RESUMO
BACKGROUND: CD47, serving as an intrinsic immune checkpoint, has demonstrated efficacy as an anti-tumor target in hematologic malignancies. Nevertheless, the clinical relevance of CD47 in gastric cancer and its potential as a therapeutic target remains unclear. METHODS: The expression of CD47 in clinical gastric cancer tissues was assessed using immunohistochemistry and Western blot. Patient-derived cells were obtained from gastric cancer tissues and co-cultured with macrophages derived from human peripheral blood mononuclear cells. Flow cytometry analyses were employed to evaluate the rate of phagocytosis. Humanized patient-derived xenografts (Hu-PDXs) models were established to assess the efficacy of anti-CD47 immunotherapy or the combination of anti-CD47 and anti-VEGF therapy in treating gastric cancer. The infiltrated immune cells in the xenograft were analyzed by immunohistochemistry. RESULTS: In this study, we have substantiated the high expression of CD47 in gastric cancer tissues, establishing a strong association with unfavorable prognosis. Through the utilization of SIRPα-Fc to target CD47, we have effectively enhanced macrophage phagocytosis of PDCs in vitro and impeded the growth of Hu-PDXs. It is noteworthy that anti-CD47 immunotherapy has been observed to sustain tumor angiogenic vasculature, with a positive correlation between the expression of VEGF and CD47 in gastric cancer. Furthermore, the successful implementation of anti-angiogenic treatment has further augmented the anti-tumor efficacy of anti-CD47 therapy. In addition, the potent suppression of tumor growth, prevention of cancer recurrence after surgery, and significant prolongation of overall survival in Hu-PDX models can be achieved through the simultaneous targeting of CD47 and VEGF using the bispecific fusion protein SIRPα-VEGFR1 or by combining the two single-targeted agents. CONCLUSIONS: Our preclinical studies collectively offer substantiation that CD47 holds promise as a prospective target for gastric cancer, while also highlighting the potential of anti-angiogenic therapy to enhance tumor responsiveness to anti-CD47 immunotherapy.
Assuntos
Neoplasias , Neoplasias Gástricas , Animais , Humanos , Antígeno CD47 , Modelos Animais de Doenças , Imunoterapia , Leucócitos Mononucleares/metabolismo , Recidiva Local de Neoplasia , Fagocitose , Fator A de Crescimento do Endotélio VascularRESUMO
BACKGROUND: Drugs such as daratumumab (Darzalex, anti-CD38) and Hu5F9-G4 (magrolimab, anti-CD47) may interfere with red blood cell compatibility testing as CD38 and CD47 are expressed on red blood cells. STUDY DESIGN AND METHODS: A survey of AABB member transfusion services was undertaken to understand their experiences of managing patients taking therapeutic monoclonal antibodies that are known to interfere with blood grouping and compatibility testing. RESULTS: The survey was distributed to the contact person at US-based AABB member transfusion services. The response rate was 27%. 172 of 240 (72%) indicated they had difficulties in performing compatibility testing in patients taking daratumumab and 66 of 91 (73%) reported difficulties in performing compatibility testing in patients taking magrolimab. Actions taken to provide compatible blood for these patients included referral of all samples to a reference center, blood group pheno/genotyping the patient in advance of starting the drug, treating reagent cells with 0.2 M dithiothreitol and using K-negative red cell units for patients taking daratumumab, and Gamma-clone (Immucor) anti-IgG for indirect antiglobulin testing for patients taking magrolimab. Lack of communication from clinical services about drug treatment was identified as a concern. CONCLUSION: The results of the survey demonstrate that transfusion services are having challenges with the transfusion management of patients taking therapeutic monoclonal antibodies, and further education is needed.
Assuntos
ADP-Ribosil Ciclase 1 , Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais , Antígeno CD47 , Humanos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Tipagem e Reações Cruzadas Sanguíneas , Eritrócitos/imunologia , Incompatibilidade de Grupos Sanguíneos , Transfusão de Sangue , Inquéritos e Questionários , Glicoproteínas de MembranaRESUMO
CD47 expressed on cancer cells enables macrophage immune evasion. Blocking CD47 using anti-CD47 monoclonal antibodies (mAbs) is a promising strategy. The anti-CD47 mAb TJC4 has anti-tumor activity but lacks hematological toxicity. Venetoclax, a B-cell lymphoma 2 (BCL-2) inhibitor for B-cell malignancy, induces phosphatidylserine (PS) extracellular exposure, representing an "eat-me" signal for macrophages. The present study aimed to explore whether TJC4-Venetoclax combined therapy exerts synergistic anti-cancer properties in B-cell lymphoma. In vitro, flow cytometry and microscopy assessed whether TJC4 monotherapy or combination treatment could promote macrophage-mediated phagocytosis of tumor cells. Induced PS exposure on the cell membrane was measured using flow cytometry with Annexin V-FITC staining. In vivo, Venetoclax and TJC4's synergistic anti-tumor effects were evaluated. B cell lymphoma cell lines express high levels of CD47 and patients with diffuse large B cell lymphoma expressing CD47 have a worse clinical prognosis. TJC4 eliminates tumor cells via macrophage-mediated phagocytosis. In vitro and in vivo, the TJC4-Venetoclax combination increased phagocytosis significantly compared with either agent alone, showing synergistic phagocytosis, and displayed synergistic anti-cancer properties in B-cell lymphoma. Our results support the TJC4-Venetoclax combination as a promising therapy, and suppressing BCL-2 and CD47 simultaneously could represent a novel therapeutic paradigm for B-cell lymphoma.
Assuntos
Antineoplásicos , Linfoma Difuso de Grandes Células B , Anticorpos Monoclonais , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes , Linhagem Celular Tumoral , Humanos , Fatores Imunológicos , Imunoterapia/métodos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Fosfatidilserinas , Proteínas Proto-Oncogênicas c-bcl-2 , SulfonamidasRESUMO
Cancer is still a major disease that is currently difficult for humans to overcome. When the expression of the cluster of differentiation 47 (CD47) is upregulated, tumor cells interact with the macrophage inhibitory receptor signal regulatory protein α (SIRPα) to transmit the "Don't eat me" signal, thereby avoiding phagocytosis by the macrophages. Therefore, when the CD47-SIRPα axis is inhibited, the macrophages' phagocytic function can be restored and can also exert antitumor effects. This Review mainly introduces recent advances in tumor therapy targeted on the CD47-SIRPα axis, including the antibody and fusion protein, small molecule, gene therapy, cell therapy, and drug delivery system, to inhibit the function of CD47 expressed on tumor cells and promote tumor phagocytosis by macrophages. In addition, this Review also summarizes the current approaches to avoid anemia, a common side effect of CD47-SIRPα inhibitions, and provides ideas for clinical transformation.
Assuntos
Antígeno CD47 , Neoplasias , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação/farmacologia , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Fagocitose , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismoRESUMO
INTRODUCTION: Cutaneous T cell lymphoma (CTCL) is a rare and incurable group of non-Hodgkin lymphomas that manifest as patches, plaques, tumors, and/or erythroderma in the skin. Standard skin-directed therapies for CTCL are effective in patients with indolent early-stage disease, but more advanced/refractory stage patients require systemic therapies. However, none of the treatments are considered curative and most patients suffer from relapses. Biologic therapies and immunotherapy provide novel treatment options for patients with advanced or refractory disease. AREAS COVERED: This review provides a discussion of recently approved biological and novel therapeutics that are actively developed for the management of the heterogeneous group of CTCL. EXPERT OPINION: Mogamulizumab and brentuximab vedotin have reached the market and are approved for the treatment of CTCL, providing valuable options. Additionally, therapies utilizing immune checkpoint inhibitors, miRNA inhibitors, and peptide inhibitors show promising results in clinical trials. Durvalumab, pembrolizumab, TTI-621, BNZ-1, and MRG-106 are several of the emerging treatments still in trials. Further combinatorial studies are needed as none of the treatments have demonstrated long-term remissions.
Assuntos
Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Humanos , Imunoterapia/métodos , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologiaRESUMO
Glioblastoma multiforme (GBM) is a highly aggressive malignant brain tumor with fatal outcome. Tumor-associated macrophages and microglia (TAMs) have been found to be major tumor-promoting immune cells in the tumor microenvironment. Hence, modulation and reeducation of tumor-associated macrophages and microglia in GBM is considered a promising antitumor strategy. Resident microglia and invading macrophages have been shown to have distinct origin and function. Whereas yolk sac-derived microglia reside in the brain, blood-derived monocytes invade the central nervous system only under pathological conditions like tumor formation. We recently showed that disruption of the SIRPα-CD47 signaling axis is efficacious against various brain tumors including GBM primarily by inducing tumor phagocytosis. However, most effects are attributed to macrophages recruited from the periphery but the role of the brain resident microglia is unknown. Here, we sought to utilize a model to distinguish resident microglia and peripheral macrophages within the GBM-TAM pool, using orthotopically xenografted, immunodeficient, and syngeneic mouse models with genetically color-coded macrophages (Ccr2RFP) and microglia (Cx3cr1GFP). We show that even in the absence of phagocytizing macrophages (Ccr2RFP/RFP), microglia are effector cells of tumor cell phagocytosis in response to anti-CD47 blockade. Additionally, macrophages and microglia show distinct morphological and transcriptional changes. Importantly, the transcriptional profile of microglia shows less of an inflammatory response which makes them a promising target for clinical applications.
Assuntos
Neoplasias Encefálicas/imunologia , Antígeno CD47/imunologia , Glioblastoma/imunologia , Microglia/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/imunologia , Fagocitose , Receptores Imunológicos/imunologia , Transdução de Sinais/imunologia , Animais , Neoplasias Encefálicas/patologia , Antígeno CD47/genética , Glioblastoma/genética , Glioblastoma/patologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Microglia/patologia , Monócitos/imunologia , Monócitos/patologia , Proteínas de Neoplasias/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Receptores Imunológicos/genética , Transdução de Sinais/genéticaRESUMO
Background: Next-generation sequencing (NGS) technology has been recently introduced into blood group genotyping; however, there are few studies using NGS-based blood group genotyping in real-world clinical settings. In this study, we applied NGS-based blood group genotyping into various immunohaematology cases encountered in routine clinical practice. Methods: This study included 4 immunohaematology cases: ABO subgroup, ABO chimerism, antibody to a high-frequency antigen (HFA), and anti-CD47 interference. We designed a hybridization capture-based NGS panel targeting 39 blood group-related genes and applied it to the 4 cases. Results: NGS analysis revealed a novel intronic variant (NM_020469.3:c.29-10T>G) in a patient with an Ael phenotype and detected a small fraction of ABO*A1.02 (approximately 3-6%) coexisting with the major genotype ABO*B.01/O.01.02 in dizygotic twins. In addition, NGS analysis found a homozygous stop-gain variant (NM_004827.3:c.376C>T, p.Gln126*; ABCG2*01N.01) in a patient with an antibody to an HFA; consequently, this patient's phenotype was predicted as Jr(a-). Lastly, blood group phenotypes predicted by NGS were concordant with those determined by serology in 2 patients treated with anti-CD47 drugs. Conclusion: NGS-based blood group genotyping can be used for identifying ABO subgroup alleles, low levels of blood group chimerism, and antibodies to HFAs. Furthermore, it can be applied to extended blood group antigen matching for patients treated with anti-CD47 drugs.
RESUMO
The European LeukemiaNet (ELN) criteria define the adverse genetic factors of acute myeloid leukemia (AML). AML with adverse genetic factors uniformly shows resistance to standard chemotherapy and is associated with poor prognosis. Here, we focus on the biological background and real-world etiology of these adverse genetic factors and then describe a strategy to overcome the clinical disadvantages in terms of targeting pivotal molecular mechanisms. Different adverse genetic factors often rely on common pathways. KMT2A rearrangement, DEK-NUP214 fusion, and NPM1 mutation are associated with the upregulation of HOX genes. The dominant tyrosine kinase activity of the mutant FLT3 or BCR-ABL1 fusion proteins is transduced by the AKT-mTOR, MAPK-ERK, and STAT5 pathways. Concurrent mutations of ASXL1 and RUNX1 are associated with activated AKT. Both TP53 mutation and mis-expressed MECOM are related to impaired apoptosis. Clinical data suggest that adverse genetic factors can be found in at least one in eight AML patients and appear to accumulate in relapsed/refractory cases. TP53 mutation is associated with particularly poor prognosis. Molecular-targeted therapies focusing on specific genomic abnormalities, such as FLT3, KMT2A, and TP53, have been developed and have demonstrated promising results.
Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-akt , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Nucleofosmina , Proteínas Oncogênicas/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tirosina Quinase 3 Semelhante a fms/genéticaRESUMO
BACKGROUND: To evaluate the surgical safety of en bloc resection of bladder tumor (ERBT) and the effectiveness of ERBT combined with near-infrared (NIR) imaging technique in the diagnosis and treatment of non-muscle invasive bladder cancer (NMIBC). METHODS: From October 2017 to June 2018, 26 patients newly diagnosed with single NMIBC were included in this retrospectively trial. All patients received ERBT with monopolar current. After surgery, the fresh specimen was incubated with anti-CD47-Alexa Fluor 790, and then imaged under NIR imaging technique. Operative details, intraoperative and postoperative complications of ERBT regarded as safety outcomes, the mean fluorescence intensity (MFI) of tumor tissue and adjacent normal background tissue, and 12 months follow-up data were analyzed. RESULTS: Of 26 collected patients, obturator nerve reflex was occurred in six patients during tumor resection, and only one patient was observed with bladder perforation. In NIR gray image, the gray scale of MFI of tumor tissue were 132.31 ± 6.67 and the adjacent normal background tissue were 52.27 ± 12.09. The result showed a significantly higher MFI signals in tumor tissue compared to adjacent normal background tissue (P < 0.001). The recurrence-free survival rate at 12 month was 96.15%. CONCLUSIONS: ERBT with monopolar current is a safe and feasible technique to treat patients with NMIBC. A integrated bladder tumor tissue-bound anti-CD47-Alexa Fluor 790 was detected under NIR light, and the NIR image indicates that higher MFI signals in surgical margin is a predictive factor for residual tumor in patients with NMIBC after ERBT.
Assuntos
Cistectomia/métodos , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/cirurgia , Idoso , Cistectomia/efeitos adversos , Técnicas de Diagnóstico por Cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Molecular , Invasividade Neoplásica , Estudos Retrospectivos , Resultado do Tratamento , Neoplasias da Bexiga Urinária/patologiaRESUMO
Fibrotic diseases are not well-understood. They represent a number of different diseases that are characterized by the development of severe organ fibrosis without any obvious cause, such as the devastating diseases idiopathic pulmonary fibrosis (IPF) and scleroderma. These diseases have a poor prognosis comparable with endstage cancer and are uncurable. Given the phenotypic differences, it was assumed that the different fibrotic diseases also have different pathomechanisms. Here, we demonstrate that many endstage fibrotic diseases, including IPF; scleroderma; myelofibrosis; kidney-, pancreas-, and heart-fibrosis; and nonalcoholic steatohepatosis converge in the activation of the AP1 transcription factor c-JUN in the pathologic fibroblasts. Expression of the related AP1 transcription factor FRA2 was restricted to pulmonary artery hypertension. Induction of c-Jun in mice was sufficient to induce severe fibrosis in multiple organs and steatohepatosis, which was dependent on sustained c-Jun expression. Single cell mass cytometry revealed that c-Jun activates multiple signaling pathways in mice, including pAkt and CD47, which were also induced in human disease. αCD47 antibody treatment and VEGF or PI3K inhibition reversed various organ c-Jun-mediated fibroses in vivo. These data suggest that c-JUN is a central molecular mediator of most fibrotic conditions.
Assuntos
Fibrose Pulmonar Idiopática , Mielofibrose Primária , Proteínas Proto-Oncogênicas c-jun , Escleroderma Sistêmico , Fator de Transcrição AP-1 , Antígeno 2 Relacionado a Fos/genética , Antígeno 2 Relacionado a Fos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismoRESUMO
Recently, many immunosuppressive checkpoints such as PD-L1, CTLA-4 and CD47, were identified in succession and serve as potential immunotherapy targets in human cancers. Among them, CD47, a 'marker-of-self' protein that is overexpressed broadly across tumor types, is emerging as a novel potent macrophage immune checkpoint for cancer immunotherapy. In this review, we highlight the prominent role of CD47 as a 'don't-eat-me' signal that inhibits macrophage phagocytosis for immune evasion of a tumor and presents the opportunities and challenges for CD47 inhibitors both as monotherapy and in combination treatments for hematological cancers and solid tumors; some of these agents are currently in clinical trials.
Assuntos
Antígeno CD47/metabolismo , Imunoterapia , Neoplasias/imunologia , Neoplasias/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/química , Antígeno CD47/genética , Terapia Combinada , Expressão Gênica , Humanos , Terapia de Alvo Molecular , Neoplasias/patologia , Neoplasias/terapia , Relação Estrutura-AtividadeRESUMO
Atherosclerosis is a significant contributor to global cardiovascular disease. Reducing the formation of atherosclerotic plaque effectively can lead to a decrease in cardiovascular diseases. Therefore, controlling macrophage function is crucial. This study presents the creation of a bifunctional nanoparticle that is specific to macrophages to achieve intracellular and extracellular synergistic therapy for restoring macrophage functions. The nanoparticle is conjugated with anti-CD47 antibody to modulate extracellular CD47-SIRPα phagocytic signaling axis on the outer surface of macrophages and encapsulates the NLRP3 inhibitor (CY-09) to regulate intracellular inflammation response of macrophages. The results showed that the nanoparticles accumulate in the atherosclerotic plaque, alter macrophage phagocytosis, inhibit NLRP3 inflammasome activation, and decrease the plaque burden in Apoe-/- mice whilst ensuring safety. Examination of single-cell RNA sequencing indicates that this multifunctional nanoparticle decreases the expression of genes linked to inflammation and manages inflammatory pathways in the plaque lesion. This study proposes a synergistic therapeutic approach that utilizes a bifunctional nanoparticle, conjugated with anti-CD47, to regulate the microenvironment of plaques.
RESUMO
CD47 is a cell-surface ligand that is overexpressed in various malignancies and that binds to SIRPα on macrophages to promote tumor cell evasion of phagocytosis. Blocking the CD47-SIRPα axis can increase the phagocytosis of macrophages to exert antitumor effects. CD47-based immunotherapy is a current research focus. The combination of anti-CD47 antibodies with other drugs has shown encouraging response rates in patients with hematological tumors, but side effects also occur. Bispecific antibodies and SIRPα/Fc fusion proteins appear to balance the efficacy and safety of treatment. We review the latest clinical research advances and discuss the opportunities and challenges associated with CD47-based immunotherapy for hematological malignancies.
Assuntos
Neoplasias Hematológicas , Neoplasias , Humanos , Antígeno CD47/metabolismo , Fagocitose , Macrófagos , Neoplasias/terapia , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/metabolismoRESUMO
Traumatic brain injury (TBI)-induced intracerebral hematoma is a major driver of secondary injury pathology such as neuroinflammation, cerebral edema, neurotoxicity, and blood-brain barrier dysfunction, which contribute to neuronal loss, motor deficits, and cognitive impairment. Cluster of differentiation 47 (CD47) is an antiphagocytic cell surface protein inhibiting hematoma clearance. This study was designed to evaluate the safety and efficacy of blockade of CD47 via intravenous (i.v.) administration of anti-CD47 antibodies following penetrating ballistic-like brain injury (PBBI) with significant traumatic intracerebral hemorrhage (tICH). The pharmacokinetic (PK) profile of the anti-CD47 antibody elicited that antibody concentration decayed over 7 days post-administration. Blood tests and necropsy analysis indicated no severe adverse events following treatment. Cerebral hemoglobin levels were significantly increased after injury, however, anti-CD47 antibody administration at 0.1 mg/kg resulted in a significant reduction in cerebral hemoglobin levels at 72 h post-administration, indicating augmentation of hematoma clearance. Immunohistochemistry assessment of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (IBA1) demonstrated a significant reduction of GFAP levels in the lesion core and peri-lesional area. Based on these analyses, the optimal dose was identified as 0.1 mg/kg. Lesion volume showed a reduction following treatment. Rotarod testing revealed significant motor deficits in all injured groups but no significant therapeutic benefits. Spatial learning performance revealed significant deficits in all injured groups, which were significantly improved by the last testing day. Anti-CD47 antibody treated rats showed significantly improved attention deficits, but not retention scores. These results provide preliminary evidence that blockade of CD47 using i.v. administration of anti-CD47 antibodies may serve as a potential therapeutic for TBI with ICH.
RESUMO
Limited therapeutic options are available for patients with breast cancer brain metastases (BCBM), and thus there is an urgent need for novel treatment approaches. We previously engineered an effective oncolytic herpes simplex virus 1 (oHSV) expressing a full-length anti-CD47 monoclonal antibody (mAb) with a human IgG1 scaffold (OV-αCD47-G1) that was used to treat both ovarian cancer and glioblastoma. Here, we demonstrate that the combination of OV-αCD47-G1 and temozolomide (TMZ) improve outcomes in preclinical models of BCBM. The combination of TMZ with OV-αCD47-G1 synergistically increased macrophage phagocytosis against breast tumor cells and led to greater activation of NK cell cytotoxicity. In addition, the combination of OV-αCD47-G1 with TMZ significantly prolonged the survival of tumor-bearing mice when compared with TMZ or OV-αCD47-G1 alone. Combination treatment with the mouse counterpart of OV-αCD47-G1, termed OV-A4-IgG2b, also enhanced mouse macrophage phagocytosis, NK cell cytotoxicity, and survival in an immunocompetent model of mice bearing BCBM compared with TMZ or OV-A4-IgG2b alone. Collectively, these results suggest that OV-αCD47-G1 combined with TMZ should be explored in patients with BCBM.
RESUMO
The third-generation epidermal growth factor receptor (EGFR) inhibitor osimertinib (OSI) has been approved as the first-line treatment for EGFR-mutant non-small cell lung cancer (NSCLC). This study aims to explore a rational combination strategy for enhancing the OSI efficacy. In this study, OSI induced higher CD47 expression, an important anti-phagocytic immune checkpoint, via the NF-κB pathway in EGFR-mutant NSCLC HCC827 and NCI-H1975 cells. The combination treatment of OSI and the anti-CD47 antibody exhibited dramatically increasing phagocytosis in HCC827 and NCI-H1975 cells, which highly relied on the antibody-dependent cellular phagocytosis effect. Consistently, the enhanced phagocytosis index from combination treatment was reversed in CD47 knockout HCC827 cells. Meanwhile, combining the anti-CD47 antibody significantly augmented the anticancer effect of OSI in HCC827 xenograft mice model. Notably, OSI induced the surface exposure of "eat me" signal calreticulin and reduced the expression of immune-inhibitory receptor PD-L1 in cancer cells, which might contribute to the increased phagocytosis on cancer cells pretreated with OSI. In summary, these findings suggest the multidimensional regulation by OSI and encourage the further exploration of combining anti-CD47 antibody with OSI as a new strategy to enhance the anticancer efficacy in EGFR-mutant NSCLC with CD47 activation induced by OSI.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Acrilamidas/farmacologia , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Antígeno CD47/metabolismo , Antígeno CD47/uso terapêuticoRESUMO
Cordycepin is widely considered a direct tumor-suppressive agent. However, few studies have investigated as the effect of cordycepin therapy on the tumor microenvironment (TME). In our present study, we demonstrated that cordycepin could weaken the function of M1-like macrophages in the TME and also contribute to macrophage polarization toward the M2 phenotype. Herein, we established a combined therapeutic strategy combining cordycepin and an anti-CD47 antibody. By using single-cell RNA sequencing (scRNA-seq), we showed that the combination treatment could significantly enhance the effect of cordycepin, which would reactivate macrophages and reverse macrophage polarization. In addition, the combination treatment could regulate the proportion of CD8+ T cells to prolong the progression-free survival (PFS) of patients with digestive tract malignancies. Finally, flow cytometry validated the changes in the proportions of tumor-associated macrophages (TAMs) and tumor-infiltrating lymphocytes (TILs). Collectively, our findings suggested that the combination treatment of cordycepin and the anti-CD47 antibody could significantly enhance tumor suppression, increase the proportion of M1 macrophages, and decrease the proportion of M2 macrophages. In addition, the PFS in patients with digestive tract malignancies would be prolonged by regulating CD8 + T cells.
RESUMO
Infiltrative glioma growth makes surgical excision incomplete, and the residual tumor cells proliferate rapidly. Residual glioma cells evade phagocytosis by macrophages through upregulating anti-phagocytosis molecule CD47, which binds to the signal regulatory protein alpha (SIRPα) of macrophages. Specifically, blocking the CD47-SIRPα pathway is a potential strategy for post-resection glioma treatment. In addition, the anti-CD47 antibody (α-CD47) in combination with temozolomide (TMZ) caused an enhanced pro-phagocytic effect due to the TMZ not only destroying DNA but also inducing endoplasmic reticulum stress response of glioma cells. However, the obstruction of the blood-brain barrier makes systemic combination therapy not ideal for post-resection glioma treatment. Herein, we designed a temperature-sensitive hydrogel system based on a moldable thermosensitive hydroxypropyl chitin (HPCH) copolymer to encapsulate both α-CD47 and TMZ as α-CD47&TMZ@Gel for in situ postoperative cavity administration. Through the in vitro and in vivo evaluations, α-CD47&TMZ@Gel significantly inhibited glioma recurrence post-resection through enhancement of pro-phagocytosis of macrophages, recruitment, and activation of CD8+ T cells and NK cells.
Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/cirurgia , Glioblastoma/metabolismo , Temozolomida/uso terapêutico , Linfócitos T CD8-Positivos/patologia , Receptores Imunológicos , Glioma/tratamento farmacológicoRESUMO
Multiple myeloma (MM) remains an incurable hematologic malignancy due to its frequent drug resistance and relapse. Cluster of Differentiation 47 (CD47) is reported to be highly expressed on MM cells, suggesting that the blockade of CD47 signaling pathway could be a potential therapeutic candidate for MM. In this study, we developed a bortezomib-resistant myeloma patient-derived xenograft (PDX) from an extramedullary pleural effusion myeloma patient sample. Notably, anti-CD47 antibody treatments significantly inhibited tumor growth not only in MM cell line-derived models, including MM.1S and NCI-H929, but also in the bortezomib-resistant MM PDX model. Flow cytometric data showed that anti-CD47 therapy promoted the polarization of tumor-associated macrophages from an M2- to an M1-like phenotype. In addition, anti-CD47 therapy decreased the expression of pro-angiogenic factors, increased the expression of anti-angiogenic factors, and improved tumor vascular function, suggesting that anti-CD47 therapy induces tumor vascular normalization. Taken together, these data show that anti-CD47 antibody therapy reconditions the tumor immune microenvironment and inhibits the tumor growth of bortezomib-resistant myeloma PDX. Our findings suggest that CD47 is a potential new target to treat bortezomib-resistant MM.