Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Foodborne Pathog Dis ; 18(10): 744-751, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34197219

RESUMO

The objective of this study was to evaluate the inhibitory effect of lactic acid (LA) and peroxyacetic acid (PAA) on the biofilm formation of Escherichia coli O157:H7 in beef extract (BE). BE medium was used as the growth substrate in this study, to make the control effect closer to the situation of the factory. The biofilm inhibitory efficacy of LA and PAA was tested by using a crystal violet staining assay and microscopic examination. And then, extracellular polymeric substance (EPS) production, metabolic activity, and real-time polymerase chain reaction assay were used to reveal the biofilm inhibition mechanism of LA and PAA. The results showed that both LA and PAA significantly inhibited biofilm formation of E. coli O157:H7 at minimum inhibitory concentrations (MICs) (p < 0.05). At MIC, LA and PAA showed different effects on the biofilm metabolic activity and the EPS production of E. coli O157:H7. Supporting these findings, expression analysis showed that LA significantly suppressed quorum sensing genes (luxS and sdiA) and adhesion genes (flhC), while PAA downregulated the transcription of extracellular polysaccharide synthesis genes (adrB and adrA) and the global regulatory factor csgD. This result revealed that LA and PAA had different biofilm inhibitory mechanisms on E. coli O157:H7; LA inhibited the biofilm formation mainly by inhibiting metabolic activity, while PAA inhibited EPS production. This study provided a theoretical basis for the control of E. coli O157:H7 biofilm in the actual production process.


Assuntos
Escherichia coli O157 , Animais , Biofilmes , Bovinos , Contagem de Colônia Microbiana , Escherichia coli O157/genética , Matriz Extracelular de Substâncias Poliméricas , Ácido Láctico , Ácido Peracético/farmacologia , Extratos Vegetais
2.
J Dent ; 143: 104888, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342369

RESUMO

OBJECTIVES: Dental biofilm is one of the most prevalent diseases in humans, which is mediated by multiple microorganisms. Globally, half of the human population suffers from dental biofilm and its associated diseases. In recent trends, nano-formulated drugs are highly attractive in the treatment of dental biofilms. However, the impact of different types of nanodrugs on the dental biofilm and its associated pathogens have not been published till date. Thus, this review focuses on the recent updates, feasibility, mechanisms, limitations, and regulations of nanodrugs applications in the prevention and eradication of dental biofilm. STUDY SELECTION, DATA AND SOURCES: A systematic search was conducted in PubMed/Google Scholar/Scopus over the past five years covering the major keywords "nanodrugs, metallic nanoparticles, metal oxide nanoparticles, natural polymers, synthetic polymers, biomaterials, dental biofilm, antibiofilm mechanism, dental pathogens", are reviewed in this study. Nearly, 100 scientific articles are selected in this relevant topic published between 2019 and 2023. Data from the selected studies dealing with nanodrugs used for biofilm treatment was qualitatively analyzed. CONCLUSIONS: The nanodrugs such as silver nanoparticles, gold nanoparticles, selenium nanoparticles, zinc oxide nanoparticles, copper oxide nanoparticles, titanium oxide nanoparticles, hydroxyapatite nanoparticles and these inorganic nanoparticles incorporated polymer-based nanocomposites, organic/inorganic nanoparticles mediated antimicrobial photodynamic therapy exhibits an excellent antibacterial and antibiofilm activity towards dental pathogens. Finally, this review highlights that bioinspired nanodrugs will be very useful to control the dental biofilm and its associated diseases. CLINICAL SIGNIFICANCE: Microbial influence on the oral environment is unavoidable; therefore, curing such dental biofilms and pathogens is essential for the impactful reflection of applying biocompatible treatments. In this direction, the current review explains the demand for the nanodrug in inhibiting biofilms for the effective exploration of employing treatments.


Assuntos
Biofilmes , Biofilmes/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Nanopartículas
3.
Front Cell Infect Microbiol ; 13: 1140689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701779

RESUMO

Introduction: Dental caries is one of the most common and costly biofilm-dependent oral diseases in the world. Streptococcus mutans is the major cariogenic pathogen of dental caries. S. mutans synthesizes extracellular polysaccharides by autologous glucosyltransferases, which then promotes bacterial adhesion and cariogenic biofilm formation. The S. mutans biofilm is the principal target for caries treatment. This study was designed to explore the antibacterial activity and mechanisms of areca nut essential oil (ANEO) against S. mutans. Methods: The ANEOs were separated by negative pressure hydro-distillation. The Kirby-Bauer method and broth microdilution method were carried out to evaluate the antibacterial activity of different ANEOs. The antibacterial mechanism was revealed by crystal violet staining, XTT reduction, microbial adhesion to hydrocarbon test, extracellular polysaccharide production assay, glucosyltransferase activity assay, lactate dehydrogenase leaking, propidium iodide staining and scanning electron microscopy (SEM). The cytotoxicity of ANEOs was determine by MTT assay. Results: The ANEOs separated at different temperatures exhibited different levels of antibacterial activity against S. mutans, and the ANEO separated at 70°C showed the most prominent bacteriostatic activity. Anti-biofilm experiments showed that the ANEOs attenuated the adhesion ability of S. mutans by decreasing the surface hydrophobicity of the bacteria, prevented S. mutans biofilm formation by inhibiting glucosyltransferase activity, reducing extracellular polysaccharide synthesis, and reducing the total biofilm biomass and activity. SEM further demonstrated the destructive effects of the ANEOs on the S. mutans biofilm. Cell membrane-related experiments indicated that the ANEOs destroyed the integrity of the cell membrane, resulting in the leakage of lactic dehydrogenase and nucleic acids. SEM imaging of S. mutans cell showed the disruption of the cellular morphology by the ANEOs. The cytotoxicity assay suggested that ANEO was non-toxic towards normal oral epithelial cells. Discussion: This study displayed that ANEOs exerted antibacterial activity against S. mutans primarily by affecting the biofilm and disrupting the integrity of the cell membrane. ANEOs has the potential to be developed as an antibacterial agent for preventing dental caries. Additionally, a new method for the separation of essential oil components is presented.


Assuntos
Areca , Cárie Dentária , Streptococcus mutans , Nozes , Membrana Celular , Antibacterianos/farmacologia , Glucosiltransferases
4.
Nanomaterials (Basel) ; 13(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37836366

RESUMO

A biofilm is a microbial community formed by bacteria that adsorb on the surface of tissues or materials and is wrapped in extracellular polymeric substances (EPS) such as polysaccharides, proteins and nucleic acids. As a protective barrier, the EPS can not only prevent the penetration of antibiotics and other antibacterial agents into the biofilm, but also protect the bacteria in the biofilm from the attacks of the human immune system, making it difficult to eradicate biofilm-related infections and posing a serious threat to public health. Therefore, there is an urgent need to develop new and efficient antibiofilm drugs. Although natural enzymes (lysozyme, peroxidase, etc.) and antimicrobial peptides have excellent bactericidal activity, their low stability in the physiological environment and poor permeability in biofilms limit their application in antibiofilms. With the development of materials science, more and more nanomaterials are being designed to be utilized for antimicrobial and antibiofilm applications. Nanomaterials have great application prospects in antibiofilm because of their good biocompati-bility, unique physical and chemical properties, adjustable nanostructure, high permeability and non-proneness to induce bacterial resistance. In this review, with the application of composite nanomaterials in antibiofilms as the theme, we summarize the research progress of three types of composite nanomaterials, including organic composite materials, inorganic materials and organic-inorganic hybrid materials, used as antibiofilms with non-phototherapy and phototherapy modes of action. At the same time, the challenges and development directions of these composite nanomaterials in antibiofilm therapy are also discussed. It is expected we will provide new ideas for the design of safe and efficient antibiofilm materials.

5.
Viruses ; 14(5)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35632801

RESUMO

The bacterial biofilm constitutes a complex environment that endows the bacterial community within with an ability to cope with biotic and abiotic stresses. Considering the interaction with bacterial viruses, these biofilms contain intrinsic defense mechanisms that protect against phage predation; these mechanisms are driven by physical, structural, and metabolic properties or governed by environment-induced mutations and bacterial diversity. In this regard, horizontal gene transfer can also be a driver of biofilm diversity and some (pro)phages can function as temporary allies in biofilm development. Conversely, as bacterial predators, phages have developed counter mechanisms to overcome the biofilm barrier. We highlight how these natural systems have previously inspired new antibiofilm design strategies, e.g., by utilizing exopolysaccharide degrading enzymes and peptidoglycan hydrolases. Next, we propose new potential approaches including phage-encoded DNases to target extracellular DNA, as well as phage-mediated inhibitors of cellular communication; these examples illustrate the relevance and importance of research aiming to elucidate novel antibiofilm mechanisms contained within the vast set of unknown ORFs from phages.


Assuntos
Bacteriófagos , Bactérias/genética , Bacteriófagos/genética , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA