Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 394
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(5): 895-914.e27, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142680

RESUMO

A safe and controlled manipulation of endocytosis in vivo may have disruptive therapeutic potential. Here, we demonstrate that the anti-emetic/anti-psychotic prochlorperazine can be repurposed to reversibly inhibit the in vivo endocytosis of membrane proteins targeted by therapeutic monoclonal antibodies, as directly demonstrated by our human tumor ex vivo assay. Temporary endocytosis inhibition results in enhanced target availability and improved efficiency of natural killer cell-mediated antibody-dependent cellular cytotoxicity (ADCC), a mediator of clinical responses induced by IgG1 antibodies, demonstrated here for cetuximab, trastuzumab, and avelumab. Extensive analysis of downstream signaling pathways ruled out on-target toxicities. By overcoming the heterogeneity of drug target availability that frequently characterizes poorly responsive or resistant tumors, clinical application of reversible endocytosis inhibition may considerably improve the clinical benefit of ADCC-mediating therapeutic antibodies.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Neoplasias/tratamento farmacológico , Proclorperazina/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Apresentação de Antígeno/efeitos dos fármacos , Biópsia , Cetuximab/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Endocitose/efeitos dos fármacos , Endocitose/imunologia , Xenoenxertos , Humanos , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células MCF-7 , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Trastuzumab/farmacologia
2.
Immunity ; 57(3): 559-573.e6, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479361

RESUMO

Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with B cell lymphomas. EBV glycoprotein 42 (gp42) binds HLA class II and activates membrane fusion with B cells. We isolated gp42-specific monoclonal antibodies (mAbs), A10 and 4C12, which use distinct mechanisms to neutralize virus infection. mAb A10 was more potent than the only known neutralizing gp42 mAb, F-2-1, in neutralizing EBV infection and blocking binding to HLA class II. mAb 4C12 was similar to mAb A10 in inhibiting glycoprotein-mediated B cell fusion but did not block receptor binding, and it was less effective in neutralizing infection. Crystallographic structures of gH/gL/gp42/A10 and gp42/4C12 complexes revealed two distinct sites of vulnerability on gp42 for receptor binding and B cell fusion. Passive transfer of mAb A10 into humanized mice conferred nearly 100% protection from viremia and EBV lymphomas after EBV challenge. These findings identify vulnerable sites on EBV that may facilitate therapeutics and vaccines.


Assuntos
Benzenoacetamidas , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Piperidonas , Animais , Camundongos , Proteínas Virais/metabolismo , Glicoproteínas/metabolismo , Anticorpos Antivirais
3.
Proc Natl Acad Sci U S A ; 121(3): e2315354120, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194459

RESUMO

The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal secretory IgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.


Assuntos
Anticorpos Monoclonais , Imunoglobulina A Secretora , Animais , Camundongos , Humanos , Imunoglobulina G , Imunoglobulina A , Administração Intranasal , Camundongos Transgênicos
4.
Proc Natl Acad Sci U S A ; 121(5): e2313397121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252815

RESUMO

Non-small cell lung cancer (NSCLC), a major life-threatening disease accounting for 85% of all lung cancer cases, has been treated with tyrosine kinase inhibitors (TKIs), but often resulted in drug resistance, and approximately 60% of TKI-resistant cases are due to acquired secondary (epithelial growth factor receptor) EGFR-T790M mutation. To identify alternative targets for TKI-resistant NSCLC with EGFR-T790M mutation, we found that the three globo-series glycosphingolipids are increasingly expressed on this type of NSCLC cell lines, and among them, the increase of stage-specific embryonic antigen-4 (SSEA-4) expression is the most significant. Compared to TKI-sensitive cell lines, SSEA-4 and the key enzyme ß3GalT5 responsible for the synthesis of SSEA3 are more expressed in TKI-resistant NSCLC cell lines with EGFR-T790M mutation, and the expression levels strongly correlate with poor survival in patients with EGFR mutation. In addition, we demonstrated that a SSEA-4 targeted monoclonal antibody, especially the homogeneous glycoform with well-defined Fc glycan designed to improve effective functions, is highly effective against this subpopulation of NSCLC in cell-based and animal studies. These findings provide a direction for the prediction of tumor recurrence and treatment of TKI-resistant NSCLC with EGFR-T790M mutation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígenos Embrionários Estágio-Específicos , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Recidiva Local de Neoplasia
5.
Annu Rev Med ; 75: 49-66, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285513

RESUMO

Prostate-specific membrane antigen (PSMA) as a transmembrane protein is overexpressed by prostate cancer (PC) cells and is accessible for binding antibodies or low-molecular-weight radioligands due to its extracellular portion. Successful targeting of PSMA began with the development of humanized J591 antibody. Due to their faster clearance compared to antibodies, small-molecule radioligands for targeted imaging and therapy of PC have been favored in recent development efforts. PSMA positron emission tomography (PET) imaging has higher diagnostic performance than conventional imaging for initial staging of high-risk PC and biochemical recurrence detection/localization. However, it remains to be demonstrated how to integrate PSMA PET imaging for therapy response assessment and as an outcome endpoint measure in clinical trials. With the recent approval of 177Lu-PSMA-617 by the US Food and Drug Administration for metastatic castration-resistant PC progressing after chemotherapy, the high value of PSMA-targeted therapy was confirmed. Compared to standard of care, PSMA-based radioligand therapy led to a better outcome and a higher quality of life. This review, focusing on the advanced PC setting, provides an overview of different approved and nonapproved PSMA-targeted imaging and therapeutic modalities and discusses the future of PSMA-targeted theranostics, also with an outlook on non-radiopharmaceutical-based PSMA-targeted therapies.


Assuntos
Neoplasias da Próstata , Qualidade de Vida , Estados Unidos , Masculino , Humanos , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/terapia , Tomografia por Emissão de Pósitrons , Medicina de Precisão
6.
Proc Natl Acad Sci U S A ; 120(42): e2307914120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37816055

RESUMO

Cancer-associated fibroblasts (CAFs) play vital roles in establishing a suitable tumor microenvironment. In this study, RNA sequencing data revealed that CAFs could promote cell proliferation, angiogenesis, and ECM reconstitution by binding to integrin families and activating PI3K/AKT pathways in esophageal squamous cell carcinoma (ESCC). The secretions of CAFs play an important role in regulating these biological activities. Among these secretions, we found that MFGE8 is specifically secreted by CAFs in ESCC. Additionally, the secreted MFGE8 protein is essential in CAF-regulated vascularization, tumor proliferation, drug resistance, and metastasis. By binding to Integrin αVß3/αVß5 receptors, MFGE8 promotes tumor progression by activating both the PI3K/AKT and ERK/AKT pathways. Interestingly, the biological function of MFGE8 secreted by CAFs fully demonstrated the major role of CAFs in ESCC and its mode of mechanism, showing that MFGE8 could be a driver factor of CAFs in remodeling the tumor environment. In vivo treatment targeting CAFs-secreting MFGE8 or its receptor produced significant inhibitory effects on ESCC growth and metastasis, which provides an approach for the treatment of ESCC.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Fibroblastos Associados a Câncer/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Fibroblastos/metabolismo , Microambiente Tumoral , Antígenos de Superfície/metabolismo , Proteínas do Leite/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(4): e2200057120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649432

RESUMO

Antibody delivery to the CNS remains a huge hurdle for the clinical application of antibodies targeting a CNS antigen. The blood-brain barrier and blood-CSF barrier restrict access of therapeutic antibodies to their CNS targets in a major way. The very high amounts of therapeutic antibodies that are administered systemically in recent clinical trials to reach CNS targets are barely viable cost-wise for broad, routine applications. Though global CNS delivery of antibodies can be achieved by intrathecal application, these procedures are invasive. A non-invasive method to bring antibodies into the CNS reliably and reproducibly remains an important unmet need in neurology. In the present study, we show that intranasal application of a mouse monoclonal antibody against the neurite growth-inhibiting and plasticity-restricting membrane protein Nogo-A leads to a rapid transfer of significant amounts of antibody to the brain and spinal cord in intact adult rats. Daily intranasal application for 2 wk of anti-Nogo-A antibody enhanced growth and compensatory sprouting of corticofugal projections and functional recovery in rats after large unilateral cortical strokes. These findings are a starting point for clinical translation for a less invasive route of application of therapeutic antibodies to CNS targets for many neurological indications.


Assuntos
Anticorpos Monoclonais , Proteínas da Mielina , Animais , Ratos , Encéfalo/metabolismo , Proteínas da Mielina/metabolismo , Proteínas Nogo , Medula Espinal/metabolismo , Anticorpos Monoclonais/administração & dosagem , Administração Intranasal
8.
J Virol ; 98(7): e0062824, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38899895

RESUMO

The potency of antibody neutralization in cell culture has been used as the key criterion for selection of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for clinical development. As other aspects may also influence the degree of protection in vivo, we compared the efficacy of two neutralizing monoclonal antibodies (TRES6 and 4C12) targeting different epitopes of the receptor binding domain (RBD) of SARS-CoV-2 in a prophylactic setting in rhesus monkeys. All four animals treated with TRES6 had reduced viral loads in the upper respiratory tract 2 days after naso-oropharyngeal challenge with the Alpha SARS-CoV-2 variant. Starting 2 days after challenge, mutations conferring resistance to TRES6 were dominant in two of the rhesus monkeys, with both animals failing to maintain reduced viral loads. Consistent with its lower serum neutralization titer at the day of challenge, prophylaxis with 4C12 tended to suppress viral load at day 2 less efficiently than TRES6. However, a week after challenge, mean viral loads in the lower respiratory tract in 4C12-treated animals were lower than in the TRES6 group and no mutations conferring resistance to 4C12 could be detected in viral isolates from nasal or throat swabs. Thus, genetic barrier to resistance seems to be a critical parameter for the efficacy of prophylaxis with monoclonal antibodies against SARS-CoV-2. Furthermore, comparison of antibody concentrations in respiratory secretions to those in serum shows reduced distribution of the 4C12 antibody into respiratory secretions and a delay in the appearance of antibodies in bronchoalveolar lavage fluid compared to their appearance in secretions of the upper respiratory tract.IMPORTANCEMonoclonal antibodies are a powerful tool for the prophylaxis and treatment of acute viral infections. Hence, they were one of the first therapeutic agents licensed for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Oftentimes, the main criterion for the selection of antibodies for clinical development is their potency of neutralization in cell culture. By comparing two antibodies targeting the Spike protein of SARS-CoV-2, we now observed that the antibody that neutralized SARS-CoV-2 more efficiently in cell culture suppressed viral load in challenged rhesus monkeys to a lesser extent. Extraordinary rapid emergence of mutants of the challenge virus, which had lost their sensitivity to the antibody, was identified as the major reason for the reduced efficacy of the antibody in rhesus monkeys. Therefore, the viral genetic barrier to resistance to antibodies also affects their efficacy.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Modelos Animais de Doenças , Macaca mulatta , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Carga Viral , Animais , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Monoclonais/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/prevenção & controle , Anticorpos Antivirais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Humanos , Mutação , Epitopos/imunologia , Testes de Neutralização
9.
Artigo em Inglês | MEDLINE | ID: mdl-39207508

RESUMO

The use of the serum or plasma of patients or animals who have recovered from an infectious disease, or had been immunized with a relevant antigen, to treat or prevent the same infection in others began in the late 1880s when French and German scientists uncovered, one step at a time, several of the elements of the immune system's response to infection. A key finding was that the damage caused by some bacteria depends upon their secreted toxins which can be neutralized by biologic agents. Antitoxins to diphtheria and tetanus began to be manufactured in large animals in France, Germany, and the US in the 1890s and were soon being used worldwide. The impact of diphtheria antitoxin on childhood mortality was profound. Shortly after the development of antitoxins, convalescent serum began to be used for its anti-bactericidal properties thus addressing serious infections caused by non-toxin-producing organisms. The effectiveness of antitoxins and antisera was demonstrated by examining mortality rates in hospitals before and after the introduction of antitoxins, by comparisons of treated and untreated patients, by comparing early and late treatment and dosage, by examining vital data mortality trends, and by several randomized and alternate assignment trials. Antitoxins continue to have a role in the rare cases of diphtheria and other conditions largely eradicated by immunization, but serum therapy nearly disappeared from the medical armamentarium with the development of antibiotics in the 1940s. Inasmuch as new human pathogens are now emerging with unprecedented regularity as seen in the recent COVID-19 pandemic, and because specific therapies are unlikely to be available for them, plasma-based antibody therapies are likely to again carve out a niche in infectious disease control.

10.
Int J Cancer ; 154(3): 425-433, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728485

RESUMO

Lipolysis-stimulated lipoprotein receptor (LSR) is known as a lipoprotein receptor. LSR is expressed in various solid tumors, including epithelial ovarian, gastric, and colon cancers. High LSR expression is significantly associated with poor prognosis, but its role in cancer has not been fully elucidated. LSR belongs to the Ig protein superfamily, which is conserved in B7 family. Here, we assessed LSR as a novel immune checkpoint molecule. We developed a novel anti-LSR antibody (#27-6 mF-18) that defects antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity activity. The #27-6 mF-18 cross-reacts with both human and mouse LSR. We found that LSR was expressed on 4T1 murine breast cancer cell line. The #27-6 mF-18 exhibited antitumor effects against the 4T1 syngeneic tumor model, a poor immunogenic model refractory to treatment with anti-PD-1 or anti-CTLA-4 antibodies. Compared with control antibody-treated mice, mice treated with #27-6 mF-18 showed significantly increased numbers of CD8+ T cells and a ratio of activated CD8+ T cells infiltrated in the tumor tissue. This antitumor effect was abrogated by CD8+ T-cell depletion through anti-CD8 antibody treatment, indicating that LSR negatively regulates tumor immunity by repressing CD8+ T cells. These findings show that LSR negatively regulates T-cell immune activity. LSR targeting could provide immune checkpoint inhibitors for cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Receptores de Lipoproteínas , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos/metabolismo , Lipólise , Proteínas/metabolismo , Receptores de Lipoproteínas/metabolismo , Células MCF-7 , Linhagem Celular Tumoral
11.
EMBO J ; 39(8): e102811, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32175624

RESUMO

The C9orf72 repeat expansion causes amyotrophic lateral sclerosis and frontotemporal dementia, but the poor correlation between C9orf72-specific pathology and TDP-43 pathology linked to neurodegeneration hinders targeted therapeutic development. Here, we addressed the role of the aggregating dipeptide repeat proteins resulting from unconventional translation of the repeat in all reading frames. Poly-GA promoted cytoplasmic mislocalization and aggregation of TDP-43 non-cell-autonomously, and anti-GA antibodies ameliorated TDP-43 mislocalization in both donor and receiver cells. Cell-to-cell transmission of poly-GA inhibited proteasome function in neighboring cells. Importantly, proteasome inhibition led to the accumulation of TDP-43 ubiquitinated within the nuclear localization signal (NLS) at lysine 95. Mutagenesis of this ubiquitination site completely blocked poly-GA-dependent mislocalization of TDP-43. Boosting proteasome function with rolipram reduced both poly-GA and TDP-43 aggregation. Our data from cell lines, primary neurons, transgenic mice, and patient tissue suggest that poly-GA promotes TDP-43 aggregation by inhibiting the proteasome cell-autonomously and non-cell-autonomously, which can be prevented by inhibiting poly-GA transmission with antibodies or boosting proteasome activity with rolipram.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dipeptídeos/metabolismo , Demência Frontotemporal/patologia , Transporte Ativo do Núcleo Celular , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteína C9orf72/genética , Citoplasma/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Demência Frontotemporal/metabolismo , Células HeLa , Humanos , Masculino , Camundongos , Neurônios/metabolismo , Sinais de Localização Nuclear , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregação Patológica de Proteínas , Ubiquitina/metabolismo
12.
Br J Haematol ; 204(5): 1811-1815, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38171355

RESUMO

Systemic light chain (AL) amyloidosis is a relapsing plasma cell disorder. Therapy is limited, particularly for triple-class refractory disease. We report the use of belantamab mafodotin, a BCMA-directed drug-antibody conjugate, for relapsed AL amyloidosis, including patients traditionally excluded from clinical trials. Thirty-one patients were reviewed, with a median of three prior lines of therapy. The median follow-up was 12 months (95% CI 4-19), and a median of five doses were delivered. The best haematological overall response rate was 71%, and the complete/very good partial response was 58%. Sixty-eight percent had keratopathy and improved in all. Belantamab mafodotin has high efficacy and good tolerability in patients with relapsed AL amyloidosis.


Assuntos
Anticorpos Monoclonais Humanizados , Amiloidose de Cadeia Leve de Imunoglobulina , Humanos , Amiloidose de Cadeia Leve de Imunoglobulina/tratamento farmacológico , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Recidiva , Idoso de 80 Anos ou mais , Resultado do Tratamento , Estudos Retrospectivos , Adulto
13.
Br J Haematol ; 204(6): 2233-2236, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38504454

RESUMO

The bendamustine-rituximab (BR) schedule is an efficient first-line therapy in Waldenström macroglobulinaemia (WM). A previous analysis of 69 patients who received this treatment confirmed a high response rate and good progression-free (PFS) and overall survival (OS). With a median follow-up of 76.1 months (95% confidence interval [CI] 69.9-80.6), 5-year outcome is still excellent at 66.63% (95% CI 56.09-79.17) for PFS and 80.01% (95% CI 70.82-90.41) for OS. The rate of secondary cancers is 17.66% (IQR 7.99-27.64) at 66 months. Relapsed patients who received ibrutinib as second-line clearly benefited from this schedule. This confirms current recommendations suggesting BR long-term efficacy as first-line option in WM.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Cloridrato de Bendamustina , Rituximab , Macroglobulinemia de Waldenstrom , Humanos , Cloridrato de Bendamustina/administração & dosagem , Cloridrato de Bendamustina/uso terapêutico , Macroglobulinemia de Waldenstrom/tratamento farmacológico , Macroglobulinemia de Waldenstrom/mortalidade , Rituximab/administração & dosagem , Rituximab/uso terapêutico , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Idoso de 80 Anos ou mais , França , Seguimentos , Resultado do Tratamento
14.
Br J Haematol ; 204(6): 2227-2232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38504552

RESUMO

Due in part to racial disparities and underrepresentation in clinical studies, optimal therapies for Black patients with multiple myeloma remain undefined. This final analysis of GRIFFIN by race showed that the addition of daratumumab (D) to lenalidomide/bortezomib/dexamethasone (RVd) provides clinical benefit among both Black and White transplant-eligible newly diagnosed patients compared with RVd alone. However, Black patients were more likely to discontinue ≥1 drug due to treatment-emergent adverse events. In summary, these findings suggest a benefit of D-RVd front-line therapy among Black and White patients and underscore the importance of equitable treatment access for all patients.


Assuntos
Anticorpos Monoclonais , Protocolos de Quimioterapia Combinada Antineoplásica , Bortezomib , Dexametasona , Lenalidomida , Mieloma Múltiplo , Humanos , Lenalidomida/administração & dosagem , Lenalidomida/efeitos adversos , Lenalidomida/uso terapêutico , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Dexametasona/uso terapêutico , Bortezomib/administração & dosagem , Bortezomib/efeitos adversos , Bortezomib/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Mieloma Múltiplo/tratamento farmacológico , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/uso terapêutico , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Negro ou Afro-Americano
15.
Am J Physiol Heart Circ Physiol ; 326(1): H89-H95, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947435

RESUMO

Long QT syndrome (LQTS) type 3 although less common than the first two forms, differs in that arrhythmic events are less likely triggered by adrenergic stimuli and are more often lethal. Effective pharmacological treatment is challenged by interindividual differences, mutation dependence, and adverse effects, translating into an increased use of invasive measures (implantable cardioverter-defibrillator, sympathetic denervation) in patients with LQTS type 3. Previous studies have demonstrated the therapeutic potential of polyclonal KCNQ1 antibody for LQTS type 2. Here, we sought to identify a monoclonal KCNQ1 antibody that preserves the electrophysiological properties of the polyclonal form. Using hybridoma technology, murine monoclonal antibodies were generated, and patch clamp studies were performed for functional characterization. We identified a monoclonal KCNQ1 antibody able to normalize cardiac action potential duration and to suppress arrhythmias in a pharmacological model of LQTS type 3 using human-induced pluripotent stem cell-derived cardiomyocytes.NEW & NOTEWORTHY Long QT syndrome is a leading cause of sudden cardiac death in the young. Recent research has highlighted KCNQ1 antibody therapy as a new treatment modality for long QT syndrome type 2. Here, we developed a monoclonal KCNQ1 antibody that similarly restores cardiac repolarization. Moreover, the identified monoclonal KCNQ1 antibody suppresses arrhythmias in a cellular model of long QT syndrome type 3, holding promise as a first-in-class antiarrhythmic immunotherapy.


Assuntos
Canal de Potássio KCNQ1 , Síndrome do QT Longo , Humanos , Camundongos , Animais , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/terapia , Síndrome do QT Longo/tratamento farmacológico , Arritmias Cardíacas , Miócitos Cardíacos , Imunoterapia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico
16.
J Med Virol ; 96(3): e29541, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516779

RESUMO

Effective therapies for reducing post-acute sequelae of COVID-19 (PASC) symptoms are lacking. Evaluate the association between monoclonal antibody (mAb) treatment or COVID-19 vaccination with symptom recovery in COVID-19 participants. The longitudinal survey-based cohort study was conducted from April 2021 to January 2022 across a multihospital Colorado health system. Adults ≥18 years with a positive SARS-CoV-2 test were included. Primary exposures were mAb treatment and COVID-19 vaccination. The primary outcome was time to symptom resolution after SARS-CoV-2 positive test date. The secondary outcome was hospitalization within 28 days of a positive SARS-CoV-2 test. Analysis included 1612 participants, 539 mAb treated, and 486 with ≥2 vaccinations. Time to symptom resolution was similar between mAb treated versus untreated patients (adjusted hazard ratio (aHR): 0.90, 95% CI: 0.77-1.04). Time to symptom resolution was shorter for patients who received ≥2 vaccinations compared to those unvaccinated (aHR: 1.56, 95% CI: 1.31-1.88). 28-day hospitalization risk was lower for patients receiving mAb therapy (adjusted odds ratio [aOR]: 0.31, 95% CI: 0.19-0.50) and ≥2 vaccinations (aOR: 0.33, 95% CI: 0.20-0.55), compared with untreated or unvaccinated status. Analysis included 1612 participants, 539 mAb treated, and 486 with ≥2 vaccinations. Time to symptom resolution was similar between mAb treated versus untreated patients (adjusted hazard ratio (aHR): 0.90, 95% CI: 0.77-1.04). Time to symptom resolution was shorter for patients who received ≥2 vaccinations compared to those unvaccinated (aHR: 1.56, 95% CI: 1.31-1.88). 28-day hospitalization risk was lower for patients receiving mAb therapy (adjusted odds ratio [aOR]: 0.31, 95% CI: 0.19-0.50) and ≥2 vaccinations (aOR: 0.33, 95% CI: 0.20-0.55), compared with untreated or unvaccinated status. COVID-19 vaccination, but not mAb therapy, was associated with a shorter time to symptom resolution. Both were associated with lower 28-day hospitalization.


Assuntos
COVID-19 , Adulto , Humanos , COVID-19/diagnóstico , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos de Coortes , SARS-CoV-2 , Anticorpos Monoclonais/uso terapêutico , Vacinação
17.
Adv Exp Med Biol ; 1445: 157-168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38967758

RESUMO

As the locus for air exchange, lung tissue is perpetually exposed to a significant quantity of foreign pathogens. Consequently, lung has developed a refined and intricate immune system. Beyond their physical and chemical barrier roles, lung epithelial cells can contribute to immune defence through the expression of Toll-like receptors (TLRs) and other pattern recognition receptors, along with the secretion of cytokines. Emerging evidence demonstrates that lung epithelial cells can generate and secrete immunoglobulins (Igs), including IgM, IgA, or IgG, thus performing antibody function. Moreover, malignantly transformed lung epithelial cells have been discovered to produce high levels of Ig, predominantly IgG, which do not fulfill the role of antibodies, but instead carries out tumour-promoting activity. Structural analysis has indicated that the biological activity of IgG produced by lung cancer cells differs from that of Igs produced by normal lung epithelial cells due to the unique glycosylation modification. Specifically, the sialylated IgG (SIA-IgG), characterised by a non-traditional N-glycosylation modification at the Asn162 site of Igγ CH1, is highly expressed in tumour stem cells. It has been demonstrated that SIA-IgG relies on this unique sialylation modification to promote tumorigenesis, metastasis, and immune evasion. Current results have proven that the Ig produced by lung epithelial cells has multifaceted biological activities, including immune defence functions under physiological conditions, while acquiring tumour-promoting activity during malignant transformation. These insights possess potential for the diagnosis and treatment of lung cancer as novel biomarkers and targets.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/patologia , Glicosilação , Pulmão/imunologia , Pulmão/patologia , Pulmão/metabolismo , Imunoglobulinas/metabolismo , Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo
18.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34257155

RESUMO

Trastuzumab, a targeted anti-human epidermal-growth-factor receptor-2 (HER2) monoclonal antibody, represents a mainstay in the treatment of HER2-positive (HER2+) breast cancer. Although trastuzumab treatment is highly efficacious for early-stage HER2+ breast cancer, the majority of advanced-stage HER2+ breast cancer patients who initially respond to trastuzumab acquire resistance to treatment and relapse, despite persistence of HER2 gene amplification/overexpression. Here, we sought to leverage HER2 overexpression to engage antibody-dependent cellular phagocytosis (ADCP) through a combination of trastuzumab and anti-CD47 macrophage checkpoint immunotherapy. We have previously shown that blockade of CD47, a surface protein expressed by many malignancies (including HER2+ breast cancer), is an effective anticancer therapy. CD47 functions as a "don't eat me" signal through its interaction with signal regulatory protein-α (SIRPα) on macrophages to inhibit phagocytosis. Hu5F9-G4 (magrolimab), a humanized monoclonal antibody against CD47, blocks CD47's "don't eat me" signal, thereby facilitating macrophage-mediated phagocytosis. Preclinical studies have shown that combining Hu5F9-G4 with tumor-targeting antibodies, such as rituximab, further enhances Hu5F9-G4's anticancer effects via ADCP. Clinical trials have additionally demonstrated that Hu5F9-G4, in combination with rituximab, produced objective responses in patients whose diffuse large B cell lymphomas had developed resistance to rituximab and chemotherapy. These studies led us to hypothesize that combining Hu5F9-G4 with trastuzumab would produce an anticancer effect in antibody-dependent cellular cytotoxicity (ADCC)-tolerant HER2+ breast cancer. This combination significantly suppressed the growth of ADCC-tolerant HER2+ breast cancers via Fc-dependent ADCP. Our study demonstrates that combining trastuzumab and Hu5F9-G4 represents a potential new treatment option for HER2+ breast cancer patients, even for patients whose tumors have progressed after trastuzumab.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Antígeno CD47/imunologia , Trastuzumab/administração & dosagem , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Quimioterapia Combinada , Feminino , Humanos , Imunoterapia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia
19.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892166

RESUMO

Pertuzumab (Perjeta®), a humanized antibody binding to the dimerization arm of HER2 (Human epidermal growth factor receptor-2), has failed as a monotherapy agent in HER2 overexpressing malignancies. Since the molecular interaction of HER2 with ligand-bound EGFR (epidermal growth factor receptor) has been implied in mitogenic signaling and malignant proliferation, we hypothesized that this interaction, rather than HER2 expression and oligomerization alone, could be a potential molecular target and predictor of the efficacy of pertuzumab treatment. Therefore, we investigated static and dynamic interactions between HER2 and EGFR molecules upon EGF stimulus in the presence and absence of pertuzumab in HER2+ EGFR+ SK-BR-3 breast tumor cells using Förster resonance energy transfer (FRET) microscopy and fluorescence correlation and cross-correlation spectroscopy (FCS/FCCS). The consequential activation of signaling and changes in cell proliferation were measured by Western blotting and MTT assay. The autocorrelation functions of HER2 diffusion were best fitted by a three-component model corrected for triplet formation, and among these components the slowly diffusing membrane component revealed aggregation induced by EGFR ligand binding, as evidenced by photon-counting histograms and co-diffusing fractions. This aggregation has efficiently been prevented by pertuzumab treatment, which also inhibited the post-stimulus interaction of EGFR and HER2, as monitored by changes in FRET efficiency. Overall, the data demonstrated that pertuzumab, by hindering post-stimulus interaction between EGFR and HER2, inhibits EGFR-evoked HER2 aggregation and phosphorylation and leads to a dose-dependent decrease in cell proliferation, particularly when higher amounts of EGF are present. Consequently, we propose that EGFR expression on HER2-positive tumors could be taken into consideration as a potential biomarker when predicting the outcome of pertuzumab treatment.


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias da Mama , Proliferação de Células , Receptores ErbB , Receptor ErbB-2 , Transdução de Sinais , Humanos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Receptores ErbB/metabolismo , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Feminino , Proliferação de Células/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Transferência Ressonante de Energia de Fluorescência , Ativação Transcricional/efeitos dos fármacos , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico
20.
J Infect Dis ; 227(2): 206-210, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35921542

RESUMO

BACKGROUND: The aim of this randomized, controlled trial is to determine whether antisevere acute respiratory syndrome coronavirus 2 hyperimmune globulin (COVIG) protects against severe coronavirus disease 2019 (COVID-19) in severely immunocompromised, hospitalized, COVID-19 patients. METHODS: Patients were randomly assigned to receive COVIG or intravenous immunoglobulin (IVIG) without SARS-CoV-2 antibodies. RESULTS: Severe COVID-19 was observed in 2 of 10 (20%) patients treated with COVIG compared to 7 of 8 (88%) in the IVIG control group (P = .015, Fisher's exact test). CONCLUSIONS: Antisevere acute respiratory syndrome coronavirus 2 hyperimmune globulin may be a valuable treatment in severely immunocompromised, hospitalized, COVID-19 patients and should be considered when no monoclonal antibody therapies are available.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Imunoglobulinas Intravenosas/uso terapêutico , Resultado do Tratamento , Soroterapia para COVID-19 , Imunização Passiva/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA