intraspecific competition was stronger than interspecific competition for the native, while evidence of competition was weak for the exotics. These patterns may reflect that W. acuminata does well in these communities due to the combined impacts of stabilization and facilitation, whereas the exotics benefit from limited stabilization (mediated by their weak intraspecific competition) or weak interspecific competition with W. acuminata. We found divergent impacts of the exotic species despite their similar functional traits. We demonstrate that a native species may benefit from interactions with an exotic "benefactor" species, highlighting the potential importance of positive interactions in invaded communities. Our findings underscore the necessity of considering neutral and positive interactions in addition to competition in understanding invasion dynamics in real plant communities.


Assuntos
Asteraceae , Ecossistema , Austrália , Poaceae
15.
Ecology ; 99(1): 196-203, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29083479

RESUMO

Numerous mechanisms may allow species to coexist. We tested for frequency-dependent predation, a mechanism predicted by theory and established as a foraging behavior for many types of animals. Our field test included multiple prey species exposed in situ to multiple predator species and individuals to determine whether the prey species experienced predation patterns that were frequency dependent. The prey were seeds of three species of Sonoran Desert winter annual plants while the predator species were a guild of nocturnal seed foraging heteromyid and murid rodents that co-occur naturally in the same community as the desert annuals at Tumamoc Hill near Tucson. Seeds of one species were much preferred over the other two. Nonetheless, we found the net effect of rodent foraging to be positively frequency dependent (the preference for each species is higher when it is common than when it is uncommon) as has been previously hypothesized. This frequency-dependent predation should function as a species coexistence promoting mechanism in concert with the storage effect that has been previously demonstrated for this system.


Assuntos
Comportamento Predatório , Roedores , Animais , Meio Ambiente , Plantas , Sementes
16.
Ecology ; 99(12): 2801-2814, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30076603

RESUMO

The concept of microsites for recruitment is central to plant ecology, but it is unclear whether these sites are abstract constructs or real entities. I hypothesize that, in generally microsite-limited communities, microsites comprise a limiting physical resource for which different species compete. I tested this hypothesis on winter-annual communities on biocrust in the semiarid Northern Negev of Israel, in which most species are microsite-limited, while the dominant grass (Stipa capensis) has overcome this limitation by efficient microsite acquisition and a lack of secondary seed dormancy. I tested whether the dominant suppresses the subordinate species, collectively, during recruitment, rather than during growth. To this end, I conducted a field experiment with three blocks of six plots (6 m × 6 m) with two treatments - mowing in spring 2006 (intershrub, intershrub + shrub patches, and none) and shrub-patch removal (0% or 50% of the patches). I collected data from four seed traps per plot before spring 2007 and from five plant samples per plot at the end of spring. Mowing significantly reduced both seed and plant density of the dominant species, reflecting seed-limited recruitment, and increased subordinate plant density by competitive release. Multiple regressions of per-plant and per-gram effects and responses showed that competition was a direct effect of the dominant's density. Total and per-group biomass was proportional to density, implying density-independent per capita growth. Subordinate species number also increased with their density, due to the sample-size effect. These findings indicate that the seed-limited dominant diffusely suppresses the subordinates during recruitment, supporting the microsite competition hypothesis. The shift from growth resources to microsites extends the role of inter-specific competition along productivity and disturbance gradients, and highlights the asymmetric relationship between the two kinds of competition, as microsite competition is only observable if initial abundances are not overshadowed by density-dependent growth and mortality. The findings also demonstrate that (1) lacking secondary seed dormancy is an evolutionarily stable strategy in dryland annuals, alongside seed dormancy in microsite-limited species, and (2) biomass removal (e.g., by herbivory) increases small-scale biodiversity, enhancing the sustainability of dryland grazing, but without compensatory growth.


Assuntos
Poaceae , Sementes , Biodiversidade , Herbivoria , Israel
17.
Biol Lett ; 14(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30135118

RESUMO

'Filtering', or the reduction in species diversity that occurs because not all species can persist in all locations, is thought to unfold hierarchically, controlled by the environment at large scales and competition at small scales. However, the ecological effects of competition and the environment are not independent, and observational approaches preclude investigation into their interplay. We use a demographic approach with 30 plant species to experimentally test: (i) the effect of competition on species persistence in two soil moisture environments, and (ii) the effect of environmental conditions on mechanisms underlying competitive coexistence. We find that competitors cause differential species persistence across environments even when effects are lacking in the absence of competition, and that the traits which determine persistence depend on the competitive environment. If our study had been observational and trait-based, we would have erroneously concluded that the environment filters species with low biomass, shallow roots and small seeds. Changing environmental conditions generated idiosyncratic effects on coexistence outcomes, increasing competitive exclusion of some species while promoting coexistence of others. Our results highlight the importance of considering environmental filtering in the light of, rather than in isolation from, competition, and challenge community assembly models and approaches to projecting future species distributions.


Assuntos
Ecossistema , Magnoliopsida/fisiologia , Água/fisiologia , Fenômenos Fisiológicos Vegetais , Solo
18.
Ecol Lett ; 20(1): 60-69, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27933739

RESUMO

One of the most ubiquitous patterns in plant ecology is species loss following nutrient enrichment. A common explanation for this universal pattern is an increase in the size asymmetry of light partitioning (the degree to which large plants receive more light per unit biomass than smaller plants), which accelerates the rates of competitive exclusions. This 'light asymmetry hypothesis' has been confirmed by mathematical models, but has never been tested in natural communities due to the lack of appropriate methodology for measuring the size asymmetry of light partitioning in natural communities. Here, we use a novel approach for quantifying the asymmetry of light competition which is based on measurements of the vertical distribution of light below the canopy. Using our approach, we demonstrate that an increase in light asymmetry is the main mechanism behind the negative effect of nutrient enrichment on species richness. Our results provide a possible explanation for one of the main sources of contemporary species loss in terrestrial plant communities.


Assuntos
Biodiversidade , Pradaria , Luz , Fenômenos Fisiológicos Vegetais/efeitos da radiação , Biomassa
19.
Ecology ; 97(4): 1082, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28792597

RESUMO

Desert ecosystems have long served as model systems in the study of ecological concepts (e.g., competition, resource pulses, top-down/bottom-up dynamics). However, the inherent variability of resource availability in deserts, and hence consumer dynamics, can also make them challenging ecosystems to understand. Study of a Chihuahuan desert ecosystem near Portal, Arizona began in 1977. At this site, 24 experimental plots were established and divided among controls and experimental manipulations. Experimental manipulations over the years include removal of all or some rodent species, all or some ants, seed additions, and various alterations of the annual plant community. This dataset includes data previously available through an older data publication and adds 11 years of data. It also includes additional ant and weather data not previously available. These data have been used in a variety of publications documenting the effects of the experimental manipulations as well as the response of populations and communities to long-term changes in climate and habitat. Sampling is ongoing and additional data will be published in the future.


Assuntos
Clima Desértico , Ecossistema , Monitoramento Ambiental , Animais , Arizona , Plantas , Roedores
20.
New Phytol ; 205(2): 918-27, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25298111

RESUMO

Flowering time in annual plants has large fitness consequences and has been the focus of theoretical and empirical study. Previous theory has concluded that flowering time has evolved over evolutionary time to maximize fitness over a particular season length. We introduce a new model where flowering is cued by a growth-rate rule (peak nitrogen (N)). Flowering is therefore sensitive to physiological parameters and to current environmental conditions, including N availability and the presence of competitors. The model predicts that, when overall conditions are suitable for flowering, plants should never flower after 'peak N', the point during development when the whole-plant N uptake rate reaches its maximum. Our model further predicts correlations between flowering time and vegetative growth rates, and that the response to increased N depends heavily on how this extra N is made available. We compare our predictions to observations in the literature. We suggest that annual plants may have evolved to use growth-rate rules as part of the cue for flowering, allowing them to smoothly and optimally adjust their flowering time to a wide range of local conditions. If so, there are widespread implications for the study of the molecular biology behind flowering pathways.


Assuntos
Flores/fisiologia , Nitrogênio/metabolismo , Fenômenos Fisiológicos Vegetais , Arabidopsis/fisiologia , Modelos Biológicos , Modelos Teóricos , Desenvolvimento Vegetal , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Estações do Ano , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA