Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Cell Mol Med ; 27(14): 1959-1974, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37257051

RESUMO

Fenugreek is an ancient herb that has been used for centuries to treat diabetes. However, how the fenugreek-derived chemical compounds work in treating diabetes remains unclarified. Herein, we integrate molecular docking and network pharmacology to elucidate the active constituents and potential mechanisms of fenugreek against diabetes. First, 19 active compounds from fenugreek and 71 key diabetes-related targets were identified through network pharmacology analysis. Then, molecular docking and simulations results suggest diosgenin, luteolin and quercetin against diabetes via regulation of the genes ESR1, CAV1, VEGFA, TP53, CAT, AKT1, IL6 and IL1. These compounds and genes may be key factors of fenugreek in treating diabetes. Cells results demonstrate that fenugreek has good biological safety and can effectively improve the glucose consumption of IR-HepG2 cells. Pathway enrichment analysis revealed that the anti-diabetic effect of fenugreek was regulated by the AGE-RAGE and NF-κB signalling pathways. It is mainly associated with anti-oxidative stress, anti-inflammatory response and ß-cell protection. Our study identified the active constituents and potential signalling pathways involved in the anti-diabetic effect of fenugreek. These findings provide a theoretical basis for understanding the mechanism of the anti-diabetic effect of fenugreek. Finally, this study may help for developing anti-diabetic dietary supplements or drugs based on fenugreek.


Assuntos
Diabetes Mellitus , Medicamentos de Ervas Chinesas , Trigonella , Simulação de Acoplamento Molecular , Farmacologia em Rede , Citoproteção
2.
Curr Issues Mol Biol ; 45(5): 4214-4227, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37232737

RESUMO

(1) Background: Many studies have shown that microgravity experienced by astronauts or long-term bedridden patients results in increased oxidative stress and bone loss. Low-molecular-weight chondroitin sulfates (LMWCSs) prepared from intact chondroitin sulfate (CS) have been demonstrated to possess good antioxidant and osteogenic activities in vitro. This study aimed to assess the antioxidant activity of the LMWCSs in vivo and evaluate their potential in preventing microgravity-induced bone loss. (2) Methods: we used hind limb suspension (HLS) mice to simulate microgravity in vivo. We investigated the effects of LMWCSs against oxidative stress damage and bone loss in HLS mice and compared the findings with those of CS and a non-treatment group. (3) Results: LMWCSs reduced the HLS-induced oxidative stress level, prevented HLS-induced alterations in bone microstructure and mechanical strength, and reversed changes in bone metabolism indicators in HLS mice. Additionally, LMWCSs downregulated the mRNA expression levels of antioxidant enzyme- and osteogenic-related genes in HLS mice. The results showed that overall effect of LMWCSs was better than that of CS. (4) Conclusions: LMWCSs protect against the bone loss caused by simulated microgravity, which may be related to their ability to reduce oxidative stress. LMWCSs can be envisaged as potential antioxidants and bone loss protective agents in microgravity.

3.
Bioorg Chem ; 138: 106609, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37207595

RESUMO

Cardiac tissue suffers much from sepsis, and the incidence of myocardial injury is high in septic patients. The treatment of sepsis myocardial injury (SMI) has been the focus of clinical medicine. Salidroside shows myocardial cell protection, anti-oxidation and anti- inflammation effects, and it is thought as one of the potential compounds to treat sepsis myocardial injury. However, its anti-inflammatory activity is lower and its pharmacokinetic properties are not ideal, which is far from clinical application. Here, a series of salidroside analogs were synthesized, and their bioactivities were evaluated from several aspects, including their anti-oxidant and anti-inflammatory activities in vitro and anti-sepsis myocardial injury activities in vivo. Of all the compounds which synthesized, compounds 2 and 3 exhibited stronger anti-inflammatory activities than the others; after treating LPS-stimulated RAW264.7 or H9c2 cells with each of them, the levels of IL-1ß, IL-6 and TNF-α were down-regulated in a dose-dependent manner. In the anti-oxidative stress injury test, compounds 2 and 3 not only markedly increased the survival rate of cells, and but also improved the cellular oxidative stress-related indicators MDA, SOD and cell damage marker LDH in a dose-dependent manner. In the LPS-induced septic rat myocardial injury models (in vivo), the two compounds also showed good bioactivities. They also reduced the expression of IL-1ß, IL-6 and TNF-α, and blocked cell damage by suppressing overhauled oxidation in septic rats. In addition, the myocardial injury was significantly improved and the inflammatory infiltration was reduced after treatment with the two compounds. In conclusion, the salidroside analogs (2 and 3) showed promising therapeutical effect on septic myocardial injury in LPS-model rats, and they could be good candidates for clinical trials against inflammation and septic myocardial injury.


Assuntos
Sepse , Fator de Necrose Tumoral alfa , Ratos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Sepse/tratamento farmacológico , Inflamação
4.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6307-6314, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38211987

RESUMO

Fel Ursi is a dried product obtained from the gallbladder of Ursidae animals, such as Selenarctos thibetanus or Ursus arctos, through gallbladder surgery for bile drainage. It is one of the rare animal medicinal materials in China and is known for its therapeutic effects, including clearing heat, removing toxins, extinguishing wind, relieving spasms, clearing the liver, and improving vision. Research has also found that Fel Ursi has pharmacological effects against cardiovascular and cerebrovascular diseases, such as anti-inflammatory, anti-apoptotic, and antioxidant stress properties. Recently, numerous studies have confirmed the close relationship between cardiovascular and cerebrovascular diseases and the gut microbiota as well as gut metabolites. Fel Ursi contains bile acid components that may have bidirectional regulatory effects on the gut microbiota and gut metabolites. This aspect could represent a potential therapeutic pathway for Fel Ursi in the treatment of cardiovascular and cerebrovascular diseases. This article comprehensively summarized relevant literature in China and abroad, reviewed the research progress on the pharmacological effects of Fel Ursi against cardiovascular and cerebrovascular diseases, and explored the impact of Fel Ursi on gut microbiota and gut metabolites, thereby aiming to provide references for further in-depth research and clinical application of Fel Ursi.


Assuntos
Doenças Cardiovasculares , Transtornos Cerebrovasculares , Ursidae , Animais , Transtornos Cerebrovasculares/tratamento farmacológico , Ácidos e Sais Biliares , Pulmão , Fígado , Doenças Cardiovasculares/tratamento farmacológico
5.
Ecotoxicol Environ Saf ; 207: 111511, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254391

RESUMO

Decidualization, which endows the endometrium competency to adopt developing embryo and maintain appropriate milieu for following growth, is a pivotal process for human pregnancy. The delicate collaboration between ovarian steroid hormones estrogen and progesterone governs the process of decidualization and subsequent establishment of embryo implantation. Mycotoxin zearalenone (ZEA) is well known as endocrine disruptor due to its potent estrogenic activity. In this study, we investigated effects of ZEA on decidualization of human endometrial stromal cells. Results indicated that ZEA exhibited its inhibitory action through nuclear translocation of ERα. ZEA exposure led to dampened progress of decidualization, which could be attenuated by estrogen receptor antagonist. Notably, resveratrol (RSV) administration restored impaired decidualization process by induction of anti-oxidative gene glutathione peroxidase 3 (GPX3). This study provides novel insights into the mechanism underlying adverse effects of ZEA in human decidual stromal cells and suggests RSV a potential therapeutic candidate to alleviate ZEA-induced cytotoxicity during decidualization.


Assuntos
Disruptores Endócrinos/toxicidade , Estrogênios não Esteroides/toxicidade , Substâncias Protetoras/farmacologia , Resveratrol/farmacologia , Zearalenona/toxicidade , Células Cultivadas , Decídua/efeitos dos fármacos , Implantação do Embrião/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Receptor alfa de Estrogênio , Estrogênios/farmacologia , Feminino , Humanos , Gravidez , Progesterona/farmacologia , Células Estromais/efeitos dos fármacos
6.
Molecules ; 25(8)2020 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-32290603

RESUMO

Kushenol C (KC) is a prenylated flavonoid isolated from the roots of Sophora flavescens aiton. Little is known about its anti-inflammatory and anti-oxidative stress activities. Here, we investigated the anti-inflammatory and anti-oxidative stress effects of KC in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages, and tert-butyl hydroperoxide (tBHP)-induced oxidative stress in HaCaT cells. The results demonstrated that KC dose-dependently suppressed the production of inflammatory mediators, including NO, PGE2, IL-6, IL1ß, MCP-1, and IFN-ß in LPS-stimulated RAW264.7 macrophages. The study demonstrated that the inhibition of STAT1, STAT6, and NF-κB activations by KC might have been responsible for the inhibition of NO, PGE2, IL-6, IL1ß, MCP-1, and IFN-ß in the LPS-stimulated RAW264.7 macrophages. KC also upregulated the expression of HO-1 and its activities in the LPS-stimulated RAW264.7 macrophages. The upregulation of Nrf2 transcription activities by KC in the LPS-stimulated RAW264.7 macrophages was demonstrated to be responsible for the upregulation of HO-1 expression and its activity in LPS-stimulated RAW264.7 macrophages. In HaCaT cells, KC prevented DNA damage and cell death by upregulating the endogenous antioxidant defense system involving glutathione, superoxide dismutase, and catalase, which prevented reactive oxygen species production from tert-butyl hydroperoxide (tBHP)-induced oxidative stress in HaCaT cells. The upregulated activation of Nrf2 and Akt in the PI3K-Akt signaling pathway by KC was demonstrated to be responsible for the anti-oxidative stress activity of KC in HaCaT cells. Collectively, the study suggests that KC can be further investigated as a potential anti-inflammatory candidate for the treatment of inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Sophora/química , Animais , Catalase/metabolismo , Linhagem Celular , Flavonoides/química , Glutationa/metabolismo , Células HaCaT , Humanos , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , terc-Butil Hidroperóxido/toxicidade
7.
Biol Pharm Bull ; 42(4): 607-616, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930420

RESUMO

Liver regeneration is a very complex process and is regulated by several cytokines and growth factors. It is also known that liver transplantation and the regeneration process cause massive oxidative stress, which interferes with liver regeneration. The placenta is known to contain various physiologically active ingredients such as cytokines, growth factors, and amino acids. In particular, human placenta hydrolysate (hPH) has been found to contain many amino acids. Most of the growth factors found in the placenta are known to be closely related to liver regeneration. Therefore, in this study, we investigated whether hPH is effective in promoting liver regeneration in rats undergoing partial hepatectomy. We confirmed that cell proliferation was significantly increased in HepG2 and human primary cells. Hepatocyte proliferation was also promoted in partial hepatectomized rats by hPH treatment. hPH increased liver regeneration rate, double nucleic cell ratio, mitotic cell ratio, proliferating cell nuclear antigen (PCNA), and Ki-67 positive cells in vivo as well as interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), and hepatocyte growth factor (HGF). Moreover, Kupffer cells secreting IL-6 and TNF-α were activated by hPH treatment. In addition, hPH reduced thiobarbituric acid reactive substances (TBARs) and significantly increased glutathione (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD). Taken together, these results suggest that hPH promotes liver regeneration by activating cytokines and growth factors associated with liver regeneration and eliminating oxidative stress.


Assuntos
Antioxidantes/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Regeneração Hepática , Placenta , Animais , Linhagem Celular , Feminino , Hepatectomia , Humanos , Masculino , Estresse Oxidativo , Gravidez , Ratos Sprague-Dawley , Transdução de Sinais
8.
Metab Brain Dis ; 34(1): 173-181, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30406376

RESUMO

The present study was designed to evaluate the effects of matrine (MAT) on scopolamine (SCOP)-induced learning and memory impairment. After successive oral administration of MAT to mice for three days at doses of 0.4, 2, and 10 mg/kg, we assessed improvements in learning and memory and investigated the mechanism of action of SCOP-induced amnesia. Donepezil at a dose of 3 mg/kg was used as a standard memory enhancer. MAT significantly improved SCOP-induced learning and memory impairment in novel object recognition and Y-maze tests at doses of 0.4, 2, and 10 mg/kg. Furthermore, MAT inhibited acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities and decreased oxidative stress in the brain, as evidenced by increased total antioxidant capacity, total superoxide dismutase levels, and catalase activities as well as decreased malondialdehyde levels. Additionally, there was a significant negative correlation between the percentage of spontaneous alternation in the Y maze and AChE activity in the cortex and hippocampus. MAT ameliorated SCOP-induced amnesia by the inhibition of both AChE/BuChE activities and oxidative stress. This study provides further evidence to encourage the development of MAT as a drug for the prevention or treatment of Alzheimer's disease.


Assuntos
Alcaloides/uso terapêutico , Amnésia/tratamento farmacológico , Antioxidantes/uso terapêutico , Inibidores da Colinesterase/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Quinolizinas/uso terapêutico , Alcaloides/farmacologia , Amnésia/induzido quimicamente , Amnésia/metabolismo , Animais , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Catalase/metabolismo , Inibidores da Colinesterase/farmacologia , Masculino , Malondialdeído/metabolismo , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/farmacologia , Quinolizinas/farmacologia , Escopolamina , Superóxido Dismutase/metabolismo , Matrinas
9.
Int J Mol Sci ; 20(19)2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31590394

RESUMO

Traditional therapy for diabetes mellitus has focused on supportive treatment, and is not significant in the promotion of pancreatic beta cells regeneration. We investigated the effect of low- energy extracorporeal shock wave (SW) on a streptozotocin induced diabetes (DM) rat model. METHODS: The DM rats were treated with ten sessions of low-energy SW therapy (weekly for ten consecutive weeks) or left untreated. We assessed blood glucose, hemoglobin A1c (HbA1c), urine volume, pancreatic islets area, c-peptide, glucagon-like peptide 1 (GLP-1) and insulin production, beta cells number, pancreatic tissue inflammation, oxidative stress, apoptosis, angiogenesis, and stromal cell derived factor 1 (SDF-1) ten weeks after the completion of treatment. RESULTS: The ten- week low-energy SW therapy regimen significantly reduced blood glucose, HbA1c, and urine volume as well as significantly enhancing pancreatic islets area, c-peptide, GLP-1, and insulin production in the rat model of DM. Moreover, low-energy SW therapy increased the beta cells number in DM rats. This was likely primarily attributed to the fact that low-energy SW therapy reduced pancreatic tissue inflammation, apoptosis, and oxidative stress as well as increasing angiogenesis, cell proliferation, and tissue repair potency. CONCLUSIONS: Low-energy SW therapy preserved pancreatic islets function in streptozotocin-induced DM. Low-energy SW therapy may serve as a novel noninvasive and effective treatment of DM.


Assuntos
Diabetes Mellitus Experimental/terapia , Tratamento por Ondas de Choque Extracorpóreas/métodos , Células Secretoras de Insulina/metabolismo , Animais , Glicemia/análise , Peptídeo C/análise , Peptídeo 1 Semelhante ao Glucagon/sangue , Hemoglobina A/análise , Secreção de Insulina , Células Secretoras de Insulina/fisiologia , Masculino , Ratos , Ratos Wistar , Regeneração
10.
Arterioscler Thromb Vasc Biol ; 37(2): 291-300, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27908891

RESUMO

OBJECTIVE: Abdominal aortic aneurysm (AAA) is a life-threatening vascular pathology, the pathogenesis of which is closely related to oxidative stress. However, an effective pharmaceutical treatment is lacking because the exact cause of AAA remains unknown. Here, we aimed at delineating the role of the paraoxonases (PONs) gene cluster (PC), which prevents atherosclerosis through the detoxification of oxidized substrates, in AAA formation. APPROACH AND RESULTS: PC transgenic (Tg) mice were crossed to an Apoe-/- background, and an angiotensin II-induced AAA mouse model was used to analyze the effect of the PC on AAA formation. Four weeks after angiotensin II infusion, PC-Tg Apoe-/- mice had a lower AAA incidence, smaller maximal abdominal aortic external diameter, and less medial elastin degradation than Apoe-/- mice. Importantly, PC-Tg Apoe-/- mice exhibited lower aortic reactive oxidative species production and oxidative stress than did the Apoe-/- control mice. As a consequence, the PC transgene alleviated angiotensin II-induced arterial inflammation and suppressed arterial extracellular matrix degradation. Specifically, on angiotensin II stimulation, PC-Tg vascular smooth muscle cells exhibited lower levels of reactive oxidative species production and a decrease in the activities and expression levels of matrix metalloproteinase-2 and matrix metalloproteinase-9. Moreover, PC-Tg serum also enhanced vascular smooth muscle cell oxidative stress resistance and further decreased the expression levels of matrix metalloproteinase-2 and matrix metalloproteinase-9, indicating that circulatory and vascular smooth muscle cell PC members suppress oxidative stress in a synergistic manner. CONCLUSIONS: Our findings reveal, for the first time, a protective role of the PC in AAA formation and suggest PONs as promising targets for AAA prevention.


Assuntos
Aorta Abdominal/enzimologia , Aneurisma da Aorta Abdominal/prevenção & controle , Arildialquilfosfatase/genética , Família Multigênica , Angiotensina II , Animais , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/enzimologia , Aneurisma da Aorta Abdominal/genética , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Arildialquilfosfatase/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Elastina/metabolismo , Matriz Extracelular/metabolismo , Predisposição Genética para Doença , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Estresse Oxidativo , Fenótipo , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
11.
Eur Spine J ; 27(10): 2609-2620, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30008063

RESUMO

PURPOSE: This study aimed to investigate the potential mechanism and value of lupeol in inhibiting high-glucose-induced apoptosis in rabbit nucleus pulposus cells (NPCs). METHODS: NPCs were divided into four groups: control (CON), high glucose (HG), LUP, and HG + LUP. Viability, reactive oxygen species (ROS) levels, and apoptosis were examined in NPCs. The protein expression levels of Bax, Bcl-2, cytochrome C, and caspase 9/3 were measured using reverse transcription-polymerase chain reaction and Western blot assay. RESULTS: The apoptotic rate and total ROS level of the HG group significantly increased compared with the CON group (P < 0.01). The total ROS level in the HG + LUP group significantly decreased compared with the HG group(P < 0.05). The mRNA expression of Bcl-2 was significantly upregulated, whereas the expression of Bax, cytochrome C, and caspase 9/3 was downregulated in the HG + LUP group compared with those in the HG group(P < 0.05).The Western blot assay showed that the expression of Bcl-2 was upregulated, but the expression of Bax, cytochrome C, and caspase 9/3 was significantly downregulated in the HG + LUP group compared with the HG group (P < 0.05). CONCLUSIONS: Lupeol inhibited high-glucose-induced apoptosis in NPCs by enhancing the anti-oxidative stress in the mitochondria. This study suggested lupeol as a potential therapeutic drug for treating intervertebral disc degeneration under hyperglycaemic conditions. These slides can be retrieved under Electronic Supplementary Material.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Glucose/farmacologia , Núcleo Pulposo/citologia , Triterpenos Pentacíclicos/farmacologia , Animais , Células Cultivadas , Estresse Oxidativo/efeitos dos fármacos , Coelhos
12.
Molecules ; 23(11)2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30373188

RESUMO

Oxidative stress plays a critical role in cerebral ischemia/reperfusion (I/R)-induced blood-brain barrier (BBB) disruption. Panax notoginseng saponins (PNS) possess efficient antioxidant activity and have been used in the treatment of cerebral ischemic stroke in China. In this study, we determined the protective effects of PNS on BBB integrity and investigated the underlying mechanism in cerebral microvascular endothelial cells (bEnd.3) exposed to oxygen-glucose deprivation/reperfusion (OGD/R). MTT and LDH release assays revealed that PNS mitigated the OGD/R-induced cell injury in a dose-dependent manner. TEER and paracellular permeability assays demonstrated that PNS alleviated the OGD/R-caused disruption of BBB integrity. Fluorescence probe DCFH-DA showed that PNS suppressed ROS generation in OGD/R-treated cells. Immunofluorescence and western blot analysis indicated that PNS inhibited the degradation of tight junction proteins triggered by OGD/R. Moreover, mechanism investigations suggested that PNS increased the phosphorylation of Akt, the activity of nuclear Nrf2, and the expression of downstream antioxidant enzyme HO-1. All the effects of PNS could be reversed by co-treatment with PI3K inhibitor LY294002. Taken together, these observations suggest that PNS may act as an extrinsic regulator that activates Nrf2 antioxidant signaling depending on PI3K/Akt pathway and protects against OGD/R-induced BBB disruption in vitro.


Assuntos
Antioxidantes/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Panax notoginseng/química , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/química , Glucose/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Saponinas/química , Proteínas de Junções Íntimas/metabolismo
13.
Biosci Biotechnol Biochem ; 81(8): 1586-1590, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28585468

RESUMO

One new (1, SZMT01) and one known (2) anti-aging substances were isolated from Shenzhou honey peach fruit. Their structures were elucidated by spectroscopic methods and chemical derivatization, and the result reveals that these two compounds are sesquiterpene glucosides. SZMT01 possesses a new glycosylation with an ester linkage at one terminal in an acyclic sesquiterpenoid which is the end of a double bond at another terminal. Both compounds extend the replicative lifespan of K6001 yeast strain at doses of 7.5 and 25 µM. Then, to understand the action mechanism involved, we performed an anti-oxidative experiment on SZMT01. The result revealed that treatment with SZMT01 increased the survival rate of yeast under oxidative stress. Moreover, the lifespans of sod1 and sod2 mutant yeast strains with a K6001 background were not affected by SZMT01. These results demonstrate that anti-oxidative stress performs important roles in anti-aging effects of SZMT01.


Assuntos
Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Glucosídeos/farmacologia , Prunus persica/química , Saccharomyces cerevisiae/efeitos dos fármacos , Sesquiterpenos/farmacologia , Antioxidantes/isolamento & purificação , Frutas/química , Expressão Gênica , Glucosídeos/isolamento & purificação , Glicosilação , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/isolamento & purificação , Superóxido Dismutase/deficiência , Superóxido Dismutase/genética , Superóxido Dismutase-1/deficiência , Superóxido Dismutase-1/genética
14.
Blood Purif ; 44(4): 288-293, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29065402

RESUMO

AIM: To examine the effects of vitamin E-coated dialyzer on oxidative stress in vitro. METHODS: A dialyzer with a synthetic polymer membrane (APS-11SA) and vitamin E-coated dialyzer (VPS-11SA) were connected to a blood tubing line, and U937 cells were circulated in the device. The circulating fluid was collected at 1, 2, 5, 10, 25, and 50 cycles, which are estimated numbers of passes through the dialyzer. Intracellular reactive oxygen species (ROS) production, malondialdehyde (MDA), and Cu/Zn-superoxide dismutase (SOD) were quantified. RESULTS: Intracellular ROS production was increased in the first cycle by APS-11SA and was decreased throughout the experiment by VPS-11SA. Intracellular ROS production in the VPS-11SA device was lower, and MDA levels were decreased. MDA levels were lower during VPS-11SA processing than during APS-11SA processing. Cu/Zn-SOD levels remained unchanged. CONCLUSION: Our results highlight anti-oxidative-stress effects of a vitamin E-coated dialyzer.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Diálise Renal , Vitamina E/farmacologia , Humanos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Células U937
15.
Metab Brain Dis ; 32(2): 539-546, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28035625

RESUMO

The aim of the study reported here was to evaluate whether the mitochondrial ATP-sensitive potassium (mitoKATP) channel could participate in the effect of dexmedetomidine on cerebral ischemia-reperfusion (I/R) rats. Forty rats were randomly assigned into 5 groups: sham operation (S) group; cerebral I/R group; dexmedetomidine (D) group; 5-hydroxydecanoate (5-HD) group; 5-HD + D group. The cerebral I/R were produced by 2 h right middle cerebral artery occlusion followed by 24 h reperfusion. Dexmedetomidine (50µg/kg) was injected intraperitoneally before ischemia and after the onset of reperfusion. 5-HD (30 mg/kg) was injected intraperitoneally at 1 h before ischemia. The neurological deficit score (NDS) and the levels of super oxide dismutase (SOD), malondialdehyde (MDA), myeloperoxidase (MPO), Interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) were evaluated. Compared to group S, NDS and the levels of MDA, MPO, IL-6 and TNF-α were significantly higher, and SOD levels were significantly lower in the other groups (P < 0.05). Compared to group I/R,NDS and the levels of MDA, MPO, IL-6 and TNF-α were significantly lower, and SOD level was significantly higher in group D (P < 0.05). Compared to group D, NDS and the levels of MDA, MPO, IL-6 and TNF-α were significantly higher, and SOD level was significantly lower in group5-HD + D (P < 0.05). The activation of the mitoKATP channel could contribute to the protective effect of dexmedetomidine on rats induced by focal cerebral ischemia-reperfusion injury.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Dexmedetomidina/farmacologia , Canais KATP/agonistas , Mitocôndrias/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Antioxidantes/metabolismo , Química Encefálica/efeitos dos fármacos , Citocinas/metabolismo , Ácidos Decanoicos/farmacologia , Hidroxiácidos/farmacologia , Masculino , Artéria Cerebral Média , Mitocôndrias/efeitos dos fármacos , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/psicologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo
16.
Metab Brain Dis ; 30(6): 1453-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26340979

RESUMO

Oxidative stress has been claimed a place in pathophysiology of depression; however, the details of the neurobiology of this condition remains incompletely understood. Recently, treatments employing antioxidants have been thoroughly researched. Ferulic acid (FA) is a phenolic compound with antioxidant and antidepressant-like effects. Herein, we investigated the involvement of the antioxidant activity of chronic oral FA treatment in its antidepressant-like effect using the tail suspension test (TST) and the forced swimming test (FST) in mice. The modulation of antioxidant system in blood, hippocampus and cerebral cortex was assessed after stress induction through TST and FST. Our results show that FA at the dose of 1 mg/kg has antidepressant-like effect without affecting locomotor activity. The stress induced by despair tests was able to decrease significantly the activities of superoxide dismutase (SOD) in the blood, catalase (CAT) in the blood and cerebral cortex and glutathione peroxidase (GSH-Px) in the cerebral cortex. Thiobarbituric acid-reactive substances (TBA-RS) levels were increased significantly in the cerebral cortex. Furthermore, the results show that FA was capable to increase SOD, CAT and GSH-Px activities and decrease TBA-RS levels in the blood, hippocampus and cerebral cortex. These findings demonstrated that FA treatment in low doses is capable to exert antidepressant-like effect with the involvement of the antioxidant defense system modulation.


Assuntos
Antidepressivos/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ácidos Cumáricos/farmacologia , Animais , Antidepressivos de Segunda Geração/farmacologia , Química Encefálica/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Fluoxetina/farmacologia , Elevação dos Membros Posteriores/psicologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Natação/psicologia
17.
Sci Technol Adv Mater ; 15(3): 035002, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27877678

RESUMO

We developed a nitroxide radicals-containing polymer (NRP), which is composed of poly(4-methylstyrene) possessing nitroxide radicals as a side chain via amine linkage, to scavenge reactive oxygen species (ROS) from cigarette smoke. In this study, the NRP was coated onto cigarette filters and its ROS-scavenging activity from streaming cigarette smoke was evaluated. The intensity of electron spin resonance signals of the NRP in the filter decreased after exposure to cigarette smoke, indicating consumption of nitroxide radicals. To evaluate the ROS-scavenging activity of the NRP-coated filter, the amount of peroxy radicals in an extract of cigarette smoke was measured using UV-visible spectrophotometry and 1,1-diphenyl-2-picrylhydrazyl (DPPH). The absorbance of DPPH at 517 nm decreased with exposure to cigarette smoke. When NRP-coated filters were used, the decrease in the absorbance of DPPH was prevented. In contrast, both poly[4-(cyclohexylamino)methylstyrene]- and poly(acrylic acid)-coated filters, which have no nitroxide radical, did not show any effect, indicating that the nitroxide radicals in the NRP scavenge the ROS in cigarette smoke. As a result, the extract of cigarette smoke passed through the NRP-coated filter has a lower cellular toxicity than smoke passed through poly[4-(cyclohexylamino)methylstyrene]- and poly(acrylic acid)-coated filters. Accordingly, NRP is a promising material for ROS scavenging from cigarette smoke.

18.
J Adv Res ; 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38286301

RESUMO

INTRODUCTION: Oxidative stress is one of the major contributors to acute alcoholic liver injury (AALI), which is a common alcoholic liver disease. Quercetin and catechin are flavonoid antioxidants present in plant foods and possess chemopreventive and chemotherapeutic activities. Quercetin and catechin are often included in the same meal and ingested together. While they show cooperative actions against oxidative damage, the underlying mechanisms behind their counteracting effects against oxidative stress-induced AALI remain poorly understood. OBJECTIVES: The aim of this study was to understand the mechanism underlying the enhanced antioxidant effect of quercetin-catechin combination to alleviate AALI in rats. METHODS: The ethanol (EtOH)-treated rats and H2O2-treated liver cells were used to demonstrate the enhanced antioxidant effect of quercetin and catechin. Then we used RNA-sequencing to compare quercetin alone, catechin alone and quercetin-catechin combination and then identified the critical role of IKKα combining with gene silencing and overexpression techniques. Its transcription factor, FOXO3 was found through yeast one-hybrid assay, luciferase reporter assay, EMSA and ChIP assay. Finally, the interaction between quercetin, catechin and FOXO3 was verified through molecular docking, UV-Vis absorption spectroscopy, fluorescence spectroscopy, and CD spectroscopy. RESULTS: The study demonstrated the enhanced antioxidant effect of a quercetin-catechin combination in EtOH-treated rats and in H2O2-treated liver cells. Quercetin and catechin cooperatively inhibited IKKα/p53 pathway and activated Nrf2 signaling pathway. IKKα was a critical negative regulator in their joint action. FOXO3 bound to IKKα promoter to regulate IKKα transcription. Quercetin and catechin influenced FOXO3-IKKα binding through attaching directly to FOXO3 at different sites and altering FOXO3's secondary structures. CONCLUSION: Our study revealed the mechanism of quercetin and catechin against oxidative stress-induced AALI through jointly interacting with transcription factor. This research opens new vistas for examining the joint effect of therapeutics towards functional proteins and confirms the chemopreventive effects of multiple flavonoids via co-regulation.

19.
J Control Release ; 365: 398-411, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007194

RESUMO

Secretory otitis media (SOM) is a clinical condition characterized by the accumulation of fluids and oxidative stress in the middle ear, leading to hearing impairment and infection complications. One potential solution for mitigating oxidative stress associated with SOM is the use of antioxidants such as astaxanthin. However, its effectiveness is limited due to its poor bioavailability and rapid oxidation. Herein, we developed a novel diselenium-crosslinked apotransferrin enriched with astaxanthin (AST@dSe-AFT) nanoparticles to augment the transport of astaxanthin across biological membranes, resulting in increased bioavailability and reduced oxidative stress in SOM. Our research demonstrated that AST@dSe-AFT efficiently accumulated in the middle ear, allowing for controlled delivery of astaxanthin in response to reactive oxygen species and reducing oxidative stress. Additionally, AST@dSe-AFT stimulated macrophages to polarize towards M2 phenotype and neutrophils to polarize towards N2 phenotype, thereby facilitating an anti-inflammatory response and tissue restoration. Importantly, AST@dSe-AFT exhibited no toxicity or adverse effects, suggesting its potential for safety and future clinical translation. Our findings suggested that AST@dSe-AFT represents a promising approach for the treatment of secretory otitis media and other oxidative stress-related disorders.


Assuntos
Apoproteínas , Nanopartículas , Otite Média com Derrame , Transferrina , Humanos , Otite Média com Derrame/tratamento farmacológico , Antioxidantes/uso terapêutico , Estresse Oxidativo , Xantofilas
20.
Phytomedicine ; 132: 155814, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38878526

RESUMO

BACKGROUND: Alcohol-associated liver disease (ALD) is a prevalent liver ailment. It has escalated into a significant public health issue, imposing substantial burdens on medical, economic, and social domains. Currently, oxidative stress, inflammation, and apoptosis are recognized as crucial culprits in improving ALD. Consequently, mitigating these issues has emerged as a promising avenue for enhancing ALD. Hydroxysafflor yellow A (HSYA) is the main ingredient in safflower, showing excellent antioxidative stress, anti-inflammatory, and anti-apoptosis traits. However, there are limited investigations into the mechanisms by which HSYA ameliorates ALD PURPOSE: We investigated whether HSYA, a significant constituent of Asteraceae safflower, exerts antioxidant stress and attenuates inflammation and anti-apoptotic effects through PI3K/Akt and STAT3/NF-κB pathways, thereby ameliorating ALD METHODS: We established two experimental models: an ethanol-induced liver damage mouse model in vivo and a HepG2 cell alcohol injury model in vitro RESULTS: The results demonstrated that HSYA effectively ameliorated liver tissue damage, reduced levels of ALT, AST, LDL-C, TG, TC, and MDA, enhanced HDL-C levels, SOD and GSH activities, reduced ROS accumulation in cells, and activated the Nrf2 pathway, a transcription factor involved in antioxidant defense. By regulating the PI3K/Akt and STAT3/NF-κB pathways, HSYA exhibits notable antioxidative stress, anti-inflammatory, and anti-apoptotic effects, effectively impeding ALD's advancement. To further confirm the regulatory effect of HSYA on PI3K/Akt and downstream signaling pathways, the PI3K activator 740 Y-P was used and was found to reverse the downregulation of PI3K by HSYA CONCLUSION: This study supports the effectiveness of HSYA in reducing ALD by regulating the PI3K/Akt and STAT3/NF-κB pathways, indicating its potential medicinal value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA