Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.489
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39326417

RESUMO

We report the 1-year results from one patient as the preliminary analysis of a first-in-human phase I clinical trial (ChiCTR2300072200) assessing the feasibility of autologous transplantation of chemically induced pluripotent stem-cell-derived islets (CiPSC islets) beneath the abdominal anterior rectus sheath for type 1 diabetes treatment. The patient achieved sustained insulin independence starting 75 days post-transplantation. The patient's time-in-target glycemic range increased from a baseline value of 43.18% to 96.21% by month 4 post-transplantation, accompanied by a decrease in glycated hemoglobin, an indicator of long-term systemic glucose levels at a non-diabetic level. Thereafter, the patient presented a state of stable glycemic control, with time-in-target glycemic range at >98% and glycated hemoglobin at around 5%. At 1 year, the clinical data met all study endpoints with no indication of transplant-related abnormalities. Promising results from this patient suggest that further clinical studies assessing CiPSC-islet transplantation in type 1 diabetes are warranted.

2.
Cell ; 184(26): 6344-6360.e18, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34890577

RESUMO

The anterior insular cortex (aIC) plays a critical role in cognitive and motivational control of behavior, but the underlying neural mechanism remains elusive. Here, we show that aIC neurons expressing Fezf2 (aICFezf2), which are the pyramidal tract neurons, signal motivational vigor and invigorate need-seeking behavior through projections to the brainstem nucleus tractus solitarii (NTS). aICFezf2 neurons and their postsynaptic NTS neurons acquire anticipatory activity through learning, which encodes the perceived value and the vigor of actions to pursue homeostatic needs. Correspondingly, aIC → NTS circuit activity controls vigor, effort, and striatal dopamine release but only if the action is learned and the outcome is needed. Notably, aICFezf2 neurons do not represent taste or valence. Moreover, aIC → NTS activity neither drives reinforcement nor influences total consumption. These results pinpoint specific functions of aIC → NTS circuit for selectively controlling motivational vigor and suggest that motivation is subserved, in part, by aIC's top-down regulation of dopamine signaling.


Assuntos
Tronco Encefálico/fisiologia , Córtex Insular/fisiologia , Motivação , Vias Neurais/fisiologia , Animais , Comportamento Animal , Dopamina/metabolismo , Feminino , Aprendizagem , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Núcleo Accumbens/metabolismo , Fatores de Tempo
3.
Cell ; 183(4): 954-967.e21, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058757

RESUMO

The curse of dimensionality plagues models of reinforcement learning and decision making. The process of abstraction solves this by constructing variables describing features shared by different instances, reducing dimensionality and enabling generalization in novel situations. Here, we characterized neural representations in monkeys performing a task described by different hidden and explicit variables. Abstraction was defined operationally using the generalization performance of neural decoders across task conditions not used for training, which requires a particular geometry of neural representations. Neural ensembles in prefrontal cortex, hippocampus, and simulated neural networks simultaneously represented multiple variables in a geometry reflecting abstraction but that still allowed a linear classifier to decode a large number of other variables (high shattering dimensionality). Furthermore, this geometry changed in relation to task events and performance. These findings elucidate how the brain and artificial systems represent variables in an abstract format while preserving the advantages conferred by high shattering dimensionality.


Assuntos
Hipocampo/anatomia & histologia , Córtex Pré-Frontal/anatomia & histologia , Animais , Comportamento Animal , Mapeamento Encefálico , Simulação por Computador , Hipocampo/fisiologia , Aprendizagem , Macaca mulatta , Masculino , Modelos Neurológicos , Redes Neurais de Computação , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Reforço Psicológico , Análise e Desempenho de Tarefas
4.
Cell ; 173(6): 1329-1342.e18, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29731170

RESUMO

Observational learning is a powerful survival tool allowing individuals to learn about threat-predictive stimuli without directly experiencing the pairing of the predictive cue and punishment. This ability has been linked to the anterior cingulate cortex (ACC) and the basolateral amygdala (BLA). To investigate how information is encoded and transmitted through this circuit, we performed electrophysiological recordings in mice observing a demonstrator mouse undergo associative fear conditioning and found that BLA-projecting ACC (ACC→BLA) neurons preferentially encode socially derived aversive cue information. Inhibition of ACC→BLA alters real-time amygdala representation of the aversive cue during observational conditioning. Selective inhibition of the ACC→BLA projection impaired acquisition, but not expression, of observational fear conditioning. We show that information derived from observation about the aversive value of the cue is transmitted from the ACC to the BLA and that this routing of information is critically instructive for observational fear conditioning. VIDEO ABSTRACT.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Córtex Cerebral/fisiologia , Aprendizagem/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Comportamento Animal , Condicionamento Clássico , Fenômenos Eletrofisiológicos , Medo , Luz , Masculino , Memória/fisiologia , Camundongos , Vias Neurais/fisiologia , Neurônios/fisiologia , Optogenética , Córtex Pré-Frontal/fisiologia
5.
Physiol Rev ; 104(3): 881-929, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38206586

RESUMO

The anterior chamber of the eye (ACE) is distinct in its anatomy, optics, and immunology. This guarantees that the eye perceives visual information in the context of physiology even when encountering adverse incidents like inflammation. In addition, this endows the ACE with the special nursery bed iris enriched in vasculatures and nerves. The ACE constitutes a confined space enclosing an oxygen/nutrient-rich, immune-privileged, and less stressful milieu as well as an optically transparent medium. Therefore, aside from visual perception, the ACE unexpectedly serves as an excellent transplantation site for different body parts and a unique platform for noninvasive, longitudinal, and intravital microimaging of different grafts. On the basis of these merits, the ACE technology has evolved from the prototypical through the conventional to the advanced version. Studies using this technology as a versatile biomedical research platform have led to a diverse range of basic knowledge and in-depth understanding of a variety of cells, tissues, and organs as well as artificial biomaterials, pharmaceuticals, and abiotic substances. Remarkably, the technology turns in vivo dynamic imaging of the morphological characteristics, organotypic features, developmental fates, and specific functions of intracameral grafts into reality under physiological and pathological conditions. Here we review the anatomical, optical, and immunological bases as well as technical details of the ACE technology. Moreover, we discuss major achievements obtained and potential prospective avenues for this technology.


Assuntos
Câmara Anterior , Humanos , Estudos Prospectivos
6.
EMBO J ; 41(24): e111648, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36341708

RESUMO

The ability to care for the young is innate and readily displayed by postpartum females after delivery to ensure offspring survival. Upon pup exposure, rodent virgin (nulliparous) females also develop parental behavior that over time becomes displayed at levels equivalent to parenting mothers. Although maternal behavior in postpartum females and the associated neurocircuits are well characterized, the neural mechanisms underlying the acquisition of maternal behavior without prior experience remain poorly understood. Here, we show that the development of maternal care behavior in response to first-time pup exposure in virgin females is initiated by the activation of the anterior cingulate cortex (ACC). ACC activity is dependent on feedback excitation by Vglut2+ /Galanin+ neurons of the centrolateral nucleus of the thalamus (CL), with their activity sufficient to display parenting behaviors. Accordingly, acute bidirectional chemogenetic manipulation of neuronal activity in the ACC facilitates or impairs the attainment of maternal behavior, exclusively in virgin females. These results reveal an ACC-CL neurocircuit as an accessory loop in virgin females for the initiation of maternal care upon first-time exposure to pups.


Assuntos
Comportamento Materno , Período Pós-Parto , Humanos , Animais , Camundongos , Feminino , Período Pós-Parto/fisiologia , Neurônios/fisiologia , Tálamo , Córtex Pré-Frontal , Comportamento Animal
7.
Development ; 150(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37681295

RESUMO

The planarian Schmidtea mediterranea is a well-established model of adult regeneration, which is dependent on a large population of adult stem cells called neoblasts. Upon amputation, planarians undergo transcriptional wounding programs and coordinated stem cell proliferation to give rise to missing tissues. Interestingly, the Wnt signaling pathway is key to guiding what tissues are regenerated, yet less known are the transcriptional regulators that ensure proper activation and timing of signaling pathway components. Here, we have identified an aristaless-like homeobox transcription factor, alx-3, that is enriched in a population of putative neural-fated progenitor cells at homeostasis, and is also upregulated in stem cells and muscle cells at anterior-facing wounds upon amputation. Knockdown of alx-3 results in failure of head regeneration and patterning defects in amputated tail fragments. alx-3 is required for the expression of several early wound-induced genes, including the Wnt inhibitor notum, which is required to establish anterior polarity during regeneration. Together, these findings reveal a role for alx-3 as an early wound-response transcriptional regulator in both muscle cells and stem cells that is required for anterior regeneration by promoting a low-Wnt environment.


Assuntos
Planárias , Animais , Planárias/genética , Genes Homeobox , Regulação da Expressão Gênica , Células-Tronco , Via de Sinalização Wnt/genética , Interferência de RNA
8.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37213081

RESUMO

The most anterior structure of the ascidian larva is made of three palps with sensory and adhesive functions essential for metamorphosis. They derive from the anterior neural border and their formation is regulated by FGF and Wnt. Given that they also share gene expression profiles with vertebrate anterior neural tissue and cranial placodes, their study should shed light on the emergence of the unique vertebrate telencephalon. We show that BMP signaling regulates two phases of palp formation in Ciona intestinalis. During gastrulation, the anterior neural border is specified in a domain of inactive BMP signaling, and activating BMP prevented its formation. During neurulation, BMP defines ventral palp identity and indirectly specifies the inter-papilla territory separating the ventral and dorsal palps. Finally, we show that BMP has similar functions in the ascidian Phallusia mammillata, for which we identified novel palp markers. Collectively, we provide a better molecular description of palp formation in ascidians that will be instrumental for comparative studies.


Assuntos
Urocordados , Animais , Urocordados/genética , Sistema Nervoso/metabolismo , Transdução de Sinais , Gastrulação/genética , Placa Neural/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
9.
Bioessays ; 46(3): e2300160, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38135889

RESUMO

The anterior cingulate cortex (ACC) is a complex and continually evolving brain region that remains a primary focus of research due to its multifaceted functions. Various studies and analyses have significantly advanced our understanding of how the ACC participates in a wide spectrum of memory and cognitive processes. However, despite its strong connections to brain areas associated with hippocampal and olfactory neurogenesis, the functions of the ACC in regulating postnatal and adult neurogenesis in these regions are still insufficiently explored. Investigating the intricate involvement of the ACC in neurogenesis could enhance our comprehension of essential aspects of brain plasticity. This involvement stems from its complex circuitry with other relevant brain regions, thereby exerting both direct and indirect impacts on the neurogenesis process. This review sheds light on the promising significance of the ACC in orchestrating postnatal and adult neurogenesis in conditions related to memory, cognitive behavior, and associated disorders.


Assuntos
Encéfalo , Giro do Cíngulo , Giro do Cíngulo/fisiologia , Hipocampo/fisiologia , Neurogênese
10.
Proc Natl Acad Sci U S A ; 120(20): e2220353120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155875

RESUMO

Early-life stress has long-term impacts on the structure and function of the anterior cingulate cortex (ACC), and raises the risk of adult neuropsychiatric disorders including social dysfunction. The underlying neural mechanisms, however, are still uncertain. Here, we show that, in female mice, maternal separation (MS) during the first three postnatal weeks results in social impairment accompanied with hypoactivity in pyramidal neurons (PNs) of the ACC. Activation of ACC PNs ameliorates MS-induced social impairment. Neuropeptide Hcrt, which encodes hypocretin (orexin), is the top down-regulated gene in the ACC of MS females. Activating ACC orexin terminals enhances the activity of ACC PNs and rescues the diminished sociability observed in MS females via an orexin receptor 2 (OxR2)-dependent mechanism. Our results suggest orexin signaling in the ACC is critical in mediating early-life stress-induced social impairment in females.


Assuntos
Neuropeptídeos , Estresse Psicológico , Animais , Feminino , Camundongos , Giro do Cíngulo , Privação Materna , Neuropeptídeos/metabolismo , Receptores de Orexina/genética , Orexinas/genética , Orexinas/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(23): e2212394120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252991

RESUMO

The perception of pain is a multidimensional sensory and emotional/affective experience arising from distributed brain activity. However, the involved brain regions are not specific for pain. Thus, how the cortex distinguishes nociception from other aversive and salient sensory stimuli remains elusive. Additionally, the resulting consequences of chronic neuropathic pain on sensory processing have not been characterized. Using in vivo miniscope calcium imaging with cellular resolution in freely moving mice, we elucidated the principles of nociceptive and sensory coding in the anterior cingulate cortex, a region essential for pain processing. We found that population activity, not single-cell responses, allowed discriminating noxious from other sensory stimuli, ruling out the existence of nociception-specific neurons. Additionally, single-cell stimulus selectivity was highly dynamic over time, but stimulus representation at the population level remained stable. Peripheral nerve injury-induced chronic neuropathic pain led to dysfunctional encoding of sensory events by exacerbation of responses to innocuous stimuli and impairment of pattern separation and stimulus classification, which were restored by analgesic treatment. These findings provide a novel interpretation for altered cortical sensory processing in chronic neuropathic pain and give insights into the effects of systemic analgesic treatment in the cortex.


Assuntos
Giro do Cíngulo , Neuralgia , Humanos , Camundongos , Animais , Giro do Cíngulo/diagnóstico por imagem , Nociceptividade/fisiologia , Encéfalo , Nociceptores
12.
J Neurosci ; 44(10)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38286624

RESUMO

Navigating a complex world requires integration of multiple spatial reference frames, including information about one's orientation in both allocentric and egocentric coordinates. Combining these two information sources can provide additional information about one's spatial location. Previous studies have demonstrated that both egocentric and allocentric spatial signals are reflected by the firing of neurons in the rat postrhinal cortex (POR), an area that may serve as a hub for integrating allocentric head direction (HD) cell information with egocentric information from center-bearing and center-distance cells. However, we have also demonstrated that POR HD cells are uniquely influenced by the visual properties and locations of visual landmarks, bringing into question whether the POR HD signal is truly allocentric as opposed to simply being a response to visual stimuli. To investigate this issue, we recorded HD cells from the POR of female rats while bilaterally inactivating the anterior thalamus (ATN), a region critical for expression of the "classic" HD signal in cortical areas. We found that ATN inactivation led to a significant decrease in both firing rate and tuning strength for POR HD cells, as well as a disruption in the encoding of allocentric location by conjunctive HD/egocentric cells. In contrast, POR egocentric cells without HD tuning were largely unaffected in a consistent manner by ATN inactivation. These results indicate that the POR HD signal originates at least partially from projections from the ATN and supports the view that the POR acts as a hub for the integration of egocentric and allocentric spatial representations.


Assuntos
Núcleos Anteriores do Tálamo , Ratos , Feminino , Animais , Orientação/fisiologia , Percepção Espacial/fisiologia
13.
J Neurosci ; 44(9)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38242696

RESUMO

Much remains unknown about the etiology of compulsion-like alcohol drinking, where consumption persists despite adverse consequences. The role of the anterior insula (AIC) in emotion, motivation, and interoception makes this brain region a likely candidate to drive challenge-resistant behavior, including compulsive drinking. Indeed, subcortical projections from the AIC promote compulsion-like intake in rats and are recruited in heavy-drinking humans during compulsion for alcohol, highlighting the importance of and need for more information about AIC activity patterns that support aversion-resistant responding. Single-unit activity was recorded in the AIC from 15 male rats during alcohol-only and compulsion-like consumption. We found three sustained firing phenotypes, sustained-increase, sustained-decrease, and drinking-onset cells, as well as several firing patterns synchronized with licking. While many AIC neurons had session-long activity changes, only neurons with firing increases at drinking onset had greater activity under compulsion-like conditions. Further, only cells with persistent firing increases maintained activity during pauses in licking, suggesting roles in maintaining drive for alcohol during breaks. AIC firing was not elevated during saccharin drinking, similar to lack of effect of AIC inhibition on sweet fluid intake in many studies. In addition, we observed subsecond changes in AIC neural activity tightly entrained to licking. One lick-synched firing pattern (determined for all licks in a session) predicted compulsion-like drinking, while a separate lick-associated pattern correlated with greater consumption across alcohol intake conditions. Collectively, these data provide a more integrated model for the role of AIC firing in compulsion-like drinking, with important relevance for how the AIC promotes sustained motivated responding more generally.


Assuntos
Consumo de Bebidas Alcoólicas , Motivação , Humanos , Ratos , Masculino , Animais , Consumo de Bebidas Alcoólicas/psicologia , Etanol/farmacologia , Paladar , Comportamento Animal
14.
J Neurosci ; 44(29)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755005

RESUMO

Preclinical assessments of pain have often relied upon behavioral measurements and anesthetized neurophysiological recordings. Current technologies enabling large-scale neural recordings, however, have the potential to unveil quantifiable pain signals in conscious animals for preclinical studies. Although pain processing is distributed across many brain regions, the anterior cingulate cortex (ACC) is of particular interest in isolating these signals given its suggested role in the affective ("unpleasant") component of pain. Here, we explored the utility of the ACC toward preclinical pain research using head-mounted miniaturized microscopes to record calcium transients in freely moving male mice expressing genetically encoded calcium indicator 6f (GCaMP6f) under the Thy1 promoter. We verified the expression of GCaMP6f in excitatory neurons and found no intrinsic behavioral differences in this model. Using a multimodal stimulation paradigm across naive, pain, and analgesic conditions, we found that while ACC population activity roughly scaled with stimulus intensity, single-cell representations were highly flexible. We found only low-magnitude increases in population activity after complete Freund's adjuvant (CFA) and insufficient evidence for the existence of a robust nociceptive ensemble in the ACC. However, we found a temporal sharpening of response durations and generalized increases in pairwise neural correlations in the presence of the mechanistically distinct analgesics gabapentin or ibuprofen after (but not before) CFA-induced inflammatory pain. This increase was not explainable by changes in locomotion alone. Taken together, these results highlight challenges in isolating distinct pain signals among flexible representations in the ACC but suggest a neurophysiological hallmark of analgesia after pain that generalizes to at least two analgesics.


Assuntos
Giro do Cíngulo , Animais , Camundongos , Masculino , Giro do Cíngulo/fisiopatologia , Giro do Cíngulo/efeitos dos fármacos , Dor/fisiopatologia , Inflamação , Camundongos Endogâmicos C57BL , Analgesia/métodos , Analgésicos/farmacologia , Adjuvante de Freund/toxicidade , Ibuprofeno/farmacologia
15.
J Neurosci ; 44(8)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38182418

RESUMO

The dorsal anterior cingulate cortex (dACC) is a critical brain area for pain and autonomic processing, making it a promising noninvasive therapeutic target. We leverage the high spatial resolution and deep focal lengths of low-intensity focused ultrasound (LIFU) to noninvasively modulate the dACC for effects on behavioral and cardiac autonomic responses using transient heat pain stimuli. A N = 16 healthy human volunteers (6 M/10 F) received transient contact heat pain during either LIFU to the dACC or Sham stimulation. Continuous electroencephalogram (EEG), electrocardiogram (ECG), and electrodermal response (EDR) were recorded. Outcome measures included pain ratings, heart rate variability, EDR response, blood pressure, and the amplitude of the contact heat-evoked potential (CHEP).LIFU reduced pain ratings by 1.09 ± 0.20 points relative to Sham. LIFU increased heart rate variability indexed by the standard deviation of normal sinus beats (SDNN), low-frequency (LF) power, and the low-frequency/high-frequency (LF/HF) ratio. There were no effects on the blood pressure or EDR. LIFU resulted in a 38.1% reduction in the P2 CHEP amplitude. Results demonstrate LIFU to the dACC reduces pain and alters autonomic responses to acute heat pain stimuli. This has implications for the causal understanding of human pain and autonomic processing in the dACC and potential future therapeutic options for pain relief and modulation of homeostatic signals.


Assuntos
Dor Aguda , Giro do Cíngulo , Humanos , Giro do Cíngulo/diagnóstico por imagem , Sistema Nervoso Autônomo , Coração , Frequência Cardíaca/fisiologia , Percepção da Dor
16.
J Neurosci ; 44(20)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569923

RESUMO

Our prior research has identified neural correlates of cognitive control in the anterior cingulate cortex (ACC), leading us to hypothesize that the ACC is necessary for increasing attention as rats flexibly learn new contingencies during a complex reward-guided decision-making task. Here, we tested this hypothesis by using optogenetics to transiently inhibit the ACC, while rats of either sex performed the same two-choice task. ACC inhibition had a profound impact on behavior that extended beyond deficits in attention during learning when expected outcomes were uncertain. We found that ACC inactivation slowed and reduced the number of trials rats initiated and impaired both their accuracy and their ability to complete sessions. Furthermore, drift-diffusion model analysis suggested that free-choice performance and evidence accumulation (i.e., reduced drift rates) were degraded during initial learning-leading to weaker associations that were more easily overridden in later trial blocks (i.e., stronger bias). Together, these results suggest that in addition to attention-related functions, the ACC contributes to the ability to initiate trials and generally stay on task.


Assuntos
Giro do Cíngulo , Optogenética , Ratos Long-Evans , Animais , Giro do Cíngulo/fisiologia , Masculino , Ratos , Feminino , Atenção/fisiologia , Recompensa , Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Inibição Neural/fisiologia
17.
J Neurosci ; 44(35)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39054067

RESUMO

The anterior cingulate cortex (ACC) is a key cortical region for pain perception and emotion. Different forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), have been reported in the ACC. Synaptic tagging of LTP plays an important role in hippocampus-related associative memory. In this study, we demonstrate that synaptic tagging of LTD is detected in the ACC of adult male and female mice. This form of tagged LTD requires the activation of metabotropic glutamate receptor subtype 1 (mGluR1). The induction of tagged LTD is time-related with the strongest tagged LTD appearing when the interval between two independent stimuli is 30 min. Inhibitors of mGluR1 blocked the induction of tagged LTD; however, blocking N-methyl-d-aspartate receptors did not affect the induction of tagged LTD. Nimodipine, an inhibitor of L-type voltage-gated calcium channels, also blocked tagged LTD. In an animal model of amputation, we found that tagged LTD was either reduced or completely blocked. Together with our previous report of tagged LTP in the ACC, this study strongly suggests that excitatory synapses in the adult ACC are highly plastic. The biphasic tagging of synaptic transmission provides a new form of heterosynaptic plasticity in the ACC which has functional and pathophysiological significance in phantom pain.


Assuntos
Giro do Cíngulo , Depressão Sináptica de Longo Prazo , Camundongos Endogâmicos C57BL , Animais , Giro do Cíngulo/fisiologia , Giro do Cíngulo/efeitos dos fármacos , Camundongos , Depressão Sináptica de Longo Prazo/fisiologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Feminino , Sinapses/fisiologia , Sinapses/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos
18.
Dev Biol ; 517: 191-202, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39393484

RESUMO

Internal organ development requires cell internalization, which can occur individually or collectively. The best characterized mode of collective internalization is epithelial invagination. Alternate modes involving collective mesenchymal behaviours at the embryo surface have been documented, but their prevalence is unclear. The Drosophila embryo has been a major model for the study of epithelial invaginations. However, internalization of the Drosophila anterior midgut primordium is incompletely understood. Here, we report that an epithelial-mesenchymal transition (EMT) occurs across the internalizing primordium when it is still at the embryo surface. At the earliest internalization stage, the primordium displays less junctional DE-cadherin than surrounding tissues but still exhibits coordinated epithelial structure as it invaginates with the ventral furrow. This initial invagination is transient, and its loss correlates with the activation of an associated mitotic domain. Activation of a subsequent mitotic domain across the broader primordium results in cell divisions with mixed orientations that deposit some cells within the embryo. However, cell division is non-essential for primordium internalization. Post-mitotically, the surface primordium displays hallmarks of EMT: loss of adherens junctions, loss of epithelial cell polarity, and gain of cell protrusions. Primordium cells extend over each other as they internalize asynchronously as individuals or small groups, and the primordium becomes enclosed by the reorganizations of surrounding epithelial tissues. We propose that collective EMT at the embryo surface promotes anterior midgut internalization through both inwardly-directed divisions and movements of its cells, and that the latter process is facilitated by surrounding tissue remodeling.

19.
Development ; 149(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35132990

RESUMO

Despite previous intensive investigations on epiblast cell migration in avian embryos during primitive streak development before stage (st.) 4, this migration at later stages of brain development has remained uninvestigated. By live imaging of epiblast cells sparsely labeled with green fluorescence protein, we investigated anterior epiblast cell migration to form individual brain portions. Anterior epiblast cells from a broad area migrated collectively towards the head axis during st. 5-7 at a rate of 70-110 µm/h, changing directions from diagonal to parallel and forming the brain portions and abutting head ectoderm. This analysis revised the previously published head portion precursor map in anterior epiblasts at st. 4/5. Grafting outside the brain precursor region of mCherry-expressing nodes producing anterior mesendoderm (AME) or isolated AME tissues elicited new cell migration towards ectopic AME tissues. These locally convergent cells developed into secondary brains with portions that depended on the ectopic AME position in the anterior epiblast. Thus, anterior epiblast cells are bipotent for brain/head ectoderm development with given brain portion specificities. A brain portion potential map is proposed, also accounting for previous observations.


Assuntos
Gástrula , Camadas Germinativas , Animais , Aves , Encéfalo , Movimento Celular , Ectoderma/metabolismo
20.
Development ; 149(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36268933

RESUMO

The embryonic neural tube is the origin of the entire adult nervous system, and disturbances in its development cause life-threatening birth defects. However, the study of mammalian neural tube development is limited by the lack of physiologically realistic three-dimensional (3D) in vitro models. Here, we report a self-organizing 3D neural tube organoid model derived from single mouse embryonic stem cells that exhibits an in vivo-like tissue architecture, cell type composition and anterior-posterior (AP) patterning. Moreover, maturation of the neural tube organoids showed the emergence of multipotent neural crest cells and mature neurons. Single-cell transcriptome analyses revealed the sequence of transcriptional events in the emergence of neural crest cells and neural differentiation. Thanks to the accessibility of this model, phagocytosis of migrating neural crest cells could be observed in real time for the first time in a mammalian model. We thus introduce a tractable in vitro model to study some of the key morphogenetic and cell type derivation events during early neural development.


Assuntos
Tubo Neural , Organoides , Camundongos , Animais , Crista Neural , Desenvolvimento Embrionário , Neurogênese , Diferenciação Celular , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA