Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225502

RESUMO

The anode-free lithium metal battery (AF-LMB) demonstrates the emerging battery chemistry, exhibiting higher energy density than the existing lithium-ion battery and conventional LMB empirically. A systematic step-by-step while bottom-up calculation system is first developed to quantitatively depict the energy gap from theory to practice. The attainable high energy of AF-LMB necessitates a homogeneous Li+ flux on the anode side to achieve an improved Li reversibility against inventory loss. On such basis, a lithiophilic Cu3P-decorated 3D copper foil to promote dendrite-free lithium deposition is further reported. The phosphorized surface of high affinity toward Li+ incorporating the nanostructure of abundant nucleation sites synergistically regulates the Li nucleation/growth behavior, extending the cycling lifespan of high-loading AF-LMBs. The processed foil featuring lightweight and ultrathin merits further increases the energy density, both gravimetrically and volumetrically. This study provides a novel scheme for simultaneously realizing the uniform deposition of lithium and increasing the energy density of future AF-LMBs.

2.
Small ; 20(22): e2311065, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38319023

RESUMO

Rechargeable aqueous zinc-air batteries (ZABs) promise high energy density and safety. However, the use of conventional zinc anodes affects the energy output from the battery, so that the theoretical energy density is not achievable under operation conditions. A large portion of the zinc is shielded by anode passivation during the discharge process and remains electrochemically unused, making the operation of rechargeable ZABs inefficient up to date. In a metal anode-free ZAB, there is no unnecessary excess zinc if the zinc reservoir can be precisely adjusted by electrodeposition of zinc from the electrolyte. In this respect, an anode-free battery uses the electrolyte offering a dual-mode functionality not only providing ionic conductivity but also being the source of zinc. In addition, it is shown that a defined porous anode architecture is crucial for high rechargeability in this new type of ZAB. 3D-spatially arranged carbon nanotubes as geometrically defined host structures allow a homogeneous zinc deposition from the electrolyte. Together with carbon nanohorns as an active 2e- catalyst on the cathode side, the rechargeability of this new concept reaches up to 92%.

3.
Small ; : e2402025, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766971

RESUMO

Aqueous aluminum ion batteries (AAIBs) possess the advantages of high safety, cost-effectiveness, eco-friendliness and high theoretical capacity. However, the Al2O3 film on the Al anode surface, a natural physical barrier to the plating of hydrated aluminum ions, is a key factor in the decomposition of the aqueous electrolyte and the severe hydrogen precipitation reaction. To circumvent the obnoxious Al anode, a proof-of-concept of an anode-free AAIB is first proposed, in which Al2TiO5, as a cathode pre-aluminum additive (Al source), can replenish Al loss by over cycling. The Al-Cu alloy layer, formed by plating Al on the Cu foil surface during the charge process, possesses a reversible electrochemical property and is paired with a polyaniline (cathode) to stimulate the battery to exhibit high initial discharge capacity (175 mAh g-1), high power density (≈410 Wh L-1) and ultra-long cycle life (4000 cycles) with the capacity retention of ≈60% after 1000 cycles. This work will act as a primer to ignite the enormous prospective researches on the anode-free aqueous Al ion batteries.

4.
Small ; 20(6): e2306262, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775338

RESUMO

Low Coulombic efficiency, low-capacity retention, and short cycle life are the primary challenges faced by various metal-ion batteries due to the loss of corresponding active metal. Practically, these issues can be significantly ameliorated by compensating for the loss of active metals using pre-metallization techniques. Herein, the state-of-the-art development in various pr-emetallization techniques is summarized. First, the origin of pre-metallization is elaborated and the Coulombic efficiency of different battery materials is compared. Second, different pre-metallization strategies, including direct physical contact, chemical strategies, electrochemical method, overmetallized approach, and the use of electrode additives are summarized. Third, the impact of pre-metallization on batteries, along with its role in improving Coulombic efficiency is discussed. Fourth, the various characterization techniques required for mechanistic studies in this field are outlined, from laboratory-level experiments to large scientific device. Finally, the current challenges and future opportunities of pre-metallization technology in improving Coulombic efficiency and cycle stability for various metal-ion batteries are discussed. In particular, the positive influence of pre-metallization reagents is emphasized in the anode-free battery systems. It is envisioned that this review will inspire the development of high-performance energy storage systems via the effective pre-metallization technologies.

5.
Small ; : e2406359, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225380

RESUMO

Anode-free lithium-metal batteries (AFLMBs) are desirable candidates for achieving high-energy-density batteries, while severe active Li+ loss and uneven Li plating/stripping behavior impede their practical application. Herein, a trilaminar LS-Cu (LiCPON + Si/C-Cu) current collector is fabricated by radio frequency magnetron sputtering, including a Si/C hybrid lithiophilic layer and a supernatant carbon-incorporated lithium phosphorus oxynitride (LiCPON) solid-state electrolyte layer. Joint experimental and computational characterizations and simulations reveal that the LiCPON solid-state electrolyte layer can decompose into an in situ stout ion-transport-promoting protective layer, which can not only regulate homogeneous Li plating/stripping behavior but also inhibit the pulverization and deactivation of Si/C hybrid lithiophilic layer. When combined with surface prelithiated Li1.2Ni0.13Co0.13Mn0.54O2 (Preli-LRM) cathode, the Preli-LRM||LS-Cu full cell delivers 896.1 Wh kg-1 initially and retains 354.1 Wh kg-1 after 50 cycles. This strategy offers an innovative design of compensating for active Li+ loss and inducing uniform Li plating/stripping behavior simultaneously for the development of AFLMBs.

6.
Chemphyschem ; 25(8): e202400007, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318964

RESUMO

Comparing with the commercial Li-ion batteries, Li metal secondary batteries (LMB) exhibit unparalleled energy density. However, many issues have hindered the practical application. As an element in lithium metal and anode-free batteries, the role of current collector is critical. Comparing with the cathode current collector, more requirements have been imposed on anode current collector as the anode side is usually the starting point of thermal runaway and many other risks, additionally, the anode in Li metal battery very likely determines the cycling life of full cell. In the review, we first give a systematic introduction of copper current collector and the related issues and challenges, and then we summarize the main approaches that have been mentioned in the research, including Cu current collector with 3D architecture, lithophilic modification of the current collector, artificial SEI layer construction on Cu current collector and carbon or polymer decoration of Cu current collector. Finally, we give a prospective comment of the future development in this field.

7.
Nano Lett ; 23(20): 9392-9398, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37819081

RESUMO

Anode-free all-solid-state lithium metal batteries (ASLMBs) promise high energy density and safety but suffer from a low initial Coulombic efficiency and rapid capacity decay, especially at high cathode loadings. Using operando techniques, we concluded these issues were related to interfacial contact loss during lithium stripping. To address this, we introduce a conductive carbon felt elastic layer that self-adjusts the pressure at the anode side, ensuring consistent lithium-solid electrolyte contact. This layer simultaneously provides electronic conduction and releases the plating pressure. Consequently, the first Coulombic efficiency dramatically increases from 58.4% to 83.7% along with a >10-fold improvement in cycling stability. Overall, this study reveals an approach for enhancing anode-free ASLMB performance and longevity by mitigating lithium stripping inefficiency through self-adjusting interfacial pressure enabled by a conductive elastic interlayer.

8.
Nano Lett ; 23(6): 2295-2303, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36876971

RESUMO

Aluminum (Al) metal is an attractive anode material for next-generation rechargeable batteries, because of its low cost and high capacities. However, it brings some fundamental issues such as dendrites, low Coulombic efficiency (CE), and low utilization. Here, we propose a strategy for constructing an ultrathin aluminophilic interface layer (AIL) to regulate the Al nucleation and growth behaviors, which enables highly reversible and dendrite-free Al plating/stripping under high areal capacity. Metallic Al can maintain stable plating/stripping on the Pt-AIL@Ti for over 2000 h at 10 mAh cm-2 with an average CE of 99.9%. The Pt-AIL also enables reversible Al plating/stripping at a record high areal capacity of 50 mAh cm-2, which is 1-2 orders of magnitude higher than the previous studies. This work provides a valuable direction for further construction of high-performance rechargeable Al metal batteries.

9.
Nano Lett ; 23(22): 10251-10258, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37781986

RESUMO

Anode-free lithium metal batteries (AFLMBs) exhibit enhanced energy density and cost-effective manufacturing, albeit constrained by short lifespans due to inhomogeneous lithium nucleation and growth on the inherently lithiophobic Cu current collector. Although numerous attempts at Cu surface modifications aim to mitigate this thermodynamic limitation, they often result in substantial irreversible capacity loss and/or lack the stability required for practical applications. Here, we present an in situ seed implantation (ISI) strategy to address the aforementioned challenge. A 36 s ISI treatment created an ultrathin lithium metal layer, composed of uniform lithium nuclei with ∼100 nm in diameter, equating to 0.05 mAh cm-2, on the Cu substrate. This approach facilitates dense lithium deposition during cycles, effectively doubling the lifespan of an Ah-level 437 Wh kg-1 AFLMB. Our ISI strategy offers a straightforward and efficient solution that maintains battery energy density and manufacturing cost effectiveness, and its application extends beyond lithium metal.

10.
Nano Lett ; 23(18): 8385-8391, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37703459

RESUMO

We use in situ liquid secondary ion mass spectroscopy, cryogenic transmission electron microscopy, and density functional theory calculation to delineate the molecular process in the formation of the solid-electrolyte interphase (SEI) layer under the dynamic operating conditions. We discover that the onset potential for SEI layer formation and the thickness of the SEI show dependence on the solvation shell structure. On a Cu film anode, the SEI is noticed to start to form at around 2.0 V (nominal cell voltage) with a final thickness of about 40-50 nm in the 1.0 M LiPF6/EC-DMC electrolyte, while for the case of 1.0 M LiFSI/DME, the SEI starts to form at around 1.5 V with a final thickness of about 20 nm. Our observations clearly indicate the inner and outer SEI layer formation and dissipation upon charging and discharging, implying a continued evolution of electrolyte structure with extended cycling.

11.
Angew Chem Int Ed Engl ; 63(11): e202319847, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38195861

RESUMO

Irregular Li deposition is the major reason for poor reversibility and cycle instability in Li metal batteries, even leading to safety hazards, the causes of which have been extensively explored. The structural disconnection induced by completely dissolving Li in the traditional testing protocol is a key factor accounting for irregular Li growth during the subsequent deposition process. Herein, the critical role played by the structural connectivity of electrochemical Li reservoir in subsequent Li deposition behaviors is elucidated and a morphology-performance correlation is established. The structural connection and resultant well-distributed morphology of the in situ electrochemical Li reservoir ensure efficient electron transfer and Li+ diffusion pathway, finally leading to homogenized Li nucleation and growth. Tailoring the geometry of Li reservoir can improve the coulombic efficiency and cyclability of anode-free Li metal batteries by optimizing Li deposition behavior.

12.
Small ; 19(43): e2306829, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37661360

RESUMO

The development of "anode-free" lithium-metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of lithium directly on the copper current collector, especially in conventional carbonate electrolytes. It is therefore essential to improve the understanding of the lithium nucleation process and its interactions with the copper substrate. In this study, it is shown that diffusion of lithium into the copper substrate, most likely via the grain boundaries, can significantly influence the nucleation process. Such diffusion makes it more difficult to obtain a great number of homogeneously distributed lithium nuclei on the copper surface and thus leads to inhomogeneous electrodeposition. It is, however, demonstrated that the nucleation of lithium on copper is significantly improved if an initial chemical prelithiation of the copper surface is performed. This prelithiation saturates the copper surface with lithium and hence decreases the influence of lithium diffusion via the grain boundaries. In this way, the lithium nucleation can be made to take place more homogenously, especially when a short potentiostatic nucleation pulse that can generate a large number of nuclei on the surface of the copper substrate is applied.

13.
Small ; 19(37): e2301207, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37154207

RESUMO

Coating Zr-based metallic glass, Zr53 Cu31 Ni11 Al5 (Zr-MG), on a Cu current collector (CC) and Li metal anode (LMA) significantly improves the cycle performance of both types of Li-ion batteries, namely, anode-free Li-ion batteries (AFLBs) and Li metal batteries (LMB). The inherent isotropy and homogeneity of the Zr-MG significantly improve the surface uniformity of the CC and LMA. A 12 nm-thick Zr-MG thin film coating on the CC reduces the overpotential in the AFLB, leading to a more uniform Li plating morphology. The Li film covers almost the entire surface of the Zr-CC, whereas it only covers ≈75% of the bare CC during charging. An LFP||Zr-CC full-cell exhibits a capacity retention of 63.6% after the 100th cycle, with an average CE of 99.55% at a 0.2 C rate. In the case of the LMB, a 12 nm-thick Zr-MG thin film-coated LMA (Zr-LMA) exhibits a stable capacity of up to 1500 cycles. An LFP||Zr-LMA full-cell exhibits capacity retention and CE after 1500 cycles of 66.6% and 99.97%, respectively, at a 1 C rate. Zirconium-MG thin films with atomic-level uniformity, outstanding corrosion resistance, lithiophilic characteristics, and high diffusivity result in superior AFLB and LMB performances.

14.
Small ; 19(3): e2205416, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36344460

RESUMO

Due to the rapid growth in the demand for high-energy-density Lithium (Li) batteries and insufficient global Li reserves, the anode-free Li metal batteries are receiving increasing attention. Various strategies, such as surface modification and structural design of copper (Cu) current collectors, have been proposed to stabilize the anode-free Li metal batteries. Unfortunately, the mechanism of Li deposition on the Cu surfaces with the different Miller indices is poorly understood, especially on the atomic scale. Here, the large-scale molecular dynamics simulations of Li deposition on the Cu substrates are performed in the anode-free Li metal batteries. The results show that the surface properties of the Li panel can be altered through the different Cu substrate surfaces. Through surface similarity analysis, potential energy distributions,and inhomogeneous deposition simulations, it is found that the Li atoms exhibit different potential energy variances and kinetic characteristics on the different Cu surfaces. Furthermore, a proposal to reduce the fraction of the (110) facet in commercial Cu foils is made to improve the reversibility and stability of Li plating/stripping in the anode-free Li metal batteries.

15.
Nano Lett ; 22(23): 9268-9274, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36413676

RESUMO

The anode-free lithium metal battery is considered to be an excellent candidate for the new generation energy storage system because of its higher energy density and safety than the traditional lithium metal battery. However, the continuous generation of SEI or isolated Li hinders its practical application. In general, the isolated Li is considered electrochemically inactive because it loses electrical connection with the current collector. Here we show an abnormal phenomenon that the lost capacity appears to be recovered after cycles when the isolated Li reconnects with a deposited Li metal layer. The isolated Li reconnection is ascribed to the chemical induction of the block copolymer coating. The migration of Li+ is affected by the electron delocalization and the electron cloud density of the polymer, which determine the conversion direction of Li+. Based on the mechanism, we propose a strategy to slow down the capacity decay of the anode-free lithium metal battery.

16.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677606

RESUMO

The anode-free lithium metal battery (AFLMB) is attractive for its ultimate high energy density. However, the poor cycling lifespan caused by the unstable anode interphase and the continuous Li consumption severely limits its practical application. Here, facile one-step heat treatment of the Cu foil current collectors before the cell assembly is proposed to improve the anode interphase during the cycling. After heat treatment of the Cu foil, homogeneous Li deposition is achieved during cycling because of the smoother surface morphology and enhanced lithiophilicity of the heat-treated Cu foil. In addition, Li2O-riched SEI is obtained after the Li deposition due to the generated Cu2O on the heat-treated Cu foil. The stable anode SEI can be successfully established and the Li consumption can be slowed down. Therefore, the cycling stability of the heat-treated Cu foil electrode is greatly improved in the Li|Cu half-cell and the symmetric cell. Moreover, the corresponding LFP|Cu anode-free full cell shows a much-improved capacity retention of 62% after 100 cycles, compared to that of 43% in the cell with the commercial Cu foil. This kind of facile but effective modification of current collectors can be directly applied in the anode-free batteries, which are assembled without Li pre-deposition on the anode.

17.
Angew Chem Int Ed Engl ; 62(51): e202309247, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37735095

RESUMO

Lithium and sodium metal batteries continue to occupy the forefront of battery research. Their exceptionally high energy density and nominal voltages are highly attractive for cutting-edge energy storage applications. Anode-free metal batteries are also coming into the research spotlight offering improved safety and even higher energy densities than conventional metal batteries. However, uneven metal nucleation and growth which leads to dendrites continues to limit the commercialisation of conventional and anode-free metal batteries alike. This review connects models and theories from well-established fields in metallurgy and electrodeposition to both conventional and anode-free metal batteries. These highly applicable models and theories explain the driving forces of uneven metal growth and can inform future experiment design. Finally, the models and theories that are most relevant to each anode-related cell component are identified. Keeping these specific models and theories in mind will assist with rational design for these components.

18.
Angew Chem Int Ed Engl ; 62(27): e202304978, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37139890

RESUMO

Anode-free lithium (Li) metal batteries are desirable candidates in pursuit of high-energy-density batteries. However, their poor cycling performances originated from the unsatisfactory reversibility of Li plating/stripping remains a grand challenge. Here we show a facile and scalable approach to produce high-performing anode-free Li metal batteries using a bioinspired and ultrathin (250 nm) interphase layer comprised of triethylamine germanate. The derived tertiary amine and Lix Ge alloy showed enhanced adsorption energy that significantly promoted Li-ion adsorption, nucleation and deposition, contributing to a reversible expansion/shrinkage process upon Li plating/stripping. Impressive Li plating/stripping Coulombic efficiencies (CEs) of ≈99.3 % were achieved for 250 cycles in Li/Cu cells. In addition, the anode-free LiFePO4 full batteries demonstrated maximal energy and power densities of 527 Wh kg-1 and 1554 W kg-1 , respectively, and remarkable cycling stability (over 250 cycles with an average CE of 99.4 %) at a practical areal capacity of ≈3 mAh cm-2 , the highest among state-of-the-art anode-free LiFePO4 batteries. Our ultrathin and respirable interphase layer presents a promising way to fully unlock large-scale production of anode-free batteries.

19.
Angew Chem Int Ed Engl ; 62(23): e202301073, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37011095

RESUMO

Without excess Li, anode-free Li-metal batteries (AFLMBs) have been proposed as the most likely solution to realizing highly-safe and cost-effective Li-metal batteries. Nevertheless, short cyclic life puzzles conventional AFLMBs due to anodic dead Li accumulation with a local current concentration induced by irreversible electrolyte depletion, insufficient active Li reservoir and slow Li+ transfer at the solid electrolyte interphase (SEI). Herein, SrI2 is introduced into carbon paper (CP) current collector to effectively suppress dead Li through synergistic mechanisms including reversible I- /I3 - redox reaction to reactivate dead Li, dielectric SEI surface with SrF2 and LiF to prevent electrolyte decomposition and highly ionic conductive (3.488 mS cm-1 ) inner layer of SEI with abundant LiI to enable efficient Li+ transfer inside. With the SrI2 -modified current collector, the NCM532/CP cell delivers unprecedented cyclic performances with a capacity of 129.2 mAh g-1 after 200 cycles.

20.
Angew Chem Int Ed Engl ; 62(8): e202216169, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36592348

RESUMO

Electrolyte engineering is crucial for developing high-performance lithium metal batteries (LMB). Here, we synthesized two cosolvents methyl bis(fluorosulfonyl)imide (MFSI) and 3,3,4,4-tetrafluorotetrahydrofuran (TFF) with significantly different reduction potentials and add them into LiFSI-DME electrolytes. The LiFSI/TFF-DME electrolyte gave an average Li Coulombic efficiency (CE) of 99.41 % over 200 cycles, while the average Li CEs for MFSI-based electrolyte is only 98.62 %. Additionally, the TFF-based electrolytes exhibited a more reversible performance than the state-of-the-art fluorinated 1,4-dimethoxylbutane electrolyte in both Li||Cu half-cell and anode-free Cu||LiNi0.8 Mn0.1 Co0.1 O2 full cell. More importantly, the decomposition product from bis(fluorosulfonyl)imide anion could react with ether solvent, which destroyed the SEI, thus decreasing cell performance. These key discoveries provide new insights into the rational design of electrolyte solvents and cosolvents for LMB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA