Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105460, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977224

RESUMO

The motifs involved in tropism and immunological interactions of SARS-CoV spike (S) protein were investigated utilizing the Qubevirus platform. We showed that separately, 14 overlapping peptide fragments representing the S protein (F1-14 of 100 residues each) could be inserted into the C terminus of A1 on recombinant Qubevirus without affecting its viability. Additionally, recombinant phage expression resulted in the surface exposure of different engineered fragments in an accessible manner. The F6 from S425-525 was found to contain the binding determinant of the recombinant human angiotensin-converting enzyme 2, with the shortest active binding motif situated between residues S437-492. Upstream, another fragment, F7, containing an overlapping portion of F6 would not bind to recombinant human angiotensin-converting enzyme 2, confirming that a contiguous stretch of residues could adopt the appropriate structural orientation of F6 as an insertion within the Qubevirus. The F6 (S441-460) and other inserts, including F7/F8 (S601-620) and F10 (S781-800), were demonstrated to contain important immunological determinants through recognition and binding of S protein specific (anti-S) antibodies. An engineered chimeric insert bearing the fusion of all three anti-S reactive epitopes improved substantially the recognition and binding to their cognate antibodies. These results provide insights into humoral immune relevant epitopes and tropism characteristics of the S protein with implications for the development of subunit vaccines or other biologics against SARS-CoV.


Assuntos
Enzima de Conversão de Angiotensina 2 , Biblioteca de Peptídeos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Glicoproteína da Espícula de Coronavírus , Humanos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Antivirais/imunologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Ligação Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
Asia Pac J Public Health ; 36(1): 96-103, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166431

RESUMO

Monitoring SARS-CoV-2 antibody levels can provide insights into a person's immunity to COVID-19 and inform decisions about vaccination and public health measures. Anti-S may be useful as an indicator of an effective immune response. Thus, we conducted this study that aimed to determine the immune response of anti-S antibodies against SARS-CoV-2 for all the vaccine types over time among adult recipients in Malaysia and to determine the associated factors. This study was a cohort that recruited 2513 respondents aged 18 years and above from June to December 2021. Each participant was followed-up for 1-year period from the initial vaccine dose (baseline). We found that the anti-S antibody generally increased for all vaccine types and peaked at two weeks after the second dose vaccination, with Pfizer recipients having the highest median of 100 (100.00-100.00). During the third-month follow-up, the seropositivity of anti-S antibody and the median level decreased for all vaccines. We found that type of vaccines, comorbid status, infection, and booster status were significantly associated with the anti-S antibody level after one year.


Assuntos
COVID-19 , Vacinas , Adulto , Humanos , COVID-19/prevenção & controle , Malásia/epidemiologia , SARS-CoV-2 , Vacinação
3.
Viruses ; 16(2)2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38400067

RESUMO

This study aimed to evaluate and compare the performance of three anti-S and one anti-N assays that were available to the project in detecting antibody levels after three commonly used SARS-CoV-2 vaccines (Pfizer, Moderna, and Johnson & Johnson). It also aimed to assess the association of age, sex, race, ethnicity, vaccine timing, and vaccine side effects on antibody levels in a cohort of 827 individuals. In September 2021, 698 vaccinated individuals donated blood samples as part of the Association for Diagnostics & Laboratory Medicine (ADLM) COVID-19 Immunity Study. These individuals also participated in a comprehensive survey covering demographic information, vaccination status, and associated side effects. Additionally, 305 age- and gender-matched samples were obtained from the ADLM 2015 sample bank as pre-COVID-19-negative samples. All these samples underwent antibody level analysis using three anti-S assays, namely Beckman Access SARS-CoV-2 IgG (Beckman assay), Ortho Clinical Diagnostics VITROS Anti-SARS-CoV-2 IgG (Ortho assay), Siemens ADVIA Centaur SARS-CoV-2 IgG (Siemens assay), and one anti-N antibody assay: Bio-Rad Platelia SARS-CoV-2 Total Ab assay (BioRad assay). A total of 827 samples (580 COVID-19 samples and 247 pre-COVID-19 samples) received results for all four assays and underwent further analysis. Beckman, Ortho, and Siemens anti-S assays showed an overall sensitivity of 99.5%, 97.6%, and 96.9%, and specificity of 90%, 100%, and 99.6%, respectively. All three assays indicated 100% sensitivity for individuals who received the Moderna vaccine and boosters, and over 99% sensitivity for the Pfizer vaccine. Sensitivities varied from 70.4% (Siemens), 81.5% (Ortho), and 96.3% (Beckman) for individuals who received the Johnson & Johnson vaccine. BioRad anti-N assays demonstrated 46.2% sensitivity and 99.25% specificity based on results from individuals with self-reported infection. The highest median anti-S antibody levels were measured in individuals who received the Moderna vaccine, followed by Pfizer and then Johnson & Johnson vaccines. Higher anti-S antibody levels were significantly associated with younger age and closer proximity to the last vaccine dose but were not associated with gender, race, or ethnicity. Participants with higher anti-S levels experienced significantly more side effects as well as more severe side effects (e.g., muscle pain, chills, fever, and moderate limitations) (p < 0.05). Anti-N antibody levels only indicated a significant correlation with headache. This study indicated performance variations among different anti-S assays, both among themselves and when analyzing individuals with different SARS-CoV-2 vaccines. Caution should be exercised when conducting large-scale studies to ensure that the same platform and/or assays are used for the most effective interpretation of the data.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , COVID-19/diagnóstico , COVID-19/prevenção & controle , Anticorpos Antivirais , Imunoglobulina G , Imunoensaio
4.
Biosensors (Basel) ; 13(9)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37754085

RESUMO

Here, we report magnetic nanoparticle-based biosensor platforms for the rapid detection of SARS-CoV-2 antibody responses in human serum. The use of the proposed system enabled the detection of anti-SARS-CoV-2 spike (S) and nucleocapsid (N) proteins at a concentration of ng/mL in both buffer and real serum samples. In particular, the protocol, which is considered an indicator of innate immunity after vaccination or post-infection, could be useful for the evaluation of antibody response. We included a total of 48 volunteers who either had COVID-19 but were not vaccinated or who had COVID-19 and were vaccinated with CoronoVac or Biontech. Briefly, in this study, which was planned as a cohort, serum samples were examined 3, 6, and 12 months from the time the volunteers' showed symptoms of COVID-19 with respect to antibody response in the proposed system. Anti-S Ab and anti-N Ab were detected with a limit of detection of 0.98 and 0.89 ng/mL, respectively. These data were confirmed with the corresponding commercial an electrochemiluminescence immunoassay (ECLIA) assays. Compared with ECLIA, more stable data were obtained, especially for samples collected over 6 months. After this period, a drop in the antibody responses was observed. Our findings showed that it could be a useful platform for exploring the dynamics of the immune response, and the proposed system has translational use potential for the clinic. In conclusion, the MNP-based biosensor platform proposed in this study, together with its counterparts in previous studies, is a candidate for determining natural immunity and post-vaccination antibody response, as well as reducing the workload of medical personnel and paving the way for screening studies on vaccine efficacy.


Assuntos
COVID-19 , Nanopartículas de Magnetita , Humanos , Formação de Anticorpos , SARS-CoV-2 , COVID-19/diagnóstico , Anticorpos Antivirais
5.
Ann Lab Med ; 42(6): 688-692, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35765878

RESUMO

Following the original severe acute respiratory syndrome coronavirus 2 strain (Wuhan-Hu-1) in December 2019, the Delta variant in May 2021 and the Omicron variant in December 2021 were classified as variants of concern. The pandemic has been ongoing for more than two years, and the three-dose vaccination rate has reached approximately 50% in Korea. We analyzed anti-S antibodies (Abs) and neutralizing Abs (NAbs) in 32 healthcare workers at a university hospital, focusing on the first to third doses of ChAdOx1-ChAdOx1-BNT162b2, which is the most common vaccination regimen in Korea. Antibodies were analyzed at eight time points according to the vaccine regimen. The first to third doses of ChAdOx1-ChAdOx1-BNT162b2 produced high Ab concentrations; NAb concentrations after the third dose were predicted to remain high for a longer period than those after the first and second doses. The effectiveness of a second dose of ChAdOx1 in the real world was demonstrated by analyzing samples collected during an outbreak that occurred in the study period, 4-5 months after the second dose. The relative risk ratio was 88.0%, and the efficacy of the second ChAdOx1 dose was 12.0% (P<0.05). Therefore, maintaining appropriate Ab concentrations through regular vaccination will help protect against coronavirus disease-19.


Assuntos
Vacina BNT162 , COVID-19 , COVID-19/prevenção & controle , Pessoal de Saúde , Humanos , Estudos Longitudinais , Estudos Prospectivos , SARS-CoV-2/genética , Vacinas Sintéticas , Vacinas de mRNA
6.
Front Immunol ; 13: 876533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711413

RESUMO

Background: Safe and effective vaccines against COVID-19 are critical for preventing the spread of SARS-CoV-2, but little is known about the humoral immune response more than 9 months after vaccination. We aimed to assess the humoral immune response after the first, second, and third (booster) doses of BNT162b2 vaccine in SARS-CoV-2 naïve and previously infected healthcare professionals (HCP) and the humoral immune response after infection in vaccinated HCP. Methods: We measured anti-spike (anti-S) and anti-nucleocapsid antibodies at different time points up to 12 months in the sera of 300 HCP who had received two or three doses of BNT162b2 vaccine. Mixed-model analyses were used to assess anti-S antibody dynamics and to determine their predictors (age, sex, BMI, and previous infection). Results: Naïve individuals had statistically lower anti-S antibody concentrations after the first dose (median 253 BAU/ml) than previously infected individuals (median 3648 BAU/ml). After the second dose, anti-S antibody concentrations increased in naïve individuals (median 3216 BAU/ml), whereas the second dose did not significantly increase concentrations in previously infected individuals (median 4503 BAU/ml). The third dose resulted in an additional increase in concentrations (median 4844 BAU/ml in naïve and median 5845 BAU/ml in previously infected individuals). Anti-S antibody concentrations steadily decreased after the second dose and after the third dose in naïve and previously infected individuals. In addition, we found that age had an effect on the humoral immune response. Younger individuals had higher anti-S antibody concentrations after the first and second doses. After infection with the new variant Omicron, a further increase in anti-S antibody concentrations to a median value of 4794 BAU/ml was observed in three times vaccinated HCP whose anti-S antibody concentrations were relatively high before infection (median 2141 BAU/ml). Our study also showed that individuals with systemic adverse events achieved higher anti-S antibody concentrations. Conclusion: In this study, significant differences in humoral immune responses to BNT162b2 vaccine were observed between naïve and previously infected individuals, with age playing an important role, suggesting that a modified vaccination schedule should be practiced in previously infected individuals. In addition, we showed that the high anti-S antibodies were not protective against new variants of SARS-CoV-2.


Assuntos
COVID-19 , Vacinas , Anticorpos Antivirais , Formação de Anticorpos , Vacina BNT162 , Vacinas contra COVID-19 , Atenção à Saúde , Humanos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA